-
Notifications
You must be signed in to change notification settings - Fork 71
/
data_augs.py
316 lines (259 loc) · 9.19 KB
/
data_augs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from TransformLayer import ColorJitterLayer
def random_crop(imgs, out=84):
"""
args:
imgs: np.array shape (B,C,H,W)
out: output size (e.g. 84)
returns np.array
"""
n, c, h, w = imgs.shape
crop_max = h - out + 1
w1 = np.random.randint(0, crop_max, n)
h1 = np.random.randint(0, crop_max, n)
cropped = np.empty((n, c, out, out), dtype=imgs.dtype)
for i, (img, w11, h11) in enumerate(zip(imgs, w1, h1)):
cropped[i] = img[:, h11:h11 + out, w11:w11 + out]
return cropped
def grayscale(imgs):
# imgs: b x c x h x w
device = imgs.device
b, c, h, w = imgs.shape
frames = c // 3
imgs = imgs.view([b,frames,3,h,w])
imgs = imgs[:, :, 0, ...] * 0.2989 + imgs[:, :, 1, ...] * 0.587 + imgs[:, :, 2, ...] * 0.114
imgs = imgs.type(torch.uint8).float()
# assert len(imgs.shape) == 3, imgs.shape
imgs = imgs[:, :, None, :, :]
imgs = imgs * torch.ones([1, 1, 3, 1, 1], dtype=imgs.dtype).float().to(device) # broadcast tiling
return imgs
def random_grayscale(images,p=.3):
"""
args:
imgs: torch.tensor shape (B,C,H,W)
device: cpu or cuda
returns torch.tensor
"""
device = images.device
in_type = images.type()
images = images * 255.
images = images.type(torch.uint8)
# images: [B, C, H, W]
bs, channels, h, w = images.shape
images = images.to(device)
gray_images = grayscale(images)
rnd = np.random.uniform(0., 1., size=(images.shape[0],))
mask = rnd <= p
mask = torch.from_numpy(mask)
frames = images.shape[1] // 3
images = images.view(*gray_images.shape)
mask = mask[:, None] * torch.ones([1, frames]).type(mask.dtype)
mask = mask.type(images.dtype).to(device)
mask = mask[:, :, None, None, None]
out = mask * gray_images + (1 - mask) * images
out = out.view([bs, -1, h, w]).type(in_type) / 255.
return out
# random cutout
# TODO: should mask this
def random_cutout(imgs, min_cut=10,max_cut=30):
"""
args:
imgs: np.array shape (B,C,H,W)
min / max cut: int, min / max size of cutout
returns np.array
"""
n, c, h, w = imgs.shape
w1 = np.random.randint(min_cut, max_cut, n)
h1 = np.random.randint(min_cut, max_cut, n)
cutouts = np.empty((n, c, h, w), dtype=imgs.dtype)
for i, (img, w11, h11) in enumerate(zip(imgs, w1, h1)):
cut_img = img.copy()
cut_img[:, h11:h11 + h11, w11:w11 + w11] = 0
#print(img[:, h11:h11 + h11, w11:w11 + w11].shape)
cutouts[i] = cut_img
return cutouts
def random_cutout_color(imgs, min_cut=10,max_cut=30):
"""
args:
imgs: shape (B,C,H,W)
out: output size (e.g. 84)
"""
n, c, h, w = imgs.shape
w1 = np.random.randint(min_cut, max_cut, n)
h1 = np.random.randint(min_cut, max_cut, n)
cutouts = np.empty((n, c, h, w), dtype=imgs.dtype)
rand_box = np.random.randint(0, 255, size=(n, c)) / 255.
for i, (img, w11, h11) in enumerate(zip(imgs, w1, h1)):
cut_img = img.copy()
# add random box
cut_img[:, h11:h11 + h11, w11:w11 + w11] = np.tile(
rand_box[i].reshape(-1,1,1),
(1,) + cut_img[:, h11:h11 + h11, w11:w11 + w11].shape[1:])
cutouts[i] = cut_img
return cutouts
# random flip
def random_flip(images,p=.2):
"""
args:
imgs: torch.tensor shape (B,C,H,W)
device: cpu or gpu,
p: prob of applying aug,
returns torch.tensor
"""
# images: [B, C, H, W]
device = images.device
bs, channels, h, w = images.shape
images = images.to(device)
flipped_images = images.flip([3])
rnd = np.random.uniform(0., 1., size=(images.shape[0],))
mask = rnd <= p
mask = torch.from_numpy(mask)
frames = images.shape[1] #// 3
images = images.view(*flipped_images.shape)
mask = mask[:, None] * torch.ones([1, frames]).type(mask.dtype)
mask = mask.type(images.dtype).to(device)
mask = mask[:, :, None, None]
out = mask * flipped_images + (1 - mask) * images
out = out.view([bs, -1, h, w])
return out
# random rotation
def random_rotation(images,p=.3):
"""
args:
imgs: torch.tensor shape (B,C,H,W)
device: str, cpu or gpu,
p: float, prob of applying aug,
returns torch.tensor
"""
device = images.device
# images: [B, C, H, W]
bs, channels, h, w = images.shape
images = images.to(device)
rot90_images = images.rot90(1,[2,3])
rot180_images = images.rot90(2,[2,3])
rot270_images = images.rot90(3,[2,3])
rnd = np.random.uniform(0., 1., size=(images.shape[0],))
rnd_rot = np.random.randint(1, 4, size=(images.shape[0],))
mask = rnd <= p
mask = rnd_rot * mask
mask = torch.from_numpy(mask).to(device)
frames = images.shape[1]
masks = [torch.zeros_like(mask) for _ in range(4)]
for i,m in enumerate(masks):
m[torch.where(mask==i)] = 1
m = m[:, None] * torch.ones([1, frames]).type(mask.dtype).type(images.dtype).to(device)
m = m[:,:,None,None]
masks[i] = m
out = masks[0] * images + masks[1] * rot90_images + masks[2] * rot180_images + masks[3] * rot270_images
out = out.view([bs, -1, h, w])
return out
# random color
def random_convolution(imgs):
'''
random covolution in "network randomization"
(imbs): B x (C x stack) x H x W, note: imgs should be normalized and torch tensor
'''
_device = imgs.device
img_h, img_w = imgs.shape[2], imgs.shape[3]
num_stack_channel = imgs.shape[1]
num_batch = imgs.shape[0]
num_trans = num_batch
batch_size = int(num_batch / num_trans)
# initialize random covolution
rand_conv = nn.Conv2d(3, 3, kernel_size=3, bias=False, padding=1).to(_device)
for trans_index in range(num_trans):
torch.nn.init.xavier_normal_(rand_conv.weight.data)
temp_imgs = imgs[trans_index*batch_size:(trans_index+1)*batch_size]
temp_imgs = temp_imgs.reshape(-1, 3, img_h, img_w) # (batch x stack, channel, h, w)
rand_out = rand_conv(temp_imgs)
if trans_index == 0:
total_out = rand_out
else:
total_out = torch.cat((total_out, rand_out), 0)
total_out = total_out.reshape(-1, num_stack_channel, img_h, img_w)
return total_out
def random_color_jitter(imgs):
"""
inputs np array outputs tensor
"""
b,c,h,w = imgs.shape
imgs = imgs.view(-1,3,h,w)
transform_module = nn.Sequential(ColorJitterLayer(brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.5,
p=1.0,
batch_size=128))
imgs = transform_module(imgs).view(b,c,h,w)
return imgs
def random_translate(imgs, size, return_random_idxs=False, h1s=None, w1s=None):
n, c, h, w = imgs.shape
assert size >= h and size >= w
outs = np.zeros((n, c, size, size), dtype=imgs.dtype)
h1s = np.random.randint(0, size - h + 1, n) if h1s is None else h1s
w1s = np.random.randint(0, size - w + 1, n) if w1s is None else w1s
for out, img, h1, w1 in zip(outs, imgs, h1s, w1s):
out[:, h1:h1 + h, w1:w1 + w] = img
if return_random_idxs: # So can do the same to another set of imgs.
return outs, dict(h1s=h1s, w1s=w1s)
return outs
def no_aug(x):
return x
if __name__ == '__main__':
import time
from tabulate import tabulate
def now():
return time.time()
def secs(t):
s = now() - t
tot = round((1e5 * s)/60,1)
return round(s,3),tot
x = np.load('data_sample.npy',allow_pickle=True)
x = np.concatenate([x,x,x],1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
x = torch.from_numpy(x).to(device)
x = x.float() / 255.
# crop
t = now()
random_crop(x.cpu().numpy(),64)
s1,tot1 = secs(t)
# grayscale
t = now()
random_grayscale(x,p=.5)
s2,tot2 = secs(t)
# normal cutout
t = now()
random_cutout(x.cpu().numpy(),10,30)
s3,tot3 = secs(t)
# color cutout
t = now()
random_cutout_color(x.cpu().numpy(),10,30)
s4,tot4 = secs(t)
# flip
t = now()
random_flip(x,p=.5)
s5,tot5 = secs(t)
# rotate
t = now()
random_rotation(x,p=.5)
s6,tot6 = secs(t)
# rand conv
t = now()
random_convolution(x)
s7,tot7 = secs(t)
# rand color jitter
t = now()
random_color_jitter(x)
s8,tot8 = secs(t)
print(tabulate([['Crop', s1,tot1],
['Grayscale', s2,tot2],
['Normal Cutout', s3,tot3],
['Color Cutout', s4,tot4],
['Flip', s5,tot5],
['Rotate', s6,tot6],
['Rand Conv', s7,tot7],
['Color Jitter', s8,tot8]],
headers=['Data Aug', 'Time / batch (secs)', 'Time / 100k steps (mins)']))