-
Notifications
You must be signed in to change notification settings - Fork 7
/
score_main.py
executable file
·70 lines (60 loc) · 2.5 KB
/
score_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# coding=utf-8
# Copyright 2019 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Calculates evaluation scores for a prediction TSV file.
The prediction file is produced by predict_main.py and should contain 3 or more
columns:
1: sources (concatenated)
2: prediction
3-n: targets (1 or more)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app, flags, logging
import score_lib
from bert import tokenization
from curLine_file import curLine
FLAGS = flags.FLAGS
flags.DEFINE_string(
'prediction_file', None,
'TSV file containing source, prediction, and target columns.')
flags.DEFINE_bool(
'do_lower_case', True,
'Whether score computation should be case insensitive (in the LaserTagger '
'paper this was set to True).')
flags.DEFINE_string('vocab_file', None, 'Path to the BERT vocabulary file.')
flags.DEFINE_string(
'domain_name', None,
'Whether to lower case the input text. Should be True for uncased '
'models and False for cased models.')
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
flags.mark_flag_as_required('prediction_file')
target_domain_name = FLAGS.domain_name
print(curLine(), "target_domain_name:", target_domain_name)
predDomain_list, predIntent_list, domain_list, right_intent_num, right_slot_num, exact_num = score_lib.read_data(
FLAGS.prediction_file, FLAGS.do_lower_case, target_domain_name=target_domain_name)
logging.info(f'Read file: {FLAGS.prediction_file}')
all_num = len(domain_list)
domain_acc = score_lib.compute_exact_score(predDomain_list, domain_list)
intent_acc = float(right_intent_num) / all_num
slot_acc = float(right_slot_num) / all_num
exact_score = float(exact_num) / all_num
print('Num=%d, domain_acc=%.4f, intent_acc=%.4f, slot_acc=%.5f, exact_score=%.4f'
% (all_num, domain_acc, intent_acc, slot_acc, exact_score))
if __name__ == '__main__':
app.run(main)