-
Notifications
You must be signed in to change notification settings - Fork 0
/
IT2.mod
117 lines (101 loc) · 2.58 KB
/
IT2.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
: $Id: IT2.mod,v 1.9 2004/06/08 00:46:04 billl Exp $
TITLE Low threshold calcium current
:
: Ca++ current responsible for low threshold spikes (LTS)
: RETICULAR THALAMUS
: Differential equations
:
: Model of Huguenard & McCormick, J Neurophysiol 68: 1373-1383, 1992.
: The kinetics is described by standard equations (NOT GHK)
: using a m2h format, according to the voltage-clamp data
: (whole cell patch clamp) of Huguenard & Prince, J Neurosci.
: 12: 3804-3817, 1992.
:
: - Kinetics adapted to fit the T-channel of reticular neuron
: - Time constant tau_h refitted from experimental data
: - shift parameter for screening charge
:
: Model described in detail in:
: Destexhe, A., Contreras, D., Steriade, M., Sejnowski, T.J. and
: Huguenard, J.R. In vivo, in vitro and computational analysis of
: dendritic calcium currents in thalamic reticular neurons.
: Journal of Neuroscience 16: 169-185, 1996.
:
:
: Written by Alain Destexhe, Salk Institute, Sept 18, 1992
:
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX itre
USEION ca READ cai, cao WRITE ica
RANGE gmax, m_inf, tau_m, h_inf, tau_h, carev, shift, i
GLOBAL exptemp, q10m, q10h
}
UNITS {
(molar) = (1/liter)
(mV) = (millivolt)
(mA) = (milliamp)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
PARAMETER {
v (mV)
gmax = .003 (mho/cm2)
shift = 2 (mV)
q10m = 2.5
q10h = 2.5
exptemp = 24
cao
cai
}
STATE {
m h
}
ASSIGNED {
i (mA/cm2)
ica (mA/cm2)
carev (mV)
m_inf
tau_m (ms)
h_inf
tau_h (ms)
phim
phih
}
BREAKPOINT {
SOLVE states METHOD cnexp
carev = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (cao/cai)
i = gmax * m*m*h * (v-carev)
ica=i
}
DERIVATIVE states {
mh(v)
m' = (m_inf - m) / tau_m
h' = (h_inf - h) / tau_h
}
UNITSOFF
INITIAL {
:
: Activation functions and kinetics were obtained from
: Huguenard & Prince, and were at 23-25 deg.
: Transformation to 36 deg using Q10
:
phim = q10m ^ ((celsius-exptemp)/10)
phih = q10h ^ ((celsius-exptemp)/10)
mh(v)
m = m_inf
h = h_inf
}
PROCEDURE mh(v(mV)) {
:
: Time constants were obtained from J. Huguenard
:
m_inf = 1.0 / ( 1 + exp(-(v+shift+50)/7.4) )
h_inf = 1.0 / ( 1 + exp((v+shift+78)/5.0) )
tau_m = ( 1 + 0.33 / ( exp((v+shift+25)/10) + exp(-(v+shift+100)/15) ) ) / phim
: tau_h = ( 22.7 + 0.27 / ( exp((v+shift+46)/4) + exp(-(v+shift+405)/50) ) ) / phih
: tau_h = ( 56.75 + 0.675 / ( exp((v+shift+46)/4) + exp(-(v+shift+405)/50) ) ) / phih
tau_h = ( 85 + 1.0 / ( exp((v+shift+46)/4) + exp(-(v+shift+405)/50) ) ) / phih
}
UNITSON