forked from hharveygit/CARLA_JNM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fig7_summarizeCARLARealCCEPs.m
162 lines (126 loc) · 6.65 KB
/
fig7_summarizeCARLARealCCEPs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
%% This loads the outputs from applyCARLARealCCEPsLoop to summarize the optimal CCEP cutoff size for stim sites
% in each tissue type across the 4 subjects
%
% 2023/09/27
%
% If this code is used in a publication, please cite the manuscript:
% "CARLA: Adjusted common average referencing for cortico-cortical evoked potential data"
% by H Huang, G Ojeda Valencia, NM Gregg, GM Osman, MN Montoya,
% GA Worrell, KJ Miller, and D Hermes.
%
% CARLA manuscript package.
% Copyright (C) 2023 Harvey Huang
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <https://www.gnu.org/licenses/>.
%
% subjects and runs corresponding to each subject to load
subs = {'sub-1', 'sub-2', 'sub-3', 'sub-4'};
runs = {[1, 2, 3, 5], [12, 13, 14], [2, 3, 4], [1, 2]};
for ss = 1:length(subs)
sub = subs{ss};
fprintf('Sub: %s\n', sub);
%% Obtain stim sites across all runs, number of trials
elecsPath = fullfile(dataPath, sub, 'ses-ieeg01', 'ieeg', sprintf('%s_ses-ieeg01_electrodes.tsv', sub));
elecs = ieeg_readtableRmHyphens(elecsPath);
SOZ = elecs.name(contains(elecs.seizure_zone, 'SOZ'));
sites = cell(0, 2); % name, number of trials
for rr = 1:length(runs{ss})
run = runs{ss}(rr);
fprintf('%s run %d\n', sub, run);
eventsPath = fullfile(dataPath, sub, 'ses-ieeg01', 'ieeg', sprintf('%s_ses-ieeg01_task-ccep_run-%02d_events.tsv', sub, run));
annotPath = fullfile(dataPath, sub, 'ses-ieeg01', 'ieeg', sprintf('%s_ses-ieeg01_task-ccep_run-%02d_eventsAnnot.tsv', sub, run));
events = ieeg_readtableRmHyphens(eventsPath, 'electrical_stimulation_site', 1);
eventsStatusOrig = events.status;
events(~strcmpi(events.status, 'good'), :) = [];
sitesRun = groupby(events.electrical_stimulation_site); % all sites in current run
% read manual annotations on events if it exists
try
annots = readtable(annotPath, 'FileType', 'text', 'Delimiter', '\t');
annots = strip(annots.status_description);
catch
warning('Unable to load event annotation for events');
clear annots
end
if exist('annots', 'var')
annots(~strcmpi(eventsStatusOrig, 'good')) = [];
assert(length(annots) == height(events), 'Error: length of event annotations does not match events table height');
end
% Remove stim sites in SOZ
isSoz = any(ismember(split(sitesRun(:, 1), '-', 2), SOZ), 2);
sitesRun(isSoz, :) = [];
% remove "all" annotated trials and calculate final number of trials
nTrials = cellfun(@length, sitesRun(:, 2));
if exist('annots', 'var')
for ii = 1:size(sitesRun, 1)
annotsCurr = annots(sitesRun{ii, 2});
nTrsRm = sum(strcmpi(annotsCurr, 'all'));
nTrials(ii) = nTrials(ii) - nTrsRm;
end
end
sites = [sites; sitesRun(:, 1), num2cell(nTrials)];
end
% ensure no stim site has less than 8 trials
sites = cell2table(sites, 'VariableNames', {'site', 'trials'});
sites(sites.trials < 8, :) = [];
%% Identify Destrieux labels for each stim site
% subject-specific Freesurfer derivatives folder
FSdir = fullfile(dataPath, 'derivatives', 'freesurfer', sub);
xyzs = ieeg_getPairXyzs(sites.site, elecs);
labs = ieeg_getLabelXyzDestrieux(xyzs, FSdir); % within radius of 3
labGroup = repmat({'n/a'}, length(labs), 1);
labGroup(contains(labs, {'Thalamus', 'Hippocampus', 'Amygdala'})) = {'subgray'};
labGroup(contains(labs, 'White_Matter')) = {'WM'};
labGroup(startsWith(labs, {'lh', 'rh'})) = {'cortgray'};
fprintf('Subcortical Gray: %d\nCortical Gray: %d\nWhite Matter: %d\nn/a: %d\n', ...
sum(strcmp(labGroup, 'subgray')), sum(strcmp(labGroup, 'cortgray')), sum(strcmp(labGroup, 'WM')), sum(strcmp(labGroup, 'n/a')));
sites.labs = labs;
sites.labGroup = labGroup;
%% load the nCAR files and plot distributions
rng('default');
outdir = fullfile('output', ''realCCEPsLoop', sub);
carSz = zeros(height(sites), 2);
for ii = 1:height(sites)
M = readmatrix(fullfile(outdir, sprintf('%s_%s_nCAR.txt', sub, sites.site{ii})));
carSz(ii, :) = M;
end
sites.carSz = carSz(:, 1);
sites.numChs = carSz(:, 2);
sites.pct = 100*carSz(:, 1)./carSz(:, 2);
% plot overall distribution
figure; histogram(sites.pct, 10);
% plot distributions by label group and hemisphere
pctByGroup = cell(6, 1);
% Right hemi
pctByGroup{1} = sites.pct(strcmp(labGroup, 'cortgray') & startsWith(lower(labs), 'r'));
pctByGroup{2} = sites.pct(strcmp(labGroup, 'subgray') & startsWith(lower(labs), 'r'));
pctByGroup{3} = sites.pct(strcmp(labGroup, 'WM') & startsWith(lower(labs), 'r'));
% Left hemi
pctByGroup{4} = sites.pct(strcmp(labGroup, 'cortgray') & startsWith(lower(labs), 'l'));
pctByGroup{5} = sites.pct(strcmp(labGroup, 'subgray') & startsWith(lower(labs), 'l'));
pctByGroup{6} = sites.pct(strcmp(labGroup, 'WM') & startsWith(lower(labs), 'l'));
figure('Position', [200, 200, 250, 300]); hold on
bar(1:3, cellfun(@mean, {[pctByGroup{1}; pctByGroup{4}], [pctByGroup{2}; pctByGroup{5}], [pctByGroup{3}; pctByGroup{6}]}), ...
'FaceColor', [0.8, 0.8, 0.8]); % mean for stim sites in both hemispheres
hsR = jitterplot(pctByGroup(1:3), brighten([252, 141, 98]/255, -0.5));
set(hsR, 'Marker', '.', 'MarkerSize', 16);
hsL = jitterplot(pctByGroup(4:6), brighten([102, 194, 165]/255, -0.5));
set(hsL, 'Marker', '.', 'MarkerSize', 16);
ylim([0, 100]);
set(gca, 'XTick', 1:3, 'XTickLabels', {'cortgray', 'subgray', 'WM'});
[p, tbl, stats] = anova1(sites.pct, sites.labGroup, 'off');
fprintf('ANOVA p = %0.02e\n', p);
saveas(gcf, fullfile(outdir, 'summaryPctCAR'), 'png');
saveas(gcf, fullfile(outdir, 'summaryPctCAR'), 'svg');
writetable(sites, fullfile(outdir, 'summaryTbl.tsv'), 'Delimiter', '\t', 'FileType', 'text');
end