-
Notifications
You must be signed in to change notification settings - Fork 3
/
infot.hoc
249 lines (233 loc) · 7.98 KB
/
infot.hoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// $Id: infot.hoc,v 1.43 2009/12/04 01:25:55 samn Exp $
print "Loading infot.hoc..."
if(!installed_infot) {install_infot()}
//* tentropsig(v1,v2,nshuf,nbins,twoway,[xpast,ypast,hval])
//significance test of transfer entropy using shuffling
//returns (te - tes) / sds , where te is transfer entropy, tes is transfer entropy
//of shuffled data, sds is std-dev of transfer entrop of shuffled data
//should only accept as significanat values > 4-6
func tentropsig () { local nshuf,i,xp,yp,hv,nbins,te localobj v1,v2,vo
v1=new Vector() v2=new Vector() vo=new Vector(1)
v1.copy($o1) v2.copy($o2) nshuf=$3 nbins=$4
if(numarg()>4) xp=$5 else xp=1
if(numarg()>5) yp=$6 else yp=2
if(numarg()>6) hv=$7 else hv=0
te=v1.tentrop(v2,nbins,xp,yp,nshuf,vo,hv)
if(1||verbose_infot>2) printf("te=%g,sig=%g\n",te,vo.x(0))
return vo.x(0)
}
//** mutinfbshufv(v1,v2,[nshuf,nbins])
//return vector with mutual information from shuffled v1,v2
//used for significance test , i.e. : ((miorig - mishufmean) / mishufstdev) > 2
obfunc mutinfbshufv () { local nshuf,nbins,i localobj v1,v2,ve
v1=new Vector() v2=new Vector() ve=new Vector()
v1.copy($o1) v2.copy($o2)
if(numarg()>2) nshuf=$3 else nshuf=20
if(numarg()>3) nbins=$4 else nbins=10
for i=0,nshuf-1 {
v1.shuffle() v2.shuffle()
ve.append(v1.mutinfb(v2,nbins))
}
return ve
}
//** mutinfbsig(v1,v2,[nshuf,nbins])
//get significance of mutual information, should be at least > 2
func mutinfbsig () { local nshuf,nbins,st localobj ve
if(numarg()>2) nshuf=$3 else nshuf=20
if(numarg()>3) nbins=$4 else nbins=10
ve=mutinfbshufv($o1,$o2,nshuf,nbins)
st=ve.stdev
if(st<=0) st=1
return ($o1.mutinfb($o2,nbins) - ve.mean) / st
}
//** tentropspksig(v1,v2,nshuffles)
//get significance of tentropspks using shuffling
//returns (TE - AvgTEShuffle) / StdDevTEShuffle
func tentropspksig () { local nshuf,i,xp,yp,hv,nbins,te,sd localobj v1,v2,ve
v1=new Vector() v2=new Vector() ve=new Vector()
v1.copy($o1) v2.copy($o2) nshuf=$3
te=$o1.tentropspks($o2)
for i=0,nshuf-1 {
v1.shuffle() ve.append(v1.tentropspks(v2))
}
if(verbose_infot>2) printf("te=%g,ve.mean=%g,ve.stdev=%g\n",te,ve.mean,ve.stdev)
if(verbose_infot>2) ve.printf
sd=ve.stdev()
if(sd<=0)sd=1
return (te-ve.mean)/sd
}
//* normte() get normalized transfer entropy using tentropspks in output vector vo
//vo.x(0)=transfer entropy of $o1->$o2
//vo.x(1)=H($o2Future|$o2Past)
//vo.x(2)=normalized transfer entropy in 0,1 range
//$3==number of shuffles
//$o1,$o2 should both have same size and non-negative values. this func is meant for time-binned spike train data
obfunc normte () { local a localobj ve,vo
a=allocvecs(ve) vo=new Vector()
nshuf=0
nshuf=$3 vrsz(3+nshuf,vo)
te=$o1.tentropspks($o2,vo,nshuf)
if(verbose_infot>2) vo.printf
if(vo.x(1)<=0 && verbose_infot>0){printf("WARNING H(X2F|X2P)==%g<=0\n",vo.x(1)) vo.x(1)=1 }
if (nshuf>0) {
ve.copy(vo,3,vo.size-1)
vo.resize(4)
if (ve.mean!=vo.x[2]) printf("normte ERRA\n")
vo.append(ve.stdev)
}
vo.x[2]=te
dealloc(a)
return vo
}
//* GetTENQ() get an nqs with useful transfer entropy info
obfunc GetTENQ () { local te01,te10,pf01,pf10 localobj nqte,vo1,vo2
if(numarg()>3) nqte=$o4
if(nqte==nil) {
nqte=new NQS("from","to","TE","NTE","HX2|X2P","prefdir","TEshufavg","TEshufstd","sig")
} else nqte.clear()
vo1=normte($o1,$o2,$3)
vo2=normte($o2,$o1,$3)
te01=vo1.x(2)
te10=vo2.x(2)
if(vo1.x(4)<=0)vo1.x(4)=1
if(vo2.x(4)<=0)vo2.x(4)=1
if(te01>0 || te10>0) {
pf01=(te01-te10)/(te01+te10)
pf10=(te10-te01)/(te01+te10)
} else {
pf01=pf10=0
}
nqte.append(0,1,vo1.x(0),te01,vo1.x(1),pf01,vo1.x(3),vo1.x(4),(vo1.x(0)-vo1.x(3))/vo1.x(4))
nqte.append(1,0,vo2.x(0),te10,vo2.x(1),pf10,vo2.x(3),vo2.x(4),(vo2.x(0)-vo2.x(3))/vo2.x(4))
return nqte
}
//** prefdte() get preferred direction of transfer entropy
//$o1=vec 1, $o2=vec 2, $3 = # of times to shuffle
func prefdte () { local nshuf,a,te01,te10,pfd localobj v1,v2,vtmp
a=allocvecs(v1,v2,vtmp)
v1.copy($o1) v2.copy($o2) nshuf=$3 vtmp.resize(3)
v1=normte($o1,$o2,nshuf)
v2=normte($o2,$o1,nshuf)
te01=v1.x(2)
te10=v2.x(2)
pfd=(te01-te10)/(te01+te10)
dealloc(a)
return pfd
}
//** mkchist() averages entries in window into disc values and returns in new output vec
//$o1=input vec,$2=win size
obfunc mkchist () { local idx,eidx,wsz localobj vin,vout
vin=$o1 wsz=$2 vout=new Vector()
vout.resize(1+vin.size/wsz) vout.resize(0)
for(idx=0;idx<=vin.size;idx+=wsz) {
eidx=idx+wsz-1
if(eidx>=vin.size)eidx=vin.size-1
if(eidx>idx) vout.append( int(vin.mean(idx,eidx)) )
}
return vout
}
//get magnitude of difference in a preferred direction - just abs of diff, but if theyre both neg, return 0
//$1 = nTE_X->Y
//$2 = nTE_Y->X
func prefdmag () { local n1,n2,s
n1=$1 n2=$2
if(n1>0 && n2<=0) return n1-n2 //n1 is relatively strong
if(n2>0 && n1<=0) return n2-n1 //n2 is relatively strong
if(n2<0 && n1<0) return 0 //both are weak
return abs(n1-n2) //both are weak positive
}
//** simple test for nte
{declare("vb","o[2]","vs","o[2]")}
for i=0,1 {
vb[i]=new Vector()
vs[i]=new Vector()
}
//mkspktrain(Random,rate,tmax) -- make a spike train with specified rate,tmax
//Random obj must be initialized
obfunc mkspktrain () { local tmax,rate,t,dt,intt localobj rdp,vs
rdp=$o1 rate=$2 tmax=$3
intt=1e3/rate
t = 0
vs=new Vector()
while(t<=tmax) {
dt = rdp.poisson(intt)
t += dt
vs.append(t)
}
return vs
}
//make random spikes with frequency $1, tmax=$2, offset for spikes=$3, alpha=$4 -- ratio of spikes from
//vs[0] that get placed in vs[1]
//spikes in vs[0] are randomly picked, spikes in vs[1] are same as in vs[0] but shifted forward by $3 offset
//so vs[0] 'drives' vs[1], or can be used to predict it, but vs[1] cant be used to predict vs[0]
proc mkspks () { local tmax,rate,t,dt,intt,off,i,alpha localobj rdp
rate=$1 tmax=$2 off=$3
if(numarg()>3)alpha=$4 else alpha=1
intt=1e3/rate
rdp=new Random()
rdp.ACG(1234)
rdp.poisson(intt)
for i=0,1 vs[i].resize(0)
vs[0]=mkspktrain(rdp,rate,tmax)
if(alpha < 1.0) {
for vtr(&t,vs[0]) if(rdp.uniform(0,1) <= alpha) vs[1].append(t+off)
} else {
vs[1].copy(vs[0])
vs[1].add(off)
}
}
//test nTE : nTE of X0 -> X1 should be much higher than nTE of X1 -> X0
//optional $1=offset == offset to shift spikes by, in ms
//optional $2=rate == rate of spikes, in Hz
//optional $3=bin size , in ms
//optional $4=alpha == ratio of spikes of X0 that get placed in X1 with offset
//optional $5=max time, in ms
func testnte () { local a,i,bisv,maxt,alpha,off,rate,binsz,dur localobj nqt,nqout
if(numarg()>0)off=$1 else off=10
if(numarg()>1)rate=$2 else rate=50
if(numarg()>2)binsz=$3 else binsz=10
if(numarg()>3)alpha=$4 else alpha=1
if(numarg()>4)dur=$5 else dur=10000
bisv=binmin_infot binmin_infot=0
print "output should be close to:\n\t0 1 0.6707 0.9975 0.6707 0.9407 0.003435 0.001672 399.1"
print "\t1 0 0.02183 0.03049 0.6685 -0.9407 0.002828 0.001442 13.17"
mkspks(rate,dur,off,alpha)
maxt=vs[1].max
printf("maxt=%g\n",maxt)
if(vs[1].max>maxt)maxt=vs[1].max
for i=0,1 vb[i].hist(vs[i],0,(maxt+binsz-1)/binsz,binsz)
nqt=GetTENQ(vb[0],vb[1],200)
nqout=new NQS("X1","X2")
nqout.odec("X1")
nqout.odec("X2")
batch_flag=1
nqout.append(vb[0],vb[1])
nqout.sv("/u/samn/bpftest/data/09dec17.func.testnte.nqs")
batch_flag=0
nqt.pr
nqsdel(nqt)
binmin_infot=bisv
return 1
}
//get kernel smoothed prob distrib in an nqs
//$o1=input vector
//$2=increment in x , smaller values mean finer resolution
//$3=bandwidth - higher means smoother output
// $4=min value in output, $5=max value in output
obfunc khist () { local min,max,inc,h,x,i,s localobj vx,vy,nq,vin
vin=$o1
if(numarg()>1)inc=$2 else inc=0.1
if(numarg()>2)h=$3 else h=vin.getbandwidth()
if(numarg()>3)min=$4 else min=vin.min()
if(numarg()>4)max=$5 else max=vin.max()
{vx=new Vector() vy=new Vector()}
vx.indgen(min,max,inc)
vy.copy(vx)
for vtr(&x,vx,&i) vy.x(i) = vin.kprob1D(h,x)
s=vy.sum
if(s!=0) vy.div(vy.sum)
nq=new NQS("x","y")
nq.v[0]=vx
nq.v[1]=vy
return nq
}