-
Notifications
You must be signed in to change notification settings - Fork 789
/
local.fs
1182 lines (1049 loc) · 44.1 KB
/
local.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) Microsoft Corporation. All Rights Reserved. See License.txt in the project root for license information.
namespace Microsoft.FSharp.Core
[<AutoOpen>]
module internal DetailedExceptions =
open System
open Microsoft.FSharp.Core
/// takes an argument, a formatting string, a param array to splice into the formatting string
let inline invalidArgFmt (arg:string) (format:string) paramArray =
let msg = String.Format (format,paramArray)
raise (new ArgumentException (msg,arg))
/// takes a formatting string and a param array to splice into the formatting string
let inline invalidOpFmt (format:string) paramArray =
let msg = String.Format (format,paramArray)
raise (new InvalidOperationException(msg))
/// throws an invalid argument exception and returns the difference between the lists' lengths
let invalidArgDifferentListLength (arg1:string) (arg2:string) (diff:int) =
invalidArgFmt arg1
"{0}\n{1} is {2} {3} shorter than {4}"
[|SR.GetString SR.listsHadDifferentLengths; arg1; diff; (if diff=1 then "element" else "elements"); arg2|]
/// throws an invalid argument exception and returns the length of the 3 arrays
let invalidArg3ListsDifferent (arg1:string) (arg2:string) (arg3:string) (len1:int) (len2:int) (len3:int) =
invalidArgFmt (String.Concat [|arg1; ", "; arg2; ", "; arg3|])
"{0}\n {1}.Length = {2}, {3}.Length = {4}, {5}.Length = {6}"
[|SR.GetString SR.listsHadDifferentLengths; arg1; len1; arg2; len2; arg3; len3|]
/// throws an invalid operation exception and returns how many elements the
/// list is shorter than the index
let invalidOpListNotEnoughElements (index:int) =
invalidOpFmt
"{0}\nThe list was {1} {2} shorter than the index"
[|SR.GetString SR.notEnoughElements; index; (if index=1 then "element" else "elements")|]
/// eg. tried to {skip} {2} {elements} past the end of the seq. Seq.Length = {10}
let invalidOpExceededSeqLength (fnName:string) (diff:int) (len:int) =
invalidOpFmt "{0}\ntried to {1} {2} {3} past the end of the seq\nSeq.Length = {4}"
[|SR.GetString SR.notEnoughElements; fnName; diff; (if diff=1 then "element" else "elements");len|]
/// throws an invalid argument exception and returns the arg's value
let inline invalidArgInputMustBeNonNegative (arg:string) (count:int) =
invalidArgFmt arg "{0}\n{1} = {2}" [|LanguagePrimitives.ErrorStrings.InputMustBeNonNegativeString ; arg; count|]
/// throws an invalid argument exception and returns the arg's value
let inline invalidArgInputMustBePositive (arg:string) (count:int) =
invalidArgFmt arg "{0}\n{1} = {2}" [|SR.GetString SR.inputMustBePositive; arg; count|]
/// throws an invalid argument exception and returns the out of range index,
/// a text description of the range, and the bound of the range
/// e.g. sourceIndex = -4, source axis-0 lower bound = 0"
let invalidArgOutOfRange (arg:string) (index:int) (text:string) (bound:int) =
invalidArgFmt arg
"{0}\n{1} = {2}, {3} = {4}"
[|SR.GetString SR.outOfRange; arg; index; text; bound|]
/// throws an invalid argument exception and returns the difference between the lists' lengths
let invalidArgDifferentArrayLength (arg1:string) (len1:int) (arg2:string) (len2:int) =
invalidArgFmt arg1
"{0}\n{1}.Length = {2}, {3}.Length = {4}"
[|SR.GetString SR.arraysHadDifferentLengths; arg1; len1; arg2; len2 |]
/// throws an invalid argument exception and returns the lengths of the 3 arrays
let invalidArg3ArraysDifferent (arg1:string) (arg2:string) (arg3:string) (len1:int) (len2:int) (len3:int) =
invalidArgFmt (String.Concat [|arg1; ", "; arg2; ", "; arg3|])
"{0}\n {1}.Length = {2}, {3}.Length = {4}, {5}.Length = {6}"
[|SR.GetString SR.arraysHadDifferentLengths; arg1; len1; arg2; len2; arg3; len3|]
namespace Microsoft.FSharp.Primitives.Basics
open Microsoft.FSharp.Core
open Microsoft.FSharp.Core.LanguagePrimitives.IntrinsicOperators
open Microsoft.FSharp.Collections
open Microsoft.FSharp.Core.Operators
open System.Diagnostics.CodeAnalysis
open System.Collections.Generic
module internal List =
let arrayZeroCreate (n:int) = (# "newarr !0" type ('T) n : 'T array #)
[<SuppressMessage("Microsoft.Performance", "CA1811:AvoidUncalledPrivateCode")>]
let nonempty x = match x with [] -> false | _ -> true
let rec iter f x = match x with [] -> () | h::t -> f h; iter f t
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let inline setFreshConsTail cons t = cons.(::).1 <- t
let inline freshConsNoTail h = h :: (# "ldnull" : 'T list #)
let rec distinctToFreshConsTail cons (hashSet:HashSet<_>) list =
match list with
| [] -> setFreshConsTail cons []
| x::rest ->
if hashSet.Add x then
let cons2 = freshConsNoTail x
setFreshConsTail cons cons2
distinctToFreshConsTail cons2 hashSet rest
else
distinctToFreshConsTail cons hashSet rest
let distinctWithComparer (comparer: IEqualityComparer<'T>) (list:'T list) =
match list with
| [] -> []
| [h] -> [h]
| x::rest ->
let hashSet = HashSet<'T>(comparer)
hashSet.Add x |> ignore
let cons = freshConsNoTail x
distinctToFreshConsTail cons hashSet rest
cons
let rec distinctByToFreshConsTail cons (hashSet:HashSet<_>) keyf list =
match list with
| [] -> setFreshConsTail cons []
| x::rest ->
if hashSet.Add(keyf x) then
let cons2 = freshConsNoTail x
setFreshConsTail cons cons2
distinctByToFreshConsTail cons2 hashSet keyf rest
else
distinctByToFreshConsTail cons hashSet keyf rest
let distinctByWithComparer (comparer: IEqualityComparer<'Key>) (keyf:'T -> 'Key) (list:'T list) =
match list with
| [] -> []
| [h] -> [h]
| x::rest ->
let hashSet = HashSet<'Key>(comparer)
hashSet.Add(keyf x) |> ignore
let cons = freshConsNoTail x
distinctByToFreshConsTail cons hashSet keyf rest
cons
let countBy (dict:Dictionary<_, int>) (keyf:'T -> 'Key) =
// No need to dispose enumerator Dispose does nothing.
let mutable ie = dict.GetEnumerator()
if not (ie.MoveNext()) then []
else
let current = ie.Current
let res = freshConsNoTail (keyf current.Key, current.Value)
let mutable cons = res
while ie.MoveNext() do
let current = ie.Current
let cons2 = freshConsNoTail (keyf current.Key, current.Value)
setFreshConsTail cons cons2
cons <- cons2
setFreshConsTail cons []
res
let rec pairwiseToFreshConsTail cons list lastvalue =
match list with
| [] -> setFreshConsTail cons []
| [h] -> setFreshConsTail cons [(lastvalue, h)]
| h::t ->
let cons2 = freshConsNoTail (lastvalue, h)
setFreshConsTail cons cons2
pairwiseToFreshConsTail cons2 t h
let pairwise list =
match list with
| [] -> []
| [_] -> []
| x1::x2::t ->
let cons = freshConsNoTail (x1, x2)
pairwiseToFreshConsTail cons t x2
cons
let rec chooseToFreshConsTail cons f xs =
match xs with
| [] -> setFreshConsTail cons []
| h::t ->
match f h with
| None -> chooseToFreshConsTail cons f t
| Some x ->
let cons2 = freshConsNoTail x
setFreshConsTail cons cons2
chooseToFreshConsTail cons2 f t
let rec choose f xs =
match xs with
| [] -> []
| h::t ->
match f h with
| None -> choose f t
| Some x ->
let cons = freshConsNoTail x
chooseToFreshConsTail cons f t
cons
let groupBy (comparer:IEqualityComparer<'SafeKey>) (keyf:'T->'SafeKey) (getKey:'SafeKey->'Key) (list: 'T list) =
let dict = Dictionary<_, _ list []> comparer
// Build the groupings
let rec loop list =
match list with
| v :: t ->
let safeKey = keyf v
match dict.TryGetValue(safeKey) with
| true, prev ->
let cons2 = freshConsNoTail v
setFreshConsTail prev.[1] cons2
prev.[1] <- cons2
| _ -> let res = freshConsNoTail v
dict.[safeKey] <- [|res; res |] // First index stores the result list; second index is the most recent cons.
loop t
| _ -> ()
loop list
let mutable ie = dict.GetEnumerator()
if not (ie.MoveNext()) then []
else
let mutable curr = ie.Current
setFreshConsTail curr.Value.[1] []
let res = freshConsNoTail (getKey curr.Key, curr.Value.[0])
let mutable cons = res
while ie.MoveNext() do
curr <- ie.Current
setFreshConsTail curr.Value.[1] []
let cons2 = freshConsNoTail (getKey curr.Key, curr.Value.[0])
setFreshConsTail cons cons2
cons <- cons2
setFreshConsTail cons []
res
let rec mapToFreshConsTail cons f x =
match x with
| [] ->
setFreshConsTail cons []
| h::t ->
let cons2 = freshConsNoTail (f h)
setFreshConsTail cons cons2
mapToFreshConsTail cons2 f t
let map mapping x =
match x with
| [] -> []
| [h] -> [mapping h]
| h::t ->
let cons = freshConsNoTail (mapping h)
mapToFreshConsTail cons mapping t
cons
let rec mapiToFreshConsTail cons (f:OptimizedClosures.FSharpFunc<_,_,_>) x i =
match x with
| [] ->
setFreshConsTail cons []
| h::t ->
let cons2 = freshConsNoTail (f.Invoke(i,h))
setFreshConsTail cons cons2
mapiToFreshConsTail cons2 f t (i+1)
let mapi f x =
match x with
| [] -> []
| [h] -> [f 0 h]
| h::t ->
let f = OptimizedClosures.FSharpFunc<_,_,_>.Adapt(f)
let cons = freshConsNoTail (f.Invoke(0,h))
mapiToFreshConsTail cons f t 1
cons
let rec map2ToFreshConsTail cons (f:OptimizedClosures.FSharpFunc<_,_,_>) xs1 xs2 =
match xs1,xs2 with
| [],[] ->
setFreshConsTail cons []
| h1::t1, h2::t2 ->
let cons2 = freshConsNoTail (f.Invoke(h1,h2))
setFreshConsTail cons cons2
map2ToFreshConsTail cons2 f t1 t2
| [],xs2 -> invalidArgDifferentListLength "list1" "list2" xs2.Length
| xs1,[] -> invalidArgDifferentListLength "list2" "list1" xs1.Length
let map2 mapping xs1 xs2 =
match xs1,xs2 with
| [],[] -> []
| h1::t1, h2::t2 ->
let f = OptimizedClosures.FSharpFunc<_,_,_>.Adapt(mapping)
let cons = freshConsNoTail (f.Invoke(h1,h2))
map2ToFreshConsTail cons f t1 t2
cons
| [],xs2 -> invalidArgDifferentListLength "list1" "list2" xs2.Length
| xs1,[] -> invalidArgDifferentListLength "list2" "list1" xs1.Length
let rec map3ToFreshConsTail cons (f:OptimizedClosures.FSharpFunc<_,_,_,_>) xs1 xs2 xs3 =
match xs1,xs2,xs3 with
| [],[],[] ->
setFreshConsTail cons []
| h1::t1, h2::t2, h3::t3 ->
let cons2 = freshConsNoTail (f.Invoke(h1,h2,h3))
setFreshConsTail cons cons2
map3ToFreshConsTail cons2 f t1 t2 t3
| xs1,xs2,xs3 ->
invalidArg3ListsDifferent "list1" "list2" "list3" xs1.Length xs2.Length xs3.Length
let map3 mapping xs1 xs2 xs3 =
match xs1,xs2,xs3 with
| [],[],[] -> []
| h1::t1, h2::t2, h3::t3 ->
let f = OptimizedClosures.FSharpFunc<_,_,_,_>.Adapt(mapping)
let cons = freshConsNoTail (f.Invoke(h1,h2,h3))
map3ToFreshConsTail cons f t1 t2 t3
cons
| xs1,xs2,xs3 ->
invalidArg3ListsDifferent "list1" "list2" "list3" xs1.Length xs2.Length xs3.Length
let rec mapi2ToFreshConsTail n cons (f:OptimizedClosures.FSharpFunc<_,_,_,_>) xs1 xs2 =
match xs1,xs2 with
| [],[] ->
setFreshConsTail cons []
| h1::t1, h2::t2 ->
let cons2 = freshConsNoTail (f.Invoke(n,h1,h2))
setFreshConsTail cons cons2
mapi2ToFreshConsTail (n + 1) cons2 f t1 t2
| [],xs2 -> invalidArgDifferentListLength "list1" "list2" xs2.Length
| xs1,[] -> invalidArgDifferentListLength "list2" "list1" xs1.Length
let mapi2 f xs1 xs2 =
match xs1,xs2 with
| [],[] -> []
| h1::t1, h2::t2 ->
let f = OptimizedClosures.FSharpFunc<_,_,_,_>.Adapt(f)
let cons = freshConsNoTail (f.Invoke(0, h1,h2))
mapi2ToFreshConsTail 1 cons f t1 t2
cons
| [],xs2 -> invalidArgDifferentListLength "list1" "list2" xs2.Length
| xs1,[] -> invalidArgDifferentListLength "list2" "list1" xs1.Length
let rec scanToFreshConsTail cons xs s (f: OptimizedClosures.FSharpFunc<_,_,_>) =
match xs with
| [] ->
setFreshConsTail cons []
| h::t ->
let newState = f.Invoke(s,h)
let cons2 = freshConsNoTail newState
setFreshConsTail cons cons2
scanToFreshConsTail cons2 t newState f
let scan f (s:'State) (list:'T list) =
let f = OptimizedClosures.FSharpFunc<_,_,_>.Adapt(f)
match list with
| [] -> [s]
| _ ->
let cons = freshConsNoTail s
scanToFreshConsTail cons list s f
cons
let rec indexedToFreshConsTail cons xs i =
match xs with
| [] ->
setFreshConsTail cons []
| h::t ->
let cons2 = freshConsNoTail (i,h)
setFreshConsTail cons cons2
indexedToFreshConsTail cons2 t (i+1)
let indexed xs =
match xs with
| [] -> []
| [h] -> [(0,h)]
| h::t ->
let cons = freshConsNoTail (0,h)
indexedToFreshConsTail cons t 1
cons
let rec mapFoldToFreshConsTail cons (f:OptimizedClosures.FSharpFunc<'State, 'T, 'U * 'State>) acc xs =
match xs with
| [] ->
setFreshConsTail cons []
acc
| h::t ->
let x',s' = f.Invoke(acc,h)
let cons2 = freshConsNoTail x'
setFreshConsTail cons cons2
mapFoldToFreshConsTail cons2 f s' t
let mapFold f acc xs =
match xs with
| [] -> [], acc
| [h] ->
let x',s' = f acc h
[x'],s'
| h::t ->
let f = OptimizedClosures.FSharpFunc<_,_,_>.Adapt(f)
let x',s' = f.Invoke(acc,h)
let cons = freshConsNoTail x'
let s' = mapFoldToFreshConsTail cons f s' t
cons, s'
let rec forall predicate xs1 =
match xs1 with
| [] -> true
| h1::t1 -> predicate h1 && forall predicate t1
let rec exists predicate xs1 =
match xs1 with
| [] -> false
| h1::t1 -> predicate h1 || exists predicate t1
let rec revAcc xs acc =
match xs with
| [] -> acc
| h::t -> revAcc t (h::acc)
let rev xs =
match xs with
| [] -> xs
| [_] -> xs
| h1::h2::t -> revAcc t [h2;h1]
// return the last cons it the chain
let rec appendToFreshConsTail cons xs =
match xs with
| [] ->
setFreshConsTail cons xs // note, xs = []
cons
| h::t ->
let cons2 = freshConsNoTail h
setFreshConsTail cons cons2
appendToFreshConsTail cons2 t
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let rec collectToFreshConsTail (f:'T -> 'U list) (list:'T list) cons =
match list with
| [] ->
setFreshConsTail cons []
| h::t ->
collectToFreshConsTail f t (appendToFreshConsTail cons (f h))
let rec collect (f:'T -> 'U list) (list:'T list) =
match list with
| [] -> []
| [h] -> f h
| _ ->
let cons = freshConsNoTail (Unchecked.defaultof<'U>)
collectToFreshConsTail f list cons
cons.Tail
let rec allPairsToFreshConsTailSingle x ys cons =
match ys with
| [] -> cons
| h2::t2 ->
let cons2 = freshConsNoTail (x,h2)
setFreshConsTail cons cons2
allPairsToFreshConsTailSingle x t2 cons2
let rec allPairsToFreshConsTail xs ys cons =
match xs with
| [] -> setFreshConsTail cons []
| h::t ->
let p = allPairsToFreshConsTailSingle h ys cons
allPairsToFreshConsTail t ys p
let allPairs (xs:'T list) (ys:'U list) =
match xs, ys with
| _, [] -> []
| [], _ -> []
| _ ->
let cons = freshConsNoTail (Unchecked.defaultof<'T * 'U>)
allPairsToFreshConsTail xs ys cons
cons.Tail
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let rec filterToFreshConsTail cons f l =
match l with
| [] ->
setFreshConsTail cons l // note, l = nil
| h::t ->
if f h then
let cons2 = freshConsNoTail h
setFreshConsTail cons cons2
filterToFreshConsTail cons2 f t
else
filterToFreshConsTail cons f t
let rec filter predicate l =
match l with
| [] -> l
| h :: ([] as nil) -> if predicate h then l else nil
| h::t ->
if predicate h then
let cons = freshConsNoTail h
filterToFreshConsTail cons predicate t
cons
else
filter predicate t
let iteri action x =
let f = OptimizedClosures.FSharpFunc<_,_,_>.Adapt(action)
let rec loop n x =
match x with
| [] -> ()
| h::t -> f.Invoke(n,h); loop (n+1) t
loop 0 x
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let rec concatToFreshConsTail cons h1 l =
match l with
| [] -> setFreshConsTail cons h1
| h2::t -> concatToFreshConsTail (appendToFreshConsTail cons h1) h2 t
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let rec concatToEmpty l =
match l with
| [] -> []
| []::t -> concatToEmpty t
| (h::t1)::tt2 ->
let res = freshConsNoTail h
concatToFreshConsTail res t1 tt2
res
let toArray (l:'T list) =
let len = l.Length
let res = arrayZeroCreate len
let rec loop i l =
match l with
| [] -> ()
| h::t ->
res.[i] <- h
loop (i+1) t
loop 0 l
res
let ofArray (arr:'T[]) =
let mutable res = ([]: 'T list)
for i = arr.Length-1 downto 0 do
res <- arr.[i] :: res
res
let inline ofSeq (e : IEnumerable<'T>) =
match e with
| :? list<'T> as l -> l
| :? ('T[]) as arr -> ofArray arr
| _ ->
use ie = e.GetEnumerator()
if not (ie.MoveNext()) then []
else
let res = freshConsNoTail ie.Current
let mutable cons = res
while ie.MoveNext() do
let cons2 = freshConsNoTail ie.Current
setFreshConsTail cons cons2
cons <- cons2
setFreshConsTail cons []
res
let concat (l : seq<_>) =
match ofSeq l with
| [] -> []
| [h] -> h
| [h1;h2] -> h1 @ h2
| l -> concatToEmpty l
let rec initToFreshConsTail cons i n f =
if i < n then
let cons2 = freshConsNoTail (f i)
setFreshConsTail cons cons2
initToFreshConsTail cons2 (i+1) n f
else
setFreshConsTail cons []
let init count f =
if count < 0 then invalidArgInputMustBeNonNegative "count" count
if count = 0 then []
else
let res = freshConsNoTail (f 0)
initToFreshConsTail res 1 count f
res
let rec takeFreshConsTail cons n l =
if n = 0 then setFreshConsTail cons [] else
match l with
| [] -> invalidOpListNotEnoughElements n
| x::xs ->
let cons2 = freshConsNoTail x
setFreshConsTail cons cons2
takeFreshConsTail cons2 (n - 1) xs
let take n l =
if n < 0 then invalidArgInputMustBeNonNegative "count" n
if n = 0 then [] else
match l with
| [] -> invalidOpListNotEnoughElements n
| x::xs ->
let cons = freshConsNoTail x
takeFreshConsTail cons (n - 1) xs
cons
let rec splitAtFreshConsTail cons index l =
if index = 0 then
setFreshConsTail cons []
l
else
match l with
| [] -> invalidOpListNotEnoughElements index
| x :: xs ->
let cons2 = freshConsNoTail x
setFreshConsTail cons cons2
splitAtFreshConsTail cons2 (index - 1) xs
let splitAt index l =
if index < 0 then invalidArgInputMustBeNonNegative "index" index
if index = 0 then [], l else
match l with
| [] -> invalidOp (SR.GetString SR.inputListWasEmpty)
| [_] ->
if index = 1 then l, [] else
invalidOpListNotEnoughElements (index-1)
| x::xs ->
if index = 1 then [x], xs else
let cons = freshConsNoTail x
let tail = splitAtFreshConsTail cons (index - 1) xs
cons, tail
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let rec partitionToFreshConsTails consL consR p l =
match l with
| [] ->
setFreshConsTail consL l // note, l = nil
setFreshConsTail consR l // note, l = nil
| h::t ->
let cons' = freshConsNoTail h
if p h then
setFreshConsTail consL cons'
partitionToFreshConsTails cons' consR p t
else
setFreshConsTail consR cons'
partitionToFreshConsTails consL cons' p t
let rec partitionToFreshConsTailLeft consL p l =
match l with
| [] ->
setFreshConsTail consL l // note, l = nil
l // note, l = nil
| h::t ->
let cons' = freshConsNoTail h
if p h then
setFreshConsTail consL cons'
partitionToFreshConsTailLeft cons' p t
else
partitionToFreshConsTails consL cons' p t
cons'
let rec partitionToFreshConsTailRight consR p l =
match l with
| [] ->
setFreshConsTail consR l // note, l = nil
l // note, l = nil
| h::t ->
let cons' = freshConsNoTail h
if p h then
partitionToFreshConsTails cons' consR p t
cons'
else
setFreshConsTail consR cons'
partitionToFreshConsTailRight cons' p t
let partition predicate l =
match l with
| [] -> l,l
| h :: ([] as nil) -> if predicate h then l,nil else nil,l
| h::t ->
let cons = freshConsNoTail h
if predicate h
then cons, (partitionToFreshConsTailLeft cons predicate t)
else (partitionToFreshConsTailRight cons predicate t), cons
let rec transposeGetHeadsFreshConsTail headsCons tailsCons list headCount =
match list with
| [] ->
setFreshConsTail headsCons []
setFreshConsTail tailsCons []
headCount
| head::tail ->
match head with
| [] ->
setFreshConsTail headsCons []
setFreshConsTail tailsCons []
headCount
| h::t ->
let headsCons2 = freshConsNoTail h
setFreshConsTail headsCons headsCons2
let tailsCons2 = freshConsNoTail t
setFreshConsTail tailsCons tailsCons2
transposeGetHeadsFreshConsTail headsCons2 tailsCons2 tail (headCount + 1)
/// Split off the heads of the lists
let transposeGetHeads list =
match list with
| [] -> [],[],0
| head::tail ->
match head with
| [] ->
let mutable j = 0
for t in tail do
j <- j + 1
if not t.IsEmpty then
invalidArgDifferentListLength "list.[0]" (System.String.Format("list.[{0}]", j)) t.Length
[],[],0
| h::t ->
let headsCons = freshConsNoTail h
let tailsCons = freshConsNoTail t
let headCount = transposeGetHeadsFreshConsTail headsCons tailsCons tail 1
headsCons, tailsCons, headCount
/// Append the next element to the transposed list
let rec transposeToFreshConsTail cons list expectedCount =
match list with
| [] -> setFreshConsTail cons []
| _ ->
match transposeGetHeads list with
| [],_,_ ->
setFreshConsTail cons []
| heads,tails,headCount ->
if headCount < expectedCount then
invalidArgDifferentListLength (System.String.Format("list.[{0}]", headCount)) "list.[0]" <| tails.[0].Length + 1
let cons2 = freshConsNoTail heads
setFreshConsTail cons cons2
transposeToFreshConsTail cons2 tails expectedCount
/// Build the transposed list
let transpose (list: 'T list list) =
match list with
| [] -> list
| [[]] -> []
| _ ->
let heads, tails, headCount = transposeGetHeads list
if headCount = 0 then [] else
let cons = freshConsNoTail heads
transposeToFreshConsTail cons tails headCount
cons
let rec truncateToFreshConsTail cons count list =
if count = 0 then setFreshConsTail cons [] else
match list with
| [] -> setFreshConsTail cons []
| h::t ->
let cons2 = freshConsNoTail h
setFreshConsTail cons cons2
truncateToFreshConsTail cons2 (count-1) t
let truncate count list =
match list with
| [] -> list
| _ :: ([] as nil) -> if count > 0 then list else nil
| h::t ->
if count <= 0 then []
else
let cons = freshConsNoTail h
truncateToFreshConsTail cons (count-1) t
cons
let rec unfoldToFreshConsTail cons f s =
match f s with
| None -> setFreshConsTail cons []
| Some (x,s') ->
let cons2 = freshConsNoTail x
setFreshConsTail cons cons2
unfoldToFreshConsTail cons2 f s'
let unfold (f:'State -> ('T * 'State) option) (s:'State) =
match f s with
| None -> []
| Some (x,s') ->
let cons = freshConsNoTail x
unfoldToFreshConsTail cons f s'
cons
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let rec unzipToFreshConsTail cons1a cons1b x =
match x with
| [] ->
setFreshConsTail cons1a []
setFreshConsTail cons1b []
| (h1,h2)::t ->
let cons2a = freshConsNoTail h1
let cons2b = freshConsNoTail h2
setFreshConsTail cons1a cons2a
setFreshConsTail cons1b cons2b
unzipToFreshConsTail cons2a cons2b t
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let unzip x =
match x with
| [] ->
[],[]
| (h1,h2)::t ->
let res1a = freshConsNoTail h1
let res1b = freshConsNoTail h2
unzipToFreshConsTail res1a res1b t
res1a,res1b
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let rec unzip3ToFreshConsTail cons1a cons1b cons1c x =
match x with
| [] ->
setFreshConsTail cons1a []
setFreshConsTail cons1b []
setFreshConsTail cons1c []
| (h1,h2,h3)::t ->
let cons2a = freshConsNoTail h1
let cons2b = freshConsNoTail h2
let cons2c = freshConsNoTail h3
setFreshConsTail cons1a cons2a
setFreshConsTail cons1b cons2b
setFreshConsTail cons1c cons2c
unzip3ToFreshConsTail cons2a cons2b cons2c t
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let unzip3 x =
match x with
| [] ->
[],[],[]
| (h1,h2,h3)::t ->
let res1a = freshConsNoTail h1
let res1b = freshConsNoTail h2
let res1c = freshConsNoTail h3
unzip3ToFreshConsTail res1a res1b res1c t
res1a,res1b,res1c
let rec windowedToFreshConsTail cons windowSize i list =
if i = 0 then
setFreshConsTail cons []
else
let cons2 = freshConsNoTail <| take windowSize list
setFreshConsTail cons cons2
windowedToFreshConsTail cons2 windowSize (i - 1) list.Tail
let windowed windowSize (list: 'T list) =
if windowSize <= 0 then invalidArgInputMustBePositive "windowSize" windowSize
let len = list.Length
if windowSize > len then
[]
else
let cons = freshConsNoTail <| take windowSize list
windowedToFreshConsTail cons windowSize (len - windowSize) list.Tail
cons
let rec chunkBySizeToFreshConsTail chunkCons resCons chunkSize i list =
match list with
| [] ->
setFreshConsTail chunkCons []
setFreshConsTail resCons []
| h::t ->
let cons = freshConsNoTail h
if i = chunkSize then
setFreshConsTail chunkCons []
let newResCons = freshConsNoTail cons
setFreshConsTail resCons newResCons
chunkBySizeToFreshConsTail cons newResCons chunkSize 1 t
else
setFreshConsTail chunkCons cons
chunkBySizeToFreshConsTail cons resCons chunkSize (i+1) t
let chunkBySize chunkSize list =
if chunkSize <= 0 then invalidArgInputMustBePositive "chunkSize" chunkSize
match list with
| [] -> []
| head::tail ->
let chunkCons = freshConsNoTail head
let res = freshConsNoTail chunkCons
chunkBySizeToFreshConsTail chunkCons res chunkSize 1 tail
res
let rec splitIntoToFreshConsTail chunkCons resCons lenDivCount lenModCount i j list =
match list with
| [] ->
setFreshConsTail chunkCons []
setFreshConsTail resCons []
| h::t ->
let cons = freshConsNoTail h
if (i < lenModCount && j = lenDivCount + 1) || (i >= lenModCount && j = lenDivCount) then
setFreshConsTail chunkCons []
let newResCons = freshConsNoTail cons
setFreshConsTail resCons newResCons
splitIntoToFreshConsTail cons newResCons lenDivCount lenModCount (i + 1) 1 t
else
setFreshConsTail chunkCons cons
splitIntoToFreshConsTail cons resCons lenDivCount lenModCount i (j + 1) t
let splitInto count (list: _ list) =
if count <= 0 then invalidArgInputMustBePositive "count" count
match list.Length with
| 0 -> []
| len ->
let chunkCons = freshConsNoTail list.Head
let res = freshConsNoTail chunkCons
let count = min len count
splitIntoToFreshConsTail chunkCons res (len / count) (len % count) 0 1 list.Tail
res
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let rec zipToFreshConsTail cons xs1 xs2 =
match xs1,xs2 with
| [],[] ->
setFreshConsTail cons []
| h1::t1, h2::t2 ->
let cons2 = freshConsNoTail (h1,h2)
setFreshConsTail cons cons2
zipToFreshConsTail cons2 t1 t2
| [],xs2 -> invalidArgDifferentListLength "list1" "list2" xs2.Length
| xs1,[] -> invalidArgDifferentListLength "list2" "list1" xs1.Length
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let zip xs1 xs2 =
match xs1,xs2 with
| [],[] -> []
| h1::t1, h2::t2 ->
let res = freshConsNoTail (h1,h2)
zipToFreshConsTail res t1 t2
res
| [],xs2 -> invalidArgDifferentListLength "list1" "list2" xs2.Length
| xs1,[] -> invalidArgDifferentListLength "list2" "list1" xs1.Length
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let rec zip3ToFreshConsTail cons xs1 xs2 xs3 =
match xs1,xs2,xs3 with
| [],[],[] ->
setFreshConsTail cons []
| h1::t1, h2::t2, h3::t3 ->
let cons2 = freshConsNoTail (h1,h2,h3)
setFreshConsTail cons cons2
zip3ToFreshConsTail cons2 t1 t2 t3
| xs1,xs2,xs3 ->
invalidArg3ListsDifferent "list1" "list2" "list3" xs1.Length xs2.Length xs3.Length
// optimized mutation-based implementation. This code is only valid in fslib, where mutation of private
// tail cons cells is permitted in carefully written library code.
let zip3 xs1 xs2 xs3 =
match xs1,xs2,xs3 with
| [],[],[] ->
[]
| h1::t1, h2::t2, h3::t3 ->
let res = freshConsNoTail (h1,h2,h3)
zip3ToFreshConsTail res t1 t2 t3
res
| xs1,xs2,xs3 ->
invalidArg3ListsDifferent "list1" "list2" "list3" xs1.Length xs2.Length xs3.Length
let rec takeWhileFreshConsTail cons p l =
match l with
| [] -> setFreshConsTail cons []
| x::xs ->
if p x then
let cons2 = freshConsNoTail x
setFreshConsTail cons cons2
takeWhileFreshConsTail cons2 p xs
else
setFreshConsTail cons []
let takeWhile p (l: 'T list) =
match l with
| [] -> l
| x :: ([] as nil) -> if p x then l else nil
| x::xs ->
if not (p x) then [] else
let cons = freshConsNoTail x
takeWhileFreshConsTail cons p xs
cons
module internal Array =
open System
let inline fastComparerForArraySort<'t when 't : comparison> () =
LanguagePrimitives.FastGenericComparerCanBeNull<'t>
// The input parameter should be checked by callers if necessary
let inline zeroCreateUnchecked (count:int) =
(# "newarr !0" type ('T) count : 'T array #)
let inline init (count:int) (f: int -> 'T) =
if count < 0 then invalidArgInputMustBeNonNegative "count" count
let arr = (zeroCreateUnchecked count : 'T array)
for i = 0 to arr.Length-1 do
arr.[i] <- f i
arr