-
Notifications
You must be signed in to change notification settings - Fork 1
/
flexinput.hoc
115 lines (107 loc) · 5.01 KB
/
flexinput.hoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
// FLEXINPUT
// This is a collection of scripts for adding flexible input to
// intfcol. It uses the lfpstim function that Bill
// wrote, plus an adaptation of "sgrcells" from col.hoc.
// Version: 2011may19 by cliffk
// POISADD
// This function adds an arbitrary Poisson input to a particular
// population or populations of cells. It calls poistim followed
// by stimadd.
// Usage:
// poisadd(signal,timei,timef,freq,cellpop,cellprct,cellwt,whichsy)
// where
// signal describes the probability of a spike at a given time (e.g. a 10K-element sine wave)
// timei is the start time of the stimulus (in ms, e.g. 2e3)
// timef is the end time of the stimulus (in ms, e.g. 5e3)
// freq is the number of spikes (in Hz, e.g. 10) (note: signal.size() must be greater than (timef-timei)*freq!)
// pop is a vector of cell populations (e.g. [E2,E4,E5])
// cellwt is the weight given to each spike (e.g. 1e9)
// whichsy is the synapse used (e.g. AM2)
// Version: 2011may20
proc poisadd () { local timei,timef,freq,cellprct,cellwt,whichsy,npops,cellstart,cellfinish,pickthiscell localobj pickcell,signal,cellpop,spkoutput
pickcell=new Random() //
signal=$o1 // Signal to base the Poisson spike train on
timei=$2 // Start time of signal
timef=$3 // End time of signal
freq=$4 // Frequency/rate of the signal
cellpop=$o5 // Cell populations to add signal to
cellprct=$6 // Percent of cells to stimulate in each population
cellwt=$7 // Weight of each synapse
whichsy=$8 // Type of each synapse
npops=cellpop.size() // Number of cell populations
count=0
for h=0,numcols-1 { // Loop over columns
for i=0,npops-1 { // Loop over each cell population
cellstart=col[h].ix[cellpop.x[i]] // Starting cell index
cellfinish=col[h].ixe[cellpop.x[i]] // Finishing cell index
for cellid=cellstart,cellfinish { // Loop over each cell in the population
pickthiscell=100*pickcell.repick() // Whether or not to pick this cell
if(cellprct>pickthiscell) { // Pick out cellprct percent of cells
thisseed=7829*cellid+24091*i+251 // Create a pseudorandom seed
spkoutput=poistim(signal,timei,timef,freq,thisseed) // Calculate Poisson train
stimadd(spkoutput,cellid,cellwt,whichsy)
}
}
}
/* col[h].cstim.pushspks() // Test -- stim wasn't having any effect before*/
}
}
// POISTIM -- arbitrary Poisson generator
//** spktimevec = poistim(signal,timei,timef,freq)
// signal is vector giving the input signal - eg LFP
// timei gives the initial time time of the signal
// timef gives the final time of the signal, thus timespan is timef-timei
// freq gives the target freq for the spike train -- this is approximate
// Example:
// objref signal, spktimevec
// signal=new Vector()
// signal.indgen(0.1,0.9,0.001)
// spktimevec=poistim(signal,10,5)
// spktimevec.size() = 50
// Note: the number of points in "signal" must be equal to or greater than the number of spikes!
// Version: 2011may20
obfunc poistim () { local a,timei,timef,thisseed localobj signal,v1,v2,vt
signal=$o1 timei=$2 timef=$3 freq=$4 thisseed=$5 // Handle input arguments: signal
a=allocvecs(v1,v2) // Allocate vectors
vt=new Vector(signal.size) // but ((timef-timei)*freq) is number of spikes desired in period
vt.setrnd(4,thisseed) // seed for 0-1
v1.copy(signal) v1.inv()
vt.mul(v1) // scale the intervals by the signal
vt.mul((timef-timei)/vt.sum)
vt.integral() // turn intervals into times
v1.resize((timef-timei)*freq/1e3)
v1.setrnd(6,0,vt.size-1,thisseed) // rand unique indices; to cull to get only (maxt*freq/1e3)
v2.index(vt,v1) // pick the times randomly
vt.copy(v2)
vt.add(timei) // Add start time
dealloc(a)
return vt
}
// STIMADD -- add stimulus to the input list for a single cell
// This function, based on sgrcells, adds an arbitrary
// stimulus to the rest of the input NQS table vq.
// Usage:
// stimadd(times,cellid,cellwt,whichsy)
// where
// times is a length-N vector of spike times (e.g. 0, 1.34, 2.53, 7.34, 7.45)
// cellid is the cell ID (e.g. 142)
// cellwt is the synaptic weight (e.g. 1e9)
// whichsy is the synapse type (e.g. AMPA)
// Version: 2011may20
proc stimadd () { local cellid,cellwt,whichsy,npts,ii,foo localobj times,vqtmp
if (vq==nil) vq=new NQS("ind","time","cellwt","whichsy") // Initialize NQS to store spikes
vqtmp=new NQS("ind","time","cellwt","whichsy")
times=$o1 // Incoming spike times (e.g. 0, 1.34, 2.53, 7.34, 7.45)
cellid=$2 // Cell ID (e.g. 142)
cellwt=$3 // Synaptic weights (e.g. 1e9)
whichsy=$4 // Synapse type (e.g. AMPA)
npts=times.size() // Find the number of points
for ii=0,3 vqtmp.v[ii]=new Vector(npts) // Initialize vectors
vqtmp.v[0].fill(cellid) // Assign the cell ID
vqtmp.v[1]=times // Assign the times to the second column
vqtmp.v[2].fill(cellwt) // Assign weights
vqtmp.v[3].fill(whichsy) // Assign synapse type
vqtmp.pad() // Shouldn't be necessary, but it is -- make sure all columns are the same size
vq.append(vqtmp) // Append to original array -- won't take effect until pushspks() call, however
nqsdel(vqtmp) // Garbage collection
}