-
Notifications
You must be signed in to change notification settings - Fork 3
/
col.hoc
841 lines (787 loc) · 34.1 KB
/
col.hoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
// $Id: col.hoc,v 1.107 2012/10/02 14:25:45 billl Exp $
print "Loading col.hoc..."
//* globals
{declare("UNIF",0)} //use roughly uniform prob. distrib for div
{declare("NEGEXP",1)} //use neg exp. with mean=div prob. distrib in setdvi
{declare("PARETO",2)} //use pareto (scalefree) distrib with mean=div prob., shape=2
{declare("NORM",3)} //use normal distrib with mean=div, stdev=div/5
{declare("DVFIXED",4)} //use fixed divergence ( no variability )
{declare("PARETOSH",4.5)}//shape for pareto (scalefree) distrib -- low value will produce fatter/higher tails
//* template CSTIM
begintemplate CSTIM
double wmatex[1][1],ratex[1][1],EIBalance[1]
public wmatex,ratex,setwm,vq,col,sgrhzdel,sgrdur,setspks,pushspks,savewt,restorewt,turnoff,mulwts,sgrdel,EIBalance,shock
external CTYP,CTYPi,STYPi,AM,AM2,NM,NM2,GA,GA2,case,nil,allocvecs,dealloc,nqsdel
objref this,vq,col,vsgrpp,vsgrsidx,vwt
double iseed[1],sgrhzdel[1],sgrdur[1],sgrdel[1],usens[1],sseed[1]
objref ncl,nsl,rsl,vrse // <-- objects for external inputs via NetCon(ncl)+NetStim(nsl)
// with Random(rsl), Random sead(vrse)
public ncl,nsl,rsl,vrse,usens,sgrcells,initrands,jitterspks,sseed,iseed
//* clrwm - reset wmatex to 0
proc clrwm () { local ct,sy
for ct=0,CTYPi-1 for sy=0,STYPi-1 wmatex[ct][sy]=0
}
//* new CSTIM(COLUMN,iseed,sgrdur[,sgrhzdel,EIBalance,usens])
// iseed = seed for random # generator, sgrdur = duration of persistent stims
// sgrhzdel = variability of stim rates, EIBalance = make E,I inputs balanced
// usens = whether to use NetStim instead of vq for persistent stims
proc init () {
double wmatex[CTYPi][STYPi]
double ratex[CTYPi][STYPi]
double EIBalance[1]
clrwm() col=$o1 col.cstim=this
if(numarg()>1) iseed=$2 else iseed=1234
sgrdur=$3 sgrdel=0
vsgrpp=new Vector(CTYPi) //% X 100 of cells of a type to stim, used in stim,sgrcells
vsgrsidx=new Vector(CTYPi) //startind index of cell to stim when using topstim
vq=new NQS("ind","time","wt","sy")
if(numarg()>3)sgrhzdel=$4 else sgrhzdel=0.2
if(numarg()>4)EIBalance=$5 else EIBalance=0
if(numarg()>5)usens=$6 else usens=0
}
//** setwm - set weights of external inputs to INTF6s
proc setwm () { local i,sz,ct,sy localobj nq,vct,vsy,vw,vr
{nq=$o1 nq.tog("DB") vct=nq.getcol("ct")}
{vsy=nq.getcol("sy") vw=nq.getcol("w") vr=nq.getcol("rate")}
for ct=0,CTYPi-1 for sy=0,STYPi-1 wmatex[ct][sy]=ratex[ct][sy]=0
for i=0,nq.v.size-1 {
wmatex[vct.x(i)][vsy.x(i)]=vw.x(i)
ratex[vct.x(i)][vsy.x(i)]=vr.x(i)
}
}
//** setspks([checkdup]) - set time of the external inputs to cells, can still call shock later
// optional checkdup arg specifies whether to check for & correct consecutive duplicate spike times
// checkdup only makes sense when vq is not empty (i.e. when NOT using NetStim)
proc setspks () { local cd,se,ndx localobj rdm,ce,intf
ce=col.ce if(numarg()>0) cd=$1 else cd=0
if(ce.count<=0) { //need INTFs to stim
printf("CSTIM: no cells to stim!\n")
return
}
intf=ce.o(0) rdm=new Random() rdm.ACG(iseed) //initialize Random object
if(vq==nil) vq=new NQS("ind","time","wt","sy") else vq.clear() //NQS storing INTF6 spike times
intf.clrvspks() //clear INTF6 spike times
if(sgrdur>0) {
if(usens) nsstim(rdm) else popstim(rdm) //add random firing of INTF6 cells
}
if(vq.v.size>0) pushspks(cd)
}
//** checkcdups - checks for consecutive duplicate spike times
proc checkcdups () { local a,ii,lastval localobj v1
a=allocvecs(v1)
v1.copy(vq.getcol("time")) // get the times to allow checks
lastval = -1.0
for ii=0,v1.size()-1 {
if (v1.x(ii) == lastval) {
printf("ERROR: spike time duplicate at %f (row #%d)\n", v1.x(ii), ii)
// If we can, change the spike time to the average of the current one and the one just ahead.
if (v1.x(ii+1) > v1.x(ii)) v1.x(ii) = (v1.x(ii) + v1.x(ii+1)) / 2.0
}
lastval = v1.x(ii)
}
vq.v[1].copy(v1) // copy the fixed time vector back
dealloc(a)
}
//** pushspks([checkdup]) - finalize spike times to INTF6 cells
// (useful, since after calls to shock/pulsestim, vq is modified)
// optional checkdup arg specifies whether to check for & correct consecutive duplicate spike times
proc pushspks () { local cd localobj ce,intf
if(numarg()>0) cd=$1 else cd=0
ce=col.ce intf=ce.o(0)
intf.clrvspks()
vq.sort("time") vq.sort("ind") //finalize INTF6 spike times
if(cd) checkcdups()
intf.initvspks(vq.v,vq.v[1],vq.v[2],vq.v[3]) // single global call
}
//** jitterspks([jmin,jmax,seed]) - add jitter to spike times to avoid redundant spikes
// jmin,jmax are min,max jitters to add, seed is random # seed
proc jitterspks () { local a,jmin,jmax,seed localobj v1,rdm
a=allocvecs(v1)
if(numarg()>0) jmin=$1 else jmin=0
if(numarg()>1) jmax=$2 else jmax=1e-6
if(numarg()>2) seed=$3 else seed=1234
rdm=new Random()
rdm.ACG(seed)
rdm.uniform(jmin,jmax)
v1.resize(vq.v.size)
v1.setrand(rdm)
vq.v[1].add(v1)
pushspks()
dealloc(a)
}
//** savewt - initialize temporary storage space to allow modifications to vq weight column
proc savewt () {
if(vwt==nil) vwt=new Vector(vq.v.size)
vwt.copy(vq.v[vq.fi("wt")])
}
//** restorewt - restore weights in vq to original values
proc restorewt () {
if(vwt==nil) return
vq.v[vq.fi("wt")].copy(vwt)
vwt.resize(0)
pushspks()
}
//** mulwts(celltype,synapsetype,scaling factor,[skippush]) - scale weights of cell and synapse type by factor
proc mulwts () { local ct,sy,fctr,i,j localobj ce
ct=$1 sy=$2 fctr=$3 ce=col.ce vq.select(-1,"sy",sy)
for i=0,vq.ind.size-1 {j=vq.ind.x(i)
if(ce.o(vq.v[0].x(j)).type==ct) vq.v[2].x(j)*=fctr
}
if(numarg()>3) { if(!$4) pushspks() } else pushspks()
}
//** turnoff(celltype,synapsetype,[skippush]) - turn off spikes by setting weights to 0
proc turnoff () {
if(numarg()>2) mulwts($1,$2,0,$3) else mulwts($1,$2,0)
}
//** pulsestim(rate[,maxt,clear,seed]) - stim using pulses @ specified rate - doesn't work correctly now
proc pulsestim () { local nspk,tt,i,j,nrate,ti,maxt localobj rdp,vqtmp
rdp=new Random() nrate=$1
if(numarg()>1) maxt=$2 else maxt=tstop
if(numarg()>2) {
if($3) vq.clear()
} else vq.clear()
if(numarg()>3) rdp.ACG($4) else rdp.ACG(1234)
vqtmp=new NQS()
tt=1 rdp.poisson(1000/nrate)
while(tt<=maxt) {
ti=0
while(ti <= 0) ti=rdp.repick()
shock()
vq.getcol("time").add(tt)
if(vqtmp.size(-1)==0) vqtmp.cp(vq) else vqtmp.append(vq)
print tt
tt += ti
}
vq.cp(vqtmp) nqsdel(vqtmp)
vq.sort("time") vq.sort("ind")
col.ce.o(0).initvspks(vq.v,vq.v[1],vq.v[2],vq.v[3])
}
//** initrands() - initialize Random # objects used by NetCon/NetStim for external inputs
// this function should be called in init -- at the start of each run to ensure same random # stream each time
proc initrands () { local i,se localobj rds
if(vrse==nil) return
for i=0,vrse.size-1 {
rds = rsl.o(i) // go thru Random objects
se = vrse.x(i) // seed previously used
rds.MCellRan4(se,se) // initialize MCellRan4 Random # generator
rds.negexp(1) // must be called this way
}
}
//** nsstim(Random) - setup random external inputs via NetStims
proc nsstim () { local a,sy,sdx,idx,sglo,sghi,hzlo,hzhi,ct,se localobj rdm,vsy,vhz,nc,ns,rds
a=allocvecs(vsy,vhz)
rdm=$o1 vsy.append(GA) vsy.append(GA2) vsy.append(AM2) vsy.append(NM2)
sglo=1-sgrhzdel sghi=1+sgrhzdel if(sglo<0) sglo=0
{nsl=new List() ncl=new List() rsl=new List() vrse=new Vector() se=iseed}
for sdx=0,vsy.size-1 { sy=vsy.x(sdx) // go through synapse types
for ct=0,CTYPi-1 if(col.numc[ct] && wmatex[ct][sy] && ratex[ct][sy]) {//go through cell types, check weights,rates of inputs
vhz.resize(col.numc[ct]) //set vector to # of cells of type ct
{hzlo=MAXxy(ratex[ct][sy]*sglo,1) hzhi=MAXxy(ratex[ct][sy]*sghi,1)}//find min,max frequencies
rdm.discunif(hzlo,hzhi) //set random # generator to frequency btwn hzlo,hzi
vhz.setrand(rdm) //set rate of inputs to each synapse
for idx=col.ix[ct],col.ixe[ct] { // for each cell of type ct (idx is id of the cell)
nsl.append( ns = new NetStim(0.5) ) // NetStim is source
ns.number = int( 0.5 + vhz.x(idx-col.ix[ct]) * sgrdur / 1e3 ) // # of inputs
ns.start = sgrdel // approx start of first input
ns.noise = 1 // make it fully random
ns.interval = 1e3 / vhz.x(idx-col.ix[ct]) // avg interval btwn the inputs
rsl.append( rds = new Random() )
rds.negexp(1) // set random # generator using negexp(1) - avg interval in NetStim.interval
rds.MCellRan4(se,se) // seeds are in order, shouldn't matter
ns.noiseFromRandom(rds) // use random # generator for this NetStim
vrse.append(se) // save random # seed
ncl.append( nc = new NetCon(ns,col.ce.o(idx)) ) // set the connection (netstim->postsynaptic INTF6 cell)
nc.delay = 0
nc.weight(sy) = wmatex[ct][sy]
se += 10 // increment seed for NetStim random # generator
}
}
}
dealloc(a)
}
//** popstim(Random) - setup random external synaptic inputs
proc popstim () { local a,se,sy,sz,sdx,idx,jdx,pos,sglo,sghi,hzlo,hzhi,nspk,ct,mxr localobj rdm,vsy,vnspks,vtmp,vfctr
a=allocvecs(vsy,vnspks,vtmp,vfctr)
rdm=$o1 vsy.append(GA) vsy.append(GA2) vsy.append(AM2) vsy.append(NM2)
pos=mxr=0 sglo=1-sgrhzdel sghi=1+sgrhzdel if(sglo<0) sglo=0
for ct=0,CTYPi-1 for sy=0,STYPi-1 mxr=MAXxy(mxr,ratex[ct][sy])
vq.pad(mxr*sghi*col.allcells*vsy.size*sgrdur/1e3)
if(EIBalance) { vfctr.resize(col.allcells) // flag for excit/inhib inputs to be balanced
{rdm.uniform(sglo,sghi) vfctr.setrand(rdm) jdx=pos=0}
for idx=0,col.allcells-1 { ct=col.ce.o(idx).type
for sdx=0,vsy.size-1 { sy=vsy.x(sdx)
if(wmatex[ct][sy] && ratex[ct][sy]) {
if((nspk=int(ratex[ct][sy]*vfctr.x(idx)*sgrdur/1e3))<1) {nspk=1}
vq.v[0].fill(idx,pos,pos+nspk-1)
if(sy==GA||sy==GA2) {
vq.v[2].fill(-wmatex[ct][sy],pos,pos+nspk-1)
} else vq.v[2].fill(wmatex[ct][sy],pos,pos+nspk-1)
vq.v[3].fill(sy,pos,pos+nspk-1)
pos += nspk
}
}
}
} else { // default here
for sdx=0,vsy.size-1 { sy=vsy.x(sdx) // go through synapse types
for ct=0,CTYPi-1 if(col.numc[ct] && wmatex[ct][sy] && ratex[ct][sy]) {//go through cell types, check weights,rates of inputs
vnspks.resize(col.numc[ct]) //set vector to # of cells of type ct
{hzlo=MAXxy(ratex[ct][sy]*sglo,1) hzhi=MAXxy(ratex[ct][sy]*sghi,1)}//find min,max frequencies
rdm.discunif(hzlo,hzhi) //set random # generator to frequency btwn hzlo,hzi
{vnspks.setrand(rdm) vnspks.mul(sgrdur/1e3) vnspks.apply("int")} //set # of spikes per intf in vnspks
jdx = 0 // pointer into vnspks
for idx=col.ix[ct],col.ixe[ct] { // for each cell of type ct (idx is id of the cell)
vq.v[0].fill(idx,pos,pos+vnspks.x(jdx)-1) //fill vq.v[0] with ID of cell
if(sy==GA||sy==GA2) { //is synapse inhibitory? if so, use negative weights
vq.v[2].fill(-wmatex[ct][sy],pos,pos+vnspks.x(jdx)-1)
} else vq.v[2].fill(wmatex[ct][sy],pos,pos+vnspks.x(jdx)-1) //use positive weights for excit. synapses
vq.v[3].fill(sy,pos,pos+vnspks.x(jdx)-1)//fill corresponding entries in vq.v[3] with synapse type
pos += vnspks.x(jdx) //increment pointer into vq row
jdx += 1 //move jdx to next cell
}
}
}
}
vq.pad(pos)//set all vq vectors to right size
rdm.uniform(sgrdel,sgrdel+sgrdur) vq.v[1].setrand(rdm) // set times of inputs in vq.v[1]
dealloc(a)
}
//** shock(duration,percent,type[,time,seed,sy,wt])
// shock random % of cells
// single shock so duration means it spreads it out over eg 5 ms in terms of delivery to different cells
// % > 100 means multiple stime eg 200% will stim each cell 2 times in that interval
// sy specifies which synapse to stim, default is AM2
// wt specifies weight of inputs -- default is 1e9 for guaranteed spiking @ AM2 synapses. otherwise
// will provide a wt-dependent stim
proc shock () { local ct,startt,sy,wt
if(numarg()>3) startt=$4 else startt=0
if(numarg()>4) mc4seed_stats(sseed=$5) else mc4seed_stats(sseed=59743)
if(numarg()==7) {
{sy=$6 wt=$7 sgrcells($1,$2,$3,startt,1,0,sy,wt)}
} else sgrcells($1,$2,$3,startt)
}
//* sgrcells(dur,percent,stimcelltype,starttime[,burst#,ISI,sy,wt]) - stim the cells
// sgrcells(dur,percent,stimcelltype,starttime[,burst#,ISImin,ISImax])
// if numarg == 8, uses specified sy,wt for sub-threshold stim
proc sgrcells () { local ii,sgrdur,sgrpp,sgrpsz,stimcc,startt,a,bst,sy,wt localobj v1,v2,v3,vqtmp,dnq,vid,str
if (vq==nil) vq=new NQS("ind","time","wt","sy")
sgrdur=$1 sgrpp=$2 stimcc=$3 startt=$4 str=new String()
a=allocvecs(v1,v2,v3)
bst=1 v3.resize(bst) // number of spikes/cell -- default 1
if (argtype(5)==0) {
bst=$5 v3.resize(bst)
if (argtype(7)==0) { v3.setrnd(4.5,$6,$7,sseed) // interval of intervals
} else if (argtype(6)==0) { v3.fill($6)
} else v3.fill(4) // default 250 Hz without randomization
}
if(numarg()==8) {sy=$7 wt=$8 } else {sy=AM2 wt=1e9} // use specified wt,sy?
v3.x[0]=0.0 // so first one delivered at start time
vqtmp=new NQS("ind","time","wt","sy")
sgrpsz=int(sgrpp*col.numc[stimcc]/100)
v1.resize(sgrpsz)
if(dnq==nil){
if(sgrpp<=100){
v1.setrnd(6,col.ix[stimcc],col.ixe[stimcc],sseed)//unique random ints in range
} else v1.setrnd(5,col.ix[stimcc],col.ixe[stimcc],sseed)//nonunique since >= 100 %
} else {
if(col.div[stimcc][stimcc][0]>0)sprint(str.s,"to%s",CTYP.o(stimcc).s) else str.s="toE4"
{dnq.select("type",stimcc) dnq.sort(str.s) vid=dnq.getcol("id")}
if(topstim){
v1.copy(vid,vsgrsidx.x(stimcc),vsgrsidx.x(stimcc)+sgrpsz-1)
} else v1.copy(vid,0,sgrpsz-1)
}
v2.resize(v1.size) // same size as v1
v2.setrnd(4.5,startt,startt+sgrdur,sseed)// at some random time between startt and startt+sgrdur
for ii=1,bst {vqtmp.v[0].append(v1) vqtmp.v[1].append(v2.add(v3.x[ii-1]))}
{vqtmp.pad() vqtmp.v[2].fill(wt) vqtmp.v[3].fill(sy) }
vq.append(vqtmp) // need to call pushspks after call to shock/sgrcells
dealloc(a)
nqsdel(vqtmp)
}
endtemplate CSTIM
//* template COLUMN
begintemplate COLUMN
external UNIF,NEGEXP,PARETO,NORM,DVFIXED,PARETOSH
external CTYPi,STYPi,ice,DEND,SOMA,IsLTS,CTYP,STYP,allocvecs,vrsz,dealloc,nil,NM,NM2,AM,AM2,GA,GA2,vlk,nqsdel
double numc[50]
double ix[50],ixe[50] //start,end IDs of types in a column
double div[50][50]//div[i][j]==# of outputs from type i->j
double wmat[50][50][25] // wmat[i][j][k]==weight from type i->j for synapse k
double wd0[50][50][25] // wmat[i][j][k]==weight from type i->j for synapse k
double delm[50][50]//avg. delay from type i->j
double deld[50][50]//delay variance from type i->j
double conv[50][50]
double pmat[50][50]
double synloc[50][50]//location of synapses
double allcells[1],ecells[1],icells[1],setdviPT[1],dgcor[1],xpos[1],ypos[1],wseed[1],verbose[1]
double syty1[50][50] //synapse type lookup table
double syty2[50][50] //synapse type lookup table
double cside[1] // column diameter, in swire
double pseed[1] // positioning seed, in swire
double zvar[1] // z variance, when using swire
public id,wmat,wd0,pmat,wire,wirenq,div,delm,deld,conv,numc,setdviPT,allcells,ecells,icells,xpos,ypos,wire2col
public setwmat,setpmat,setdelmats,setsynloc,ix,ixe,cstim,defsynloc,wseed,verbose,syty1,syty2,synloc
public mknetnqss,version
objref this,ce,intf,cstim
objref cellsnq,connsnq,xcolconnsnq
strdef name
public ce,intf,allwtsoff,allwtson,inhibon,inhiboff,name
public ctt,cttr,stt,prdiv
public cellsnq,connsnq,xcolconnsnq,mkcellsnq
public cside,pseed,zvar
public setcellpos,swire,swire2col
proc setstim () {
}
//** allwtson -- turn all internal weights on
proc allwtson () { local i,j,s
if(wsetting_INTF6 == 1) {
print "allwtson ERR: can't return weights with wsetting_INTF6==1 !"
} else for i=0,CTYPi-1 for j=0,CTYPi-1 for s=0,STYPi-1 if(wmat[i][j][s]>0) wd0[i][j][s]=1
}
//** allwtsoff -- turn all internal weights off
proc allwtsoff () { local i,j,s,a localobj vwt,cel
if(wsetting_INTF6 == 1) {
print "allwtsoff WARN: will lose sywv values, wsetting_INTF6==1 !"
a=allocvecs(vwt)
for i=0,ce.count-1 { cel=ce.o(i)
vwt.resize(cel.getdvi())
vwt.fill(0)
cel.setsywv(vwt,vwt)
}
dealloc(a)
} else for i=0,CTYPi-1 for j=0,CTYPi-1 for s=0,STYPi-1 wd0[i][j][s]=0
}
// ** inhiboff -- turn inhibition off -- only call after setting up network
proc inhiboff () { local i,from,to
for i=0,allcells-1 if(ice(ce.o(i).type)) ce.o(i).prune(1) //prune all inhib cells
for from=0,CTYPi-1 if(ice(from)) for to=0,CTYPi-1 wd0[from][to][GA]=0
}
// ** inhibon -- turn inhibition on
proc inhibon () { local i,from,to
for i=0,allcells-1 if(ice(ce.o(i).type)) ce.o(i).prune(0) //unprune all inhib cells
for from=0,CTYPi-1 if(ice(from)) for to=0,CTYPi-1 wd0[from][to][GA]=1
}
//** getNdv - gets # of outputs based on divergence settings, always returns at least 1
// $o1 = random object, $2 = avg. # of outputs
func getNdv () { local dv,N localobj rdm
rdm=$o1 dv=$2
if(setdviPT==PARETO) {
rdm.avg=dv N=int(rdm.pick+0.5)
} else if(setdviPT==NEGEXP) {
N=int(rdm.negexp(dv)+0.5)
} else if(setdviPT==UNIF) {
N=int(rdm.uniform(dv-.2*dv,dv+.2*dv)+0.5)
} else if(setdviPT==NORM) {
N=int(rdm.normal(dv,(dv/4)^2)+0.5)
} else if(setdviPT==DVFIXED) {
return dv
}
if(N<1)N=1
return N
}
//** defsynloc - set default values in synloc
proc defsynloc () { local from,to
for from=0,CTYPi-1 for to=0,CTYPi-1 {
if(ice(from)) {
if(IsLTS(from)) {
synloc[from][to]=DEND // distal [GA2] - from LTS
} else {
synloc[from][to]=SOMA // proximal [GA] - from FS
}
} else synloc[from][to]=DEND // E always distal. use AM2,NM2
}
}
//** setsynloc - sets synapse location - not modifiable for now
proc setsynloc () { local i,sz,from,to,sy localobj nq,vfrom,vto,vloc
if(numarg()==0) {
defsynloc()
} else {
{nq=$o1 nq.verbose=0 nq.select("dist",0)}
{vfrom=nq.getcol("from") vto=nq.getcol("to") vloc=nq.getcol("loc")}
sz=vfrom.size
for i=0,sz-1 synloc[vfrom.x(i)][vto.x(i)]=vloc.x(i)
{nq.tog("DB") nq.verbose=1}
}
}
//** prdiv - prints div info
proc prdiv () { local i,j,k
for i=0,CTYPi-1 for j=0,CTYPi-1 for k=0,STYPi-1 if(wmat[i][j][k]>0) if(div[i][j]) {
printf("div[%s][%s]=%g\n",CTYP.o(i).s,CTYP.o(j).s,div[i][j])
}
}
//** scalepmat - scales entries in pmat by $1
proc scalepmat () { local fctr,from,to
fctr=$1
for from=0,CTYPi-1 for to=0,CTYPi-1 pmat[from][to] *= fctr
}
//** clrpmat - sets pmat entries to 0
proc clrpmat () { local from,to
for from=0,CTYPi-1 for to=0,CTYPi-1 pmat[from][to]=0 // clear it
}
//** setpmat(nqs with from,to,pij columns) - from=presynaptic type,
// to=postsynaptic type, pij=connection probability
proc setpmat () { local i,sz,from,to localobj nq,vfrom,vto,vpij
{nq=$o1 nq.verbose=0 nq.select("dist",0)}
clrpmat() // clear it
{vfrom=nq.getcol("from") vto=nq.getcol("to") vpij=nq.getcol("pij")}
sz=vfrom.size
for i=0,sz-1 pmat[vfrom.x(i)][vto.x(i)]=vpij.x(i)
setdivmat() // set divergence vectors based on pmat
{nq.tog("DB") nq.verbose=1}
}
//** setdivmat - sets div/conv based on values in pmat
proc setdivmat () { local from,to,cl
for from=0,CTYPi-1 for to=0,CTYPi-1 if(pmat[from][to]) {
div[from][to] = ceilg(pmat[from][to]*numc[to])
conv[from][to] = int(0.5 + pmat[from][to]*numc[from])
}
}
//** clrwmat - sets wmat entries to 0
proc clrwmat () { local from,to,sy
for from=0,CTYPi-1 for to=0,CTYPi-1 for sy=0,STYPi-1 wmat[from][to][sy]=0
}
//** clrwmd0 - sets wd0 entries to 0
proc clrwd0 () { local from,to,sy
for from=0,CTYPi-1 for to=0,CTYPi-1 for sy=0,STYPi-1 wd0[from][to][sy]=0
}
//** clrsyty - sets syty1,sty2 entries to -1
proc clrsyty () { local from,to
for from=0,CTYPi-1 for to=0,CTYPi-1 syty1[from][to]=syty2[from][to]=-1
}
//** setwmat(nqs with from,to,sy,w columns) - from=presynaptic type,
// to=postsynaptic type, sy=synapse type, w=weight
proc setwmat () { local i,sz,from,to,sy localobj nqwm,vfrom,vto,vsy,vw
{nqwm=$o1 nqwm.verbose=0 nqwm.select("dist",0) clrwmat() clrwd0()}
{vfrom=nqwm.getcol("from") vto=nqwm.getcol("to")}
{vsy=nqwm.getcol("sy") vw=nqwm.getcol("w") sz=vfrom.size}
for i=0,sz-1 {
{sy=vsy.x(i) from=vfrom.x(i) to=vto.x(i)}
{wmat[from][to][sy]=vw.x(i) wd0[from][to][sy]=1}
if(sy==NM2) syty2[from][to]=sy else syty1[from][to]=sy
}
{nqwm.tog("DB") nqwm.verbose=1}
}
//** setdelmats(nqs with from,to,delm,deld columns) - from=presynaptic type,
// to=postsynaptic type, sy=synapse type, delm=avg. delay, deld=variation in delay
proc setdelmats () { local i,sz,from,to localobj nq,vfrom,vto,vdelm,vdeld
{nq=$o1 nq.verbose=0 nq.select("dist",0)}
{vfrom=nq.getcol("from") vto=nq.getcol("to") vdelm=nq.getcol("delm") vdeld=nq.getcol("deld")}
sz=vfrom.size
for i=0,sz-1 {delm[vfrom.x(i)][vto.x(i)]=vdelm.x(i) deld[vfrom.x(i)][vto.x(i)]=vdeld.x(i)}
{nq.tog("DB") nq.verbose=1}
}
//** clrnqss - clear nqs objects used for storing cell/connectivity info
proc clrnqss () {
{nqsdel(cellsnq) cellsnq=nil}
{nqsdel(connsnq) connsnq=nil}
{nqsdel(xcolconnsnq) xcolconnsnq=nil}
}
//** new COLUMN(ID,vnumc,[nqwiring,wiringseed,xpos,ypos,setdviPT,mknetnqss,skipwire]])
proc init () { local skipwire
if (numarg()==0) {
print "WARN: skipping default COLUMN init"
return
}
{id=$1 dgcor=0 setdviPT=DVFIXED wseed=1234 verbose=0}
{pseed=4321 cside=300 zvar=25} // swire-based params
if(numarg()>=9) skipwire=$9 else skipwire=0 // whether to skip wiring , so can save time & wire directly from NQS
if(numarg()>=8) mknetnqss=$8 else mknetnqss=0
double numc[CTYPi],ix[CTYPi],ixe[CTYPi],div[CTYPi][CTYPi]
double wmat[CTYPi][CTYPi][STYPi],wd0[CTYPi][CTYPi][STYPi],delm[CTYPi][CTYPi],deld[CTYPi][CTYPi]
double conv[CTYPi][CTYPi],pmat[CTYPi][CTYPi],synloc[CTYPi][CTYPi],syty1[CTYPi][CTYPi],syty2[CTYPi][CTYPi]
{clrsyty() mkcells($o2) sprint(name,"C%d",id) clrnqss()}
if(mknetnqss) mkcellsnq() // make cellsnq and connsnq
if(numarg()>2) {
{setpmat($o3) setwmat($o3) setsynloc($o3) setdelmats($o3)}
if(numarg()>=6) {xpos=$5 ypos=$6 sprint(name,"C%d_X%d_Y%d",id,xpos,ypos)} // position in 2D grid
if(numarg()>=7) setdviPT=$7 // wiring scheme
if(numarg()>3) wseed=$4
if(!skipwire) wire(wseed)
}
}
//** initdivrnd(seed) - initializes random object for wiring
obfunc initdivrnd () { local s localobj rd
s=$1
if(setdviPT==PARETO) rd=new rdmpareto(1,PARETOSH,s) else {rd=new Random() rd.ACG(s)}
return rd
}
//** wirenq(nqs) - wires the column using connections in NQS
proc wirenq () {local ii,jj,a localobj nq,vidx,vdel,vdist,vwt1,vwt2,vpre
nq=$o1 nq.tog("DB") nq.verbose=0
if(verbose) printf("wiring COLUMN %d from %s...",id,nq)
a=allocvecs(vidx,vdel,vdist,vwt1,vwt2,vpre) z=0
vrsz(1e4,vidx,vdel,vdist)
// Create the connectivity NQS table.
if(mknetnqss) {nqsdel(connsnq) connsnq=new NQS("id1","id2","del","dist","wt1","wt2") connsnq.cp(nq)}
vpre.resize(nq.v.size)
nq.getcol("id1").uniq(vpre) // presynaptic IDs
for ii=0,vpre.size-1 { jj=vpre.x(ii)
if(nq.select("id1",jj)) {
vrsz(0,vidx,vdel,vdist,vwt1,vwt2)
vidx.copy(nq.getcol("id2"))
vdel.copy(nq.getcol("del"))
vdist.copy(nq.getcol("dist"))
vwt1.copy(nq.getcol("wt1"))
vwt2.copy(nq.getcol("wt2"))
if(wsetting_INTF6==1) ce.o(ii).setdvi(vidx,vdel,vdist,1,vwt1,vwt2) else ce.o(ii).setdvi(vidx,vdel,vdist,1)
}
}
if(ce.count>0) {
ce.o(0).finishdvir()
}
dealloc(a) nq.verbose=1
if(verbose) printf("done\n")
}
//** xydistm -- return x,y distance in milli-meters btwn ce.o($1) and ce.o($2)
func xydistmm () { localobj c1,c2
c1=ce.o($1)
c2=ce.o($2)
return sqrt( (c1.xloc-c2.xloc)^2 + (c1.yloc-c2.yloc)^2 ) / 1e3
}
//* swire2col - spatial wiring btwn columns
proc swire2col () {
print "WARNING: swire2col not implemented yet!"
return
}
//** swire([seed,maxfall]) - spatial wiring: wires the column using pmat and cell positions
// (wiring probability effected by distance btwn cells)
// seed is random # seed, maxfall is a number (0,1) that specifies maximum fall-off in
// probability at opposite side of column where dx^2+dy^2==2*cside^2
proc swire () { local x,y,z,ii,jj,a,del,prid,poid,prty,poty,dv,dvt,lseed,dvrand,szo,sc,h,prob,maxfall\
localobj v1,v2,v3,v4,v5,v6,v7,vidx,vdel,vdist,vwt1,vwt2,vtmp,opr,opo,st,l,rdm
if(verbose) printf("wiring COLUMN %d",id)
a=allocvecs(v1,v2,v3,v4,v5,v6,v7,vidx,vdel,vtmp,vdist,vwt1,vwt2) z=0 l=new List() l.append(v1) l.append(v4)
if (argtype(1)==0) lseed=$1 else lseed=1234
if(numarg()>1) maxfall=$2 else maxfall=0.1
if(maxfall<0 || maxfall>=1) {
printf("swire WARN: invalid maxfall=%g, setting maxfall to 0.1\n",maxfall)
maxfall=0.1
}
vrsz(1e4,vidx,vdel,vdist,vtmp)
rdm=initdivrnd(lseed)//initialize random # generator
sd = 2*cside^2 / log(maxfall) // this is negative
// Create the connectivity NQS table.
if(mknetnqss) {nqsdel(connsnq) connsnq=new NQS("id1","id2","del","dist","wt1","wt2")}
for y=0,ce.count-1 { opr=ce.o(y)
vrsz(0,vidx,vdel,vdist,vwt1,vwt2)
if(verbose) if(y%100==0)printf(".")
prid=opr.id prty=opr.type
for poty=0,CTYPi-1 if (numc[poty]!=0 && (h=pmat[prty][poty])>0) {
for poid=ix[poty],ixe[poty] if(prid!=poid) { // go thru postsynaptic cells
opo = ce.o(poid)
dx = abs(opr.xloc - opo.xloc)
dy = abs(opr.yloc - opo.yloc)
prob = h * E^((dx^2+dy^2)/sd) // probability of connect
//print h,dx,dy,sd,prob
if( prob >= rdm.uniform(0,1) ) {
del = rdm.uniform(delm[prty][poty]-deld[prty][poty],delm[prty][poty]+deld[prty][poty])
//if(dlayer[idx]==dlayer[jdx]){ //add intra-layer conduction delay
// if(ex1) del += xydistmm(idx,jdx) else del += xydistmm(idx,jdx) / 0.4
//}
vidx.append(poid)
vdel.append(del)
if(synloc[prty][poty]==DEND) vdist.append(1) else vdist.append(0)
if(mknetnqss || wsetting_INTF6==1) {
if(syty1[prty][poty]>=0) vwt1.append(wmat[prty][poty][syty1[prty][poty]]) else vwt1.append(0)
if(syty2[prty][poty]>=0) vwt2.append(wmat[prty][poty][syty2[prty][poty]]) else vwt2.append(0)
}
}
}
}
if(vidx.size>0) {
if(wsetting_INTF6==1) opr.setdvi(vidx,vdel,vdist,1,vwt1,vwt2) else opr.setdvi(vidx,vdel,vdist,1)
if(mknetnqss) for ii=0,vidx.size-1 connsnq.append(prid,vidx.x(ii),vdel.x(ii),vdist.x(ii),vwt1.x(ii),vwt2.x(ii))
}
}
if(ce.count>0) {
ce.o(0).finishdvir()
}
dealloc(a)
if(verbose) printf("\n")
}
//** wire([seed]) - wires the column using div matrix
proc wire () { local x,y,z,ii,jj,a,del,prid,prty,poty,dv,dvt,lseed,dvrand,szo\
localobj v1,v2,v3,v4,v5,v6,v7,vdvd,vidx,vdel,vdist,vwt1,vwt2,vtmp,opr,opo,st,l,rdm,rdmDV
if(verbose) printf("wiring COLUMN %d",id)
a=allocvecs(v1,v2,v3,v4,v5,v6,v7,vidx,vdel,vdvd,vtmp,vdist,vwt1,vwt2) z=0 l=new List() l.append(v1) l.append(v4)
if (argtype(1)==0) lseed=$1 else lseed=1234
vrsz(1e4,vidx,vdel,vdist,vtmp)
vrsz(ce.count*CTYPi,vdvd)
{rdm=new Random() rdm.MCellRan4(lseed,lseed)}
if(dgcor){dvrand=0.2 rdm.uniform(.8,1.2) vdvd.setrand(rdm)}// div variability of 20% when dgcor==1
rdmDV=initdivrnd(lseed)//initialize random # generator for use when dgcor==0
// Create the connectivity NQS table.
if(mknetnqss) {nqsdel(connsnq) connsnq=new NQS("id1","id2","del","dist","wt1","wt2")}
for y=0,ce.count-1 { opr=ce.o(y)
vrsz(0,vidx,vdel,vdist,vwt1,vwt2)
if(verbose) if(y%100==0)printf(".")
prid=opr.id prty=opr.type
for poty=0,CTYPi-1 if (numc[poty]!=0 && (dv=int(div[prty][poty]))>0) {
if(!dgcor) dv=getNdv(rdmDV,dv) else dv*=(1+vdvd.x[y])
vrsz(MAXxy(2*dv,4*numc[poty]),v1,v2,v3)
{rdm.discunif(ix[poty],ixe[poty]) v3.setrand(rdm)}
if(prty==poty) {v1.cull(v3,prid) v3.copy(v1) v2.resize(v3.size)} // get rid of self connect
if( (cnt=v3.uniq(l,1)) > dv){ cnt = dv } // puts unsorted uniq vals into v4
vrsz(cnt,v2,v4,v5,v6,v7) // v4 has poids
rdm.uniform(delm[prty][poty]-deld[prty][poty],delm[prty][poty]+deld[prty][poty])
v2.setrand(rdm)
v2.abs() // no negative delays
if(synloc[prty][poty]==DEND) v5.fill(1) else v5.fill(0)
vidx.append(v4) vdel.append(v2) vdist.append(v5) // vidx.append(v1) will give sorted bug
if(mknetnqss || wsetting_INTF6==1) {
if(syty1[prty][poty]>=0) v6.fill(wmat[prty][poty][syty1[prty][poty]]) else v6.fill(0)
if(syty2[prty][poty]>=0) v7.fill(wmat[prty][poty][syty2[prty][poty]]) else v7.fill(0)
vwt1.append(v6) vwt2.append(v7)
}
}//end poty
if(vidx.size>0) {
if(wsetting_INTF6==1) opr.setdvi(vidx,vdel,vdist,1,vwt1,vwt2) else opr.setdvi(vidx,vdel,vdist,1)
if(mknetnqss) for ii=0,vidx.size-1 connsnq.append(prid,vidx.x(ii),vdel.x(ii),vdist.x(ii),vwt1.x(ii),vwt2.x(ii))
}
}//end cell loop
if(ce.count>0) {
ce.o(0).finishdvir()
}
dealloc(a)
if(verbose) printf("\n")
}
//** wire2col(targetcol,nq,distance,ncl) - connect this COLUMN to another COLUMN
func wire2col () { local d,from,to,sz,dvm,dv,pij,dlym,dlyd,w1,w2,sy1,sy2,loc,i,idx,jdx,kdx,gid1,gid2,cnt,a\
localobj tcol,nq,ncl,vfrom,vto,vdelm,vdeld,vw,vsy,vpij,vloc,rdm,vidx,vdel,v1,v2,v3,v4,l,nc,prx,pox,rdmDV
{tcol=$o1 nq=$o2 d=$3 ncl=$o4 nq.verbose=0}
if(verbose) print "wiring COLUMN ", id, " to COLUMN ",tcol.id
if(!nq.select("dist",d)) {nq.verbose=1 printf("wire2col WARNA: none found @ d=%d!\n",d) nq.tog("DB") return 0}
a=allocvecs(vidx,vdel,v1,v2,v3,v4) l=new List() l.append(v1) l.append(v4)
{vfrom=nq.getcol("from") vto=nq.getcol("to") vsy=nq.getcol("sy")}
{vdelm=nq.getcol("delm") vdeld=nq.getcol("deld") vw=nq.getcol("w")}
{vpij=nq.getcol("pij") vloc=nq.getcol("loc")}
if(verbose) print "tcol.wseed = ",tcol.wseed, " vfrom.size = ",vfrom.size
rdmDV=initdivrnd(tcol.wseed)//initialize random # generator
{rdm=new Random() rdm.MCellRan4(tcol.wseed,tcol.wseed)}
if (mknetnqss && xcolconnsnq==nil) xcolconnsnq=new NQS("id1","col2","id2","del","wt1","wt2")
i=0
while(i<vfrom.size) {
{from=vfrom.x(i) to=vto.x(i) dlym=vdelm.x(i) dlyd=vdeld.x(i)}
{w1=vw.x(i) sy1=vsy.x(i) sy2=w2=-1 pij=vpij.x(i) loc=vloc.x(i)}
dvm = ceilg(pij*tcol.numc[to]) // divergence
if((sy1==AM || sy1==AM2) && i+1<vfrom.size) { // check for NMDA, which follows AMPA
if(vfrom.x(i+1)==from && vto.x(i+1)==to && (vsy.x(i+1)==NM || vsy.x(i+1)==NM2)) {
sy2=vsy.x(i+1) w2=vw.x(i+1)
}
}
for idx=ix[from],ixe[from] { // go thru presynaptic cells
dv=getNdv(rdmDV,dvm)
vrsz(4*dv,v1,v2,v3)
{rdm.discunif(tcol.ix[to],tcol.ixe[to]) v3.setrand(rdm)}
if(verbose && v3.size<1) print "dv=",dv," from ",CTYP.o(from).s, " to ",CTYP.o(to).s," numc=",tcol.numc[to]," ix=",tcol.ix[to]
if((cnt=v3.uniq(l,1))>dv) cnt=dv
{vrsz(cnt,v2,v4) rdm.uniform(dlym-dlyd,dlym+dlyd) v2.setrand(rdm)}
v2.abs() // no negative delays
if(verbose>1) {
print CTYP.o(from).s, " -> ", CTYP.o(to).s, ": pij ", pij, ", dvm ", dvm, ", dv ", dv, ", v4.size ", v4.size
printf("v4: ") vlk(v4)
printf("v2: ") vlk(v2)
}
ce.o(idx).flag("out",1) // make sure NetCon events enabled from this cell
for jdx=0,v4.size-1 {
prx = ce.o(idx)
pox = tcol.ce.o(v4.x(jdx))
ncl.append(nc=new NetCon(prx,pox))
nc.weight(sy1)=w1
if(sy2!=-1) nc.weight(sy2)=w2
nc.delay=v2.x(jdx)
if(mknetnqss) {
if(sy2!=-1) {
xcolconnsnq.append(prx.id,pox.col,pox.id,nc.delay,w1,w2)
} else {
xcolconnsnq.append(prx.id,pox.col,pox.id,nc.delay,w1,0)
}
}
}
}
if(sy2!=-1) i+=2 else i+=1 // if used NMDA, skip it
}
{nq.verbose=1 nq.tog("DB") dealloc(a) return 1}
}
//** setarrs(vector of num per type) - sets up arrays/numc/cell counts
proc setarrs () { local ct,cnt,cl,ii localobj vnumc
{vnumc=$o1 cnt=allcells=icells=ecells=0}
for ct=0,CTYPi-1 if (vnumc.x(ct)>0) { numc[ct]=vnumc.x(ct)
ix[ct]=cnt ixe[ct]=cnt+numc[ct]-1 cnt+=numc[ct]
if(ice(ct))icells+=numc[ct] else ecells+=numc[ct]
} else numc[ct]=0
allcells=ecells+icells
}
//* setcellpos(vector of z values by type[,z variance,pseed,columndiameter in microns])
proc setcellpos () { local i,z,x,y,zvar,c localobj rdm,vz
vz=$o1
if(numarg()>1) zvar=$2
if(numarg()>2) pseed=$3
if(numarg()>3) cside=$4
{rdm=new Random() rdm.ACG(pseed)}
c=-1
if(cellsnq!=nil) c=cellsnq.fi("xloc")
for i=0,allcells-1 {
ce.o(i).xloc=x=rdm.uniform(0,cside)
ce.o(i).yloc=y=rdm.uniform(0,cside)
ce.o(i).zloc=z=rdm.normal(vz.x(ce.o(i).type),zvar)
if(c!=-1) {
cellsnq.v[c+0].x(i)=x
cellsnq.v[c+1].x(i)=y
cellsnq.v[c+2].x(i)=z
}
}
}
//** mkcells(vector of num per type) - make the cells
proc mkcells () { local ct,idx,jdx,ty,nc,ic localobj vnumc,xo,st
st=new String()
if(ce==nil) ce=new List()
{vnumc=$o1 setarrs(vnumc) }
idx=0 // starting ID for cells in column - assumes all columns same size
for ct=0,CTYPi-1 if(vnumc.x(ct)>0) { ic=ice(ct)
for jdx=ix[ct],ixe[ct] {
ce.append(xo=new INTF6(jdx,ct,ic,this.id))
idx+=1
}
}
if(!ce.count) return
intf=ce.o(0)
sprint(st.s,"%s.intf.jitcondiv(%s.ce,%d,&%s.ix,&%s.ixe,&%s.div,&%s.numc,&%s.wmat,&%s.wd0,&%s.delm,&%s.deld)",this,this,this.id,this,this,this,this,this,this,this,this)
if(verbose) print st.s
execute(st.s)
{sprint(st.s,"%s.intf.flag(\"jcn\",1,1)",this) execute(st.s)}
if(verbose) print " finished mkcells "
}
//** mkcellsnq() -- make NQS table for all of the cells in the column
proc mkcellsnq () { local ii localobj xo
nqsdel(cellsnq)
cellsnq=new NQS("gid","id","col","ty","ice","xloc","yloc","zloc")
for ii=0,ce.count - 1 {
xo = ce.o(ii)
cellsnq.append(xo.gid,xo.id,xo.col,xo.type,ice(xo.type),xo.xloc,xo.yloc,xo.zloc)
}
}
//*** ctt(&i) - iterate over cell types in increasing CTYPi order
iterator ctt () { local i
for i=0,CTYPi-1 if(numc[i]>0) {
$&1=i
iterator_statement
}
}
//*** cttr(&i) - iterate over cell types in decreasing CTYPi order
iterator cttr () { local i
for(i=CTYPi-1;i>=0;i-=1) if(numc[i]>0) {
$&1=i
iterator_statement
}
}
//*** stt(&i,&j,&k) - iterate over active synapses types in order
iterator stt () { local i,j,k
for i=0,CTYPi-1 if(numc[i]>0) for j=0,CTYPi-1 if(numc[j]>0 && div[i][j]>0) {
for k=0,STYPi-1 if(wmat[i][j][k]>0) {
$&1=i $&2=j $&3=k
iterator_statement
}
}
}
proc version () { print "$Id: col.hoc,v 1.107 2012/10/02 14:25:45 billl Exp $" }
endtemplate COLUMN