-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
507 lines (407 loc) · 20.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import os
import time
import argparse
import numpy as np
import sys
from contextlib import contextmanager
import torch
from torch.utils.data import DataLoader
from torch.autograd import Variable
from torch.nn.parameter import Parameter
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from apex.parallel import DistributedDataParallel as DDP
import models
import loss_functions
import data_functions
import dllogger as DLLogger
from dllogger import StdOutBackend, JSONStreamBackend, Verbosity
from scipy.io.wavfile import write as write_wav
from apex import amp
amp.lists.functional_overrides.FP32_FUNCS.remove('softmax')
amp.lists.functional_overrides.FP16_FUNCS.append('softmax')
def parse_args(parser):
"""
Parse commandline arguments.
"""
parser.add_argument('-o', '--output', type=str, required=True,
help='Directory to save checkpoints')
parser.add_argument('-d', '--dataset-path', type=str,
default='./', help='Path to dataset')
parser.add_argument('-m', '--model-name', type=str, default='', required=True,
help='Model to train')
parser.add_argument('--log-file', type=str, default='nvlog.json',
help='Filename for logging')
parser.add_argument('--anneal-steps', nargs='*',
help='Epochs after which decrease learning rate')
parser.add_argument('--anneal-factor', type=float, choices=[0.1, 0.3], default=0.1,
help='Factor for annealing learning rate')
# training
training = parser.add_argument_group('training setup')
training.add_argument('--epochs', type=int, required=True,
help='Number of total epochs to run')
training.add_argument('--epochs-per-checkpoint', type=int, default=10,
help='Number of epochs per checkpoint')
training.add_argument('--checkpoint-path', type=str, default='',
help='Checkpoint path to resume training')
training.add_argument('--seed', type=int, default=1234,
help='Seed for PyTorch random number generators')
training.add_argument('--dynamic-loss-scaling', type=bool, default=True,
help='Enable dynamic loss scaling')
training.add_argument('--amp-run', action='store_true',
help='Enable AMP')
training.add_argument('--cudnn-enabled', action='store_true',
help='Enable cudnn')
training.add_argument('--cudnn-benchmark', action='store_true',
help='Run cudnn benchmark')
training.add_argument('--disable-uniform-initialize-bn-weight', action='store_true',
help='disable uniform initialization of batchnorm layer weight')
optimization = parser.add_argument_group('optimization setup')
optimization.add_argument(
'--use-saved-learning-rate', default=False, type=bool)
optimization.add_argument('-lr', '--learning-rate', type=float, required=True,
help='Learing rate')
optimization.add_argument('--weight-decay', default=1e-6, type=float,
help='Weight decay')
optimization.add_argument('--grad-clip-thresh', default=1.0, type=float,
help='Clip threshold for gradients')
optimization.add_argument('-bs', '--batch-size', type=int, required=True,
help='Batch size per GPU')
optimization.add_argument('--grad-clip', default=5.0, type=float,
help='Enables gradient clipping and sets maximum gradient norm value')
# dataset parameters
dataset = parser.add_argument_group('dataset parameters')
dataset.add_argument('--load-mel-from-disk', action='store_true',
help='Loads mel spectrograms from disk instead of computing them on the fly')
dataset.add_argument('--training-files',
default='filelists/kss_train.txt',
type=str, help='Path to training filelist')
dataset.add_argument('--validation-files',
default='filelists/kss_val.txt',
type=str, help='Path to validation filelist')
dataset.add_argument('--text-cleaners', nargs='*',
default=['english_cleaners'], type=str,
help='Type of text cleaners for input text')
# audio parameters
audio = parser.add_argument_group('audio parameters')
audio.add_argument('--max-wav-value', default=32768.0, type=float,
help='Maximum audiowave value')
audio.add_argument('--sampling-rate', default=22050, type=int,
help='Sampling rate')
audio.add_argument('--filter-length', default=1024, type=int,
help='Filter length')
audio.add_argument('--hop-length', default=256, type=int,
help='Hop (stride) length')
audio.add_argument('--win-length', default=1024, type=int,
help='Window length')
audio.add_argument('--mel-fmin', default=0.0, type=float,
help='Minimum mel frequency')
audio.add_argument('--mel-fmax', default=8000.0, type=float,
help='Maximum mel frequency')
distributed = parser.add_argument_group('distributed setup')
# distributed.add_argument('--distributed-run', default=True, type=bool,
# help='enable distributed run')
distributed.add_argument('--rank', default=0, type=int,
help='Rank of the process, do not set! Done by multiproc module')
distributed.add_argument('--world-size', default=1, type=int,
help='Number of processes, do not set! Done by multiproc module')
distributed.add_argument('--dist-url', type=str, default='tcp://localhost:23456',
help='Url used to set up distributed training')
distributed.add_argument('--group-name', type=str, default='group_name',
required=False, help='Distributed group name')
distributed.add_argument('--dist-backend', default='nccl', type=str, choices={'nccl'},
help='Distributed run backend')
benchmark = parser.add_argument_group('benchmark')
benchmark.add_argument('--bench-class', type=str, default='')
return parser
def reduce_tensor(tensor, num_gpus):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.reduce_op.SUM)
rt /= num_gpus
return rt
def init_distributed(args, world_size, rank, group_name):
assert torch.cuda.is_available(), "Distributed mode requires CUDA."
print("Initializing Distributed")
# Set cuda device so everything is done on the right GPU.
#torch.cuda.set_device(rank % torch.cuda.device_count())
torch.cuda.set_device(0)
# Initialize distributed communication
dist.init_process_group(
backend=args.dist_backend, init_method=args.dist_url,
world_size=world_size, rank=rank, group_name=group_name)
print("Done initializing distributed")
def save_checkpoint(model, optimizer, epoch, config, amp_run, filepath):
print("Saving model and optimizer state at epoch {} to {}".format(
epoch, filepath))
checkpoint = {'epoch': epoch,
'cuda_rng_state_all': torch.cuda.get_rng_state_all(),
'random_rng_state': torch.random.get_rng_state(),
'config': config,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()}
if amp_run:
checkpoint['amp'] = amp.state_dict()
torch.save(checkpoint, filepath)
def load_checkpoint(model, optimizer, epoch, config, amp_run, filepath):
checkpoint = torch.load(filepath, map_location='cpu')
epoch[0] = checkpoint['epoch']+1
torch.cuda.set_rng_state_all(checkpoint['cuda_rng_state_all'])
torch.random.set_rng_state(checkpoint['random_rng_state'])
config = checkpoint['config']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
if amp_run:
amp.load_state_dict(checkpoint['amp'])
# adapted from: https://discuss.pytorch.org/t/opinion-eval-should-be-a-context-manager/18998/3
# Following snippet is licensed under MIT license
@contextmanager
def evaluating(model):
'''Temporarily switch to evaluation mode.'''
istrain = model.training
try:
model.eval()
yield model
finally:
if istrain:
model.train()
def validate(model, criterion, valset, epoch, batch_iter, batch_size,
world_size, collate_fn, distributed_run, rank, batch_to_gpu):
"""Handles all the validation scoring and printing"""
with evaluating(model), torch.no_grad():
val_sampler = DistributedSampler(valset) if distributed_run else None
val_loader = DataLoader(valset, num_workers=1, shuffle=False,
sampler=val_sampler,
batch_size=batch_size, pin_memory=False,
collate_fn=collate_fn)
val_loss = 0.0
num_iters = 0
val_items_per_sec = 0.0
for i, batch in enumerate(val_loader):
torch.cuda.synchronize()
iter_start_time = time.perf_counter()
x, y, num_items = batch_to_gpu(batch)
y_pred = model(x)
loss = criterion(y_pred, y)
if distributed_run:
reduced_val_loss = reduce_tensor(loss.data, world_size).item()
reduced_num_items = reduce_tensor(num_items.data, 1).item()
else:
reduced_val_loss = loss.item()
reduced_num_items = num_items.item()
val_loss += reduced_val_loss
torch.cuda.synchronize()
iter_stop_time = time.perf_counter()
iter_time = iter_stop_time - iter_start_time
items_per_sec = reduced_num_items/iter_time
DLLogger.log(step=(epoch, batch_iter, i), data={'val_items_per_sec': items_per_sec})
val_items_per_sec += items_per_sec
num_iters += 1
val_loss = val_loss/(i + 1)
DLLogger.log(step=(epoch,), data={'val_loss': val_loss})
DLLogger.log(step=(epoch,), data={'val_items_per_sec':
(val_items_per_sec/num_iters if num_iters > 0 else 0.0)})
return val_loss
def adjust_learning_rate(iteration, epoch, optimizer, learning_rate,
anneal_steps, anneal_factor, rank):
p = 0
if anneal_steps is not None:
for i, a_step in enumerate(anneal_steps):
if epoch >= int(a_step):
p = p+1
if anneal_factor == 0.3:
lr = learning_rate*((0.1 ** (p//2))*(1.0 if p % 2 == 0 else 0.3))
else:
lr = learning_rate*(anneal_factor ** p)
if optimizer.param_groups[0]['lr'] != lr:
DLLogger.log(step=(epoch, iteration), data={'learning_rate changed': str(optimizer.param_groups[0]['lr'])+" -> "+str(lr)})
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main():
#-----------------------------------------------------------------------------------
#sys.stdout = open('taco_k_log2.txt', 'a')
#-----------------------------------------------------------------------------------
parser = argparse.ArgumentParser(description='PyTorch Tacotron 2 Training')
parser = parse_args(parser)
args, _ = parser.parse_known_args()
if 'LOCAL_RANK' in os.environ and 'WORLD_SIZE' in os.environ:
local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
else:
local_rank = args.rank
world_size = args.world_size
distributed_run = world_size > 1
if local_rank == 0:
DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT,
args.output+'/'+args.log_file),
StdOutBackend(Verbosity.VERBOSE)])
else:
DLLogger.init(backends=[])
for k,v in vars(args).items():
DLLogger.log(step="PARAMETER", data={k:v})
DLLogger.log(step="PARAMETER", data={'model_name':'Tacotron2_PyT'})
model_name = args.model_name
parser = models.parse_model_args(model_name, parser)
args, _ = parser.parse_known_args()
torch.backends.cudnn.enabled = args.cudnn_enabled
torch.backends.cudnn.benchmark = args.cudnn_benchmark
if distributed_run:
init_distributed(args, world_size, local_rank, args.group_name)
torch.cuda.synchronize()
run_start_time = time.perf_counter()
model_config = models.get_model_config(model_name, args)
model = models.get_model(model_name, model_config,
to_cuda=True,
uniform_initialize_bn_weight=not args.disable_uniform_initialize_bn_weight)
if not args.amp_run and distributed_run:
model = DDP(model)
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate,
weight_decay=args.weight_decay)
if args.amp_run:
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
if distributed_run:
model = DDP(model)
try:
sigma = args.sigma
except AttributeError:
sigma = None
start_epoch = [0]
if args.checkpoint_path is not "":
load_checkpoint(model, optimizer, start_epoch, model_config,
args.amp_run, args.checkpoint_path)
start_epoch = start_epoch[0]
criterion = loss_functions.get_loss_function(model_name, sigma)
try:
n_frames_per_step = args.n_frames_per_step
except AttributeError:
n_frames_per_step = None
collate_fn = data_functions.get_collate_function(
model_name, n_frames_per_step)
trainset = data_functions.get_data_loader(
model_name, args.dataset_path, args.training_files, args)
if distributed_run:
train_sampler = DistributedSampler(trainset)
shuffle = False
else:
train_sampler = None
shuffle = True
train_loader = DataLoader(trainset, num_workers=1, shuffle=shuffle,
sampler=train_sampler,
batch_size=args.batch_size, pin_memory=False,
drop_last=True, collate_fn=collate_fn)
valset = data_functions.get_data_loader(
model_name, args.dataset_path, args.validation_files, args)
batch_to_gpu = data_functions.get_batch_to_gpu(model_name)
iteration = 0
train_epoch_items_per_sec = 0.0
val_loss = 0.0
num_iters = 0
model.train()
for epoch in range(start_epoch, args.epochs):
torch.cuda.synchronize()
epoch_start_time = time.perf_counter()
# used to calculate avg items/sec over epoch
reduced_num_items_epoch = 0
# used to calculate avg loss over epoch
train_epoch_avg_loss = 0.0
train_epoch_items_per_sec = 0.0
num_iters = 0
# if overflow at the last iteration then do not save checkpoint
overflow = False
if distributed_run:
train_loader.sampler.set_epoch(epoch)
for i, batch in enumerate(train_loader):
torch.cuda.synchronize()
iter_start_time = time.perf_counter()
DLLogger.log(step=(epoch, i),
data={'glob_iter/iters_per_epoch': str(iteration)+"/"+str(len(train_loader))})
adjust_learning_rate(iteration, epoch, optimizer, args.learning_rate,
args.anneal_steps, args.anneal_factor, local_rank)
model.zero_grad()
x, y, num_items = batch_to_gpu(batch)
y_pred = model(x)
loss = criterion(y_pred, y)
if distributed_run:
reduced_loss = reduce_tensor(loss.data, world_size).item()
reduced_num_items = reduce_tensor(num_items.data, 1).item()
else:
reduced_loss = loss.item()
reduced_num_items = num_items.item()
if np.isnan(reduced_loss):
raise Exception("loss is NaN")
DLLogger.log(step=(epoch,i), data={'train_loss': reduced_loss})
train_epoch_avg_loss += reduced_loss
num_iters += 1
# accumulate number of items processed in this epoch
reduced_num_items_epoch += reduced_num_items
if args.amp_run:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
amp.master_params(optimizer), args.grad_clip_thresh)
else:
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), args.grad_clip_thresh)
optimizer.step()
torch.cuda.synchronize()
iter_stop_time = time.perf_counter()
iter_time = iter_stop_time - iter_start_time
items_per_sec = reduced_num_items/iter_time
train_epoch_items_per_sec += items_per_sec
#DLLogger.log(step=(epoch, i), data={'train_items_per_sec': items_per_sec})
#DLLogger.log(step=(epoch, i), data={'train_iter_time': iter_time})
iteration += 1
torch.cuda.synchronize()
epoch_stop_time = time.perf_counter()
epoch_time = epoch_stop_time - epoch_start_time
#DLLogger.log(step=(epoch,), data={'train_items_per_sec':
# (train_epoch_items_per_sec/num_iters if num_iters > 0 else 0.0)})
DLLogger.log(step=(epoch,), data={'train_loss': (train_epoch_avg_loss/num_iters if num_iters > 0 else 0.0)})
#DLLogger.log(step=(epoch,), data={'train_epoch_time': epoch_time})
val_loss = validate(model, criterion, valset, epoch, i,
args.batch_size, world_size, collate_fn,
distributed_run, local_rank, batch_to_gpu)
if (epoch % args.epochs_per_checkpoint == 0) and local_rank == 0 and args.bench_class == "":
checkpoint_path = os.path.join(
args.output, "checkpoint_{}_{}".format(model_name, epoch))
save_checkpoint(model, optimizer, epoch, model_config,
args.amp_run, checkpoint_path)
if local_rank == 0:
DLLogger.flush()
torch.cuda.synchronize()
run_stop_time = time.perf_counter()
run_time = run_stop_time - run_start_time
#DLLogger.log(step=tuple(), data={'run_time': run_time})
DLLogger.log(step=tuple(), data={'val_loss': val_loss})
#DLLogger.log(step=tuple(), data={'train_items_per_sec':
# (train_epoch_items_per_sec/num_iters if num_iters > 0 else 0.0)})
if local_rank == 0:
DLLogger.flush()
if __name__ == '__main__':
main()