forked from NVlabs/InstantSplat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
render.py
executable file
·191 lines (162 loc) · 6.5 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
from utils.pose_utils import get_tensor_from_camera
def render_set(model_path, name, iteration, views, gaussians, pipeline, background):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
camera_pose = get_tensor_from_camera(view.world_view_transform.transpose(0, 1))
rendering = render(
view, gaussians, pipeline, background, camera_pose=camera_pose
)["render"]
gt = view.original_image[0:3, :, :]
torchvision.utils.save_image(
rendering, os.path.join(render_path, "{0:05d}".format(idx) + ".png")
)
torchvision.utils.save_image(
gt, os.path.join(gts_path, "{0:05d}".format(idx) + ".png")
)
def render_set_optimize(model_path, name, iteration, views, gaussians, pipeline, background):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
gaussians._xyz.requires_grad_(False)
gaussians._features_dc.requires_grad_(False)
gaussians._features_rest.requires_grad_(False)
gaussians._opacity.requires_grad_(False)
gaussians._scaling.requires_grad_(False)
gaussians._rotation.requires_grad_(False)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
# num_iter = 200
num_iter = args.optim_test_pose_iter
camera_pose = get_tensor_from_camera(view.world_view_transform.transpose(0, 1))
camera_tensor_T = camera_pose[-3:].requires_grad_()
camera_tensor_q = camera_pose[:4].requires_grad_()
pose_optimizer = torch.optim.Adam(
[
{
"params": [camera_tensor_T],
"lr": 0.0003,
},
{
"params": [camera_tensor_q],
"lr": 0.0001,
},
]
)
progress_bar = tqdm(
range(num_iter), desc=f"Tracking Time Step: {idx}", disable=True
)
# Keep track of best pose candidate
candidate_q = camera_tensor_q.clone().detach()
candidate_T = camera_tensor_T.clone().detach()
current_min_loss = float(1e20)
gt = view.original_image[0:3, :, :]
for iteration in range(num_iter):
rendering = render(view, gaussians, pipeline, background, camera_pose=torch.cat([camera_tensor_q, camera_tensor_T]))["render"]
loss = torch.abs(gt - rendering).mean()
if iteration%10==0:
print(iteration, loss.item())
loss.backward()
with torch.no_grad():
pose_optimizer.step()
pose_optimizer.zero_grad(set_to_none=True)
if iteration == 0:
initial_loss = loss
if loss < current_min_loss:
current_min_loss = loss
candidate_q = camera_tensor_q.clone().detach()
candidate_T = camera_tensor_T.clone().detach()
progress_bar.update(1)
camera_tensor_q = candidate_q
camera_tensor_T = candidate_T
progress_bar.close()
opt_pose = torch.cat([camera_tensor_q, camera_tensor_T])
print(opt_pose-camera_pose)
rendering_opt = render(view, gaussians, pipeline, background, camera_pose=opt_pose)["render"]
torchvision.utils.save_image(
rendering_opt, os.path.join(render_path, "{0:05d}".format(idx) + ".png")
)
torchvision.utils.save_image(
gt, os.path.join(gts_path, "{0:05d}".format(idx) + ".png")
)
def render_sets(
dataset: ModelParams,
iteration: int,
pipeline: PipelineParams,
skip_train: bool,
skip_test: bool,
args,
):
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, opt=args, shuffle=False)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
# if not skip_train:
# render_set(
# dataset.model_path,
# "train",
# scene.loaded_iter,
# scene.getTrainCameras(),
# gaussians,
# pipeline,
# background,
# )
if not skip_test:
render_set_optimize(
dataset.model_path,
"test",
scene.loaded_iter,
scene.getTestCameras(),
gaussians,
pipeline,
background,
)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--get_video", action="store_true")
parser.add_argument("--n_views", default=None, type=int)
parser.add_argument("--scene", default=None, type=str)
parser.add_argument("--optim_test_pose_iter", default=500, type=int)
args = get_combined_args(parser)
print("Rendering " + args.model_path)
# Initialize system state (RNG)
# safe_state(args.quiet)
render_sets(
model.extract(args),
args.iteration,
pipeline.extract(args),
args.skip_train,
args.skip_test,
args,
)