Skip to content

This repository is the official implementation of the paper Pruning via Iterative Ranking of Sensitivity Statistics and implements novel pruning / compression algorithms for deep learning / neural networks. Amongst others it implements structured pruning before training, its actual parameter shrinking and unstructured before/during training.

License

Notifications You must be signed in to change notification settings

MorganeAyle/SNIP-it

 
 

Repository files navigation

SNIP-it / SNAP-it

(Un)structured Pruning via Iterative Ranking of Sensitivity Statistics

Python 3.7 PyTorch 1.4 MIT

This repository is the official implementation of the paper Pruning via Iterative Ranking of Sensitivity Statistics. Currently under review. Please use this preliminary BibTex entry when referring to our work:

@article{verdenius2020pruning,
       author = {{Verdenius}, Stijn and {Stol}, Maarten and {Forr{\'e}}, Patrick},
        title = "{Pruning via Iterative Ranking of Sensitivity Statistics}",
      journal = {arXiv e-prints},
     keywords = {Computer Science - Machine Learning, Statistics - Machine Learning},
         year = 2020,
        month = jun,
          eid = {arXiv:2006.00896},
        pages = {arXiv:2006.00896},
archivePrefix = {arXiv},
       eprint = {2006.00896},
 primaryClass = {cs.LG},
}

Content

The repository implements novel pruning / compression algorithms for deep learning / neural networks. Additionally, it implements the shrinkage of actual tensors to really benefit from structured pruning without external hardware libraries. We implement:

  • Structured (node) pruning before training
  • Structured (node) pruning during training
  • Unstructured (weight) pruning before training
  • Unstructured (weight) pruning during training

Setup

  • Install virtualenv

pip3 install virtualenv

  • Create environment

virtualenv -p python3 ~/virtualenvs/SNIPIT

  • Activate environment

source ~/virtualenvs/SNIPIT/bin/activate

  • Install requirements:

pip install -r requirements.txt

  • If you mean to run the 'Imagenette' dataset: download that from here and unpack in /gitignored/data/, then replace CIFAR10 with IMAGENETTE below to run. Additional datasets can be added in a similar way (Imagewoof, tiny-imagenet, etc.)

Training Examples & Results

Some examples of training the models from the paper.

Structured Pruning (SNAP-it)

To run training for SNAP-it - our structured pruning before training algorithm - with a VGG16 on CIFAR10, run the following:

python3 main.py --model VGG16 --data_set CIFAR10 --prune_criterion SNAPit --pruning_limit 0.93 --epochs 80

drawing

accuracy-drop weight sparsity node sparsity cumulative training FLOPS reduction
-1% 99% 93% 8 times

Unstructured Pruning (SNIP-it)

To run training for SNIP-it - our unstructured pruning algorithm - with a ResNet18 on CIFAR10, run one of the following:

## during training
python3 main.py --model ResNet18 --data_set CIFAR10 --prune_criterion SNIPitDuring --pruning_limit 0.98 --outer_layer_pruning --epochs 80 --prune_delay 4 --prune_freq 4
## before training
python3 main.py --model ResNet18 --data_set CIFAR10 --prune_criterion SNIPit --pruning_limit 0.98 --outer_layer_pruning --epochs 80 

drawing

accuracy-drop weight sparsity
SNIP-it (during) -0% 98%
SNIP-it (before) -4% 98%

Adversarial Evaluation

To evaluate a model on adversarial attacks (for now only supported on unstructured), run:

python main.py --eval --model MLP5 --data_set MNIST --checkpoint_name <see_results_folder> --checkpoint_model MLP5_finished --attack CarliniWagner

Visualization

Results and saved models will be logged to the terminal, logfiles in result-folders and in tensorboard files in the /gitignored/results/ folder. To run tensorboard's interface run the following:

tensorboard --logdir ./gitignored/results/

Arguments

The regular arguments for running are the following. Additionally, there are some more found in utils/config_utils.py.

argument description type
--model The neural network architecture from /models/networks/ str
--data_set The dataset from /utils/dataloaders.py str
--prune_criterion The pruning criterion from /models/criterions/ str
--batch_size The batch size int
--optimizer The optimizer model class from [ADAM, SGD & RMSPROP] str
--loss The loss function from /models/losses/ str
--train_scheme The training scheme from /models/trainers/ (if applicable) str
--test_scheme The testing scheme from /models/testers/ (if applicable) str
--eval Add to run in test mode bool
--attack Name of adersarial attack if that is the test_scheme str
--device Device [cuda or cpu] srt
--run_name Extra run identification for generated run folder str
--checkpoint_name Load from this checkpoint folder if not None str
--checkpoint_model Load this model from checkpoint_name str
--outer_layer_pruning Prunes outer layers too. Use iff pruning unstructured bool
--enable_rewinding Does rewinding of weights (for IMP) bool
--rewind_epoch Epoch to rewind to int
--l0 Run with L0-reg layers, overrides some other options bool
--l0_reg L0 regularisation hyperparameter float
--hoyer_square Run with hoyersquare, overrides some other options bool
--group_hoyer_square Run with grouphoyersquare, overrides some other options bool
--hoyer_reg Hoyer regularisation hyperparameter float
--learning_rate Learning rate float
--pruning_limit Final sparsity endeavour for applicable pruning criterions float
--pruning_rate Outdated pruning_limit, still used for UnstructuredRandom float
--snip_steps S from paper algorithm box 1. Number of pruning steps int
--epochs How long to train for int
--prune_delay Tau from paper algorithm box 1. How long to start pruning int
--prune_freq Tau from paper algorithm box 1 again. How often to prune int
--seed Random seed to run with int
--tuning Run with train and held out validationset, omit testset bool

Some notes:

  • please note that as of now, residual connections (e.g. ResNets) and structured pruning are not supported together.
  • please note that as of now, structured pruning and --outer_layer_pruning are not supported together.
  • please note that as of now, if running unstructured pruning, you should also run with --outer_layer_pruning.

Codebase Design

  • Codebase is built modularly so that every criterion or model that is added to its designated folder, provided its filename is equal to its classname, can be ran via string argument immediately. This way its easily extendable.
  • The same goes for training schemes; implemented here as classes and automatically loaded in by string reference. When you need new functionality concerning one aspect of training you can simply inheret the DefaultTrainer and then override only that function you need differently. Alternatively, you can make your own training scheme, the sky is the limit!
  • All entry-points go through main.py, where the required models are loaded and thereafter redirected to the right training or testing scheme.
  • All results show up at the path /gitignored/results/ in its own (date-stamped) folder. In here you find a copy of the codebase at the time of execution, its calling command, tensorboard output, saved models and logs.
  • In the file utils/autoconfig.json certain automatic configurations get set to make it easier to run different models in sequence. You can disable this with --disable_autoconfig, but it is strongly recommended against.

How to run the other baselines

## unpruned baselines
python3 main.py --model VGG16 --data_set CIFAR10 --prune_criterion EmptyCrit --epochs 80 --pruning_limit 0.0
python3 main.py --model ResNet18 --data_set CIFAR10 --prune_criterion EmptyCrit --epochs 80 --pruning_limit 0.0

## structured baselines
python3 main.py --model VGG16 --data_set CIFAR10 --prune_criterion StructuredRandom --pruning_limit 0.93 --epochs 80
python3 main.py --model VGG16 --data_set CIFAR10 --prune_criterion GateDecorators --pruning_limit 0.93 --epochs 70 --checkpoint_name <unpruned_results_folder> --checkpoint_model VGG16_finished 
python3 main.py --model VGG16 --data_set CIFAR10 --prune_criterion EfficientConvNets --pruning_limit 0.93 --epochs 80 --prune_delay 69 --prune_freq 1
python3 main.py --model VGG16 --data_set CIFAR10 --prune_criterion GroupHoyerSquare --hoyer_reg <REG> --epochs 80 --prune_delay 69 --prune_freq 1 --group_hoyer_square
python3 main.py --model VGG16 --data_set CIFAR10 --l0_reg <REG> --epochs 160 --l0

## unstructured baselines
python3 main.py --model ResNet18 --data_set CIFAR10 --prune_criterion UnstructuredRandom --pruning_rate 0.98 --pruning_limit 0.98 --outer_layer_pruning --epochs 80
python3 main.py --model ResNet18 --data_set CIFAR10 --prune_criterion <SNIP or GRASP> --pruning_limit 0.98 --outer_layer_pruning --epochs 80
python3 main.py --model ResNet18 --data_set CIFAR10 --prune_criterion HoyerSquare --hoyer_reg <REG> --outer_layer_pruning --epochs 80 --prune_delay 69 --prune_freq 1 --hoyer_square
python3 main.py --model ResNet18 --data_set CIFAR10 --prune_criterion IMP --pruning_limit 0.98 --outer_layer_pruning --epochs 80 --prune_delay 4 --prune_freq 4 --enable_rewinding --rewind_to 6

Licence

MIT Licence

About

This repository is the official implementation of the paper Pruning via Iterative Ranking of Sensitivity Statistics and implements novel pruning / compression algorithms for deep learning / neural networks. Amongst others it implements structured pruning before training, its actual parameter shrinking and unstructured before/during training.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.1%
  • Shell 0.9%