This repository has been archived by the owner on Jan 26, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 223
/
Deep_Residual_Learning_CIFAR-10.py
414 lines (344 loc) · 16.9 KB
/
Deep_Residual_Learning_CIFAR-10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
#!/usr/bin/env python
"""
This code is adapted from Lasagne/Recipes
https://github.com/Lasagne/Recipes/blob/master/papers/deep_residual_learning/Deep_Residual_Learning_CIFAR-10.py
The MIT License (MIT)
Copyright (c) 2015 Lasagne
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Lasagne implementation of CIFAR-10 examples from "Deep Residual Learning for Image Recognition" (http://arxiv.org/abs/1512.03385)
Check the accompanying files for pretrained models. The 32-layer network (n=5), achieves a validation error of 7.42%,
while the 56-layer network (n=9) achieves error of 6.75%, which is roughly equivalent to the examples in the paper.
"""
from __future__ import print_function
import sys
import os
import time
import string
import random
import pickle
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
os.path.pardir, os.path.pardir, os.path.pardir)))
import argparse
# Parsing the arguments
parser = argparse.ArgumentParser(usage="Trains a Deep Residual Learning network\
on cifar-10 using Lasagne.\nNetwork architecture and training parameters are as\
in section 4.2 in 'Deep Residual Learning for Image Recognition'.")
parser.add_argument('-n', type=int, help="N: Number of stacked residual\
building blocks per feature map (default: 5)", default=5)
parser.add_argument('-m', '--model', type=str, help="saved model file to load\
(for validation) (default: None)", default=None)
parser.add_argument('-lr', type=float, help="initial learning rate (default:\
0.1)", default=0.1)
parser.add_argument('-s', '--sync', type=bool, help="run multiverso in sync \
mode (default: False)", default=False)
parser.add_argument('-b', '--batch-size', type=int, help="batch size (default:\
False)", default=128)
parser.add_argument('-e', '--epoches', type=int, help="Number of epoches(default:\
82)", default=82)
args = parser.parse_args()
print(args)
# MULTIVERSO: import multiverso
import multiverso as mv
# MULTIVERSO: you should call mv.init before call multiverso apis
mv.init(sync=args.sync)
# MULTIVERSO: every process has distinct worker id
worker_id = mv.worker_id()
# MULTIVERSO: mv.workers_num will return the number of workers
workers_num = mv.workers_num()
# NOTICE: To use multiple gpus, we must set the environment before import theano.
if "THEANO_FLAGS" not in os.environ:
os.environ["THEANO_FLAGS"] = 'floatX=float32,device=gpu%d,lib.cnmem=1' % worker_id
import numpy as np
import theano
import theano.tensor as T
import lasagne
from multiverso.theano_ext.lasagne_ext import param_manager
# for the larger networks (n>=9), we need to adjust pythons recursion limit
sys.setrecursionlimit(10000)
# ##################### Load data from CIFAR-10 dataset #######################
# this code assumes the cifar dataset from 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
# has been extracted in current working directory
def unpickle(file):
import cPickle
fo = open(file, 'rb')
dict = cPickle.load(fo)
fo.close()
return dict
def load_data():
xs = []
ys = []
for j in range(5):
d = unpickle('cifar-10-batches-py/data_batch_'+`j+1`)
x = d['data']
y = d['labels']
xs.append(x)
ys.append(y)
d = unpickle('cifar-10-batches-py/test_batch')
xs.append(d['data'])
ys.append(d['labels'])
x = np.concatenate(xs)/np.float32(255)
y = np.concatenate(ys)
x = np.dstack((x[:, :1024], x[:, 1024:2048], x[:, 2048:]))
x = x.reshape((x.shape[0], 32, 32, 3)).transpose(0,3,1,2)
# subtract per-pixel mean
pixel_mean = np.mean(x[0:50000],axis=0)
#pickle.dump(pixel_mean, open("cifar10-pixel_mean.pkl","wb"))
x -= pixel_mean
# create mirrored images
X_train = x[0:50000,:,:,:]
Y_train = y[0:50000]
X_train_flip = X_train[:,:,:,::-1]
Y_train_flip = Y_train
X_train = np.concatenate((X_train,X_train_flip),axis=0)
Y_train = np.concatenate((Y_train,Y_train_flip),axis=0)
X_test = x[50000:,:,:,:]
Y_test = y[50000:]
return dict(
X_train=lasagne.utils.floatX(X_train),
Y_train=Y_train.astype('int32'),
X_test = lasagne.utils.floatX(X_test),
Y_test = Y_test.astype('int32'),)
# ##################### Build the neural network model #######################
from lasagne.layers import Conv2DLayer as ConvLayer
#from lasagne.layers.dnn import Conv2DDNNLayer as ConvLayer
from lasagne.layers import ElemwiseSumLayer
from lasagne.layers import InputLayer
from lasagne.layers import DenseLayer
from lasagne.layers import GlobalPoolLayer
from lasagne.layers import PadLayer
from lasagne.layers import ExpressionLayer
from lasagne.layers import NonlinearityLayer
from lasagne.nonlinearities import softmax, rectify
from lasagne.layers import batch_norm
def build_cnn(input_var=None, n=5):
# create a residual learning building block with two stacked 3x3 convlayers as in paper
def residual_block(l, increase_dim=False, projection=False):
input_num_filters = l.output_shape[1]
if increase_dim:
first_stride = (2,2)
out_num_filters = input_num_filters*2
else:
first_stride = (1,1)
out_num_filters = input_num_filters
stack_1 = batch_norm(ConvLayer(l, num_filters=out_num_filters, filter_size=(3,3), stride=first_stride, nonlinearity=rectify, pad='same', W=lasagne.init.HeNormal(gain='relu'), flip_filters=False))
stack_2 = batch_norm(ConvLayer(stack_1, num_filters=out_num_filters, filter_size=(3,3), stride=(1,1), nonlinearity=None, pad='same', W=lasagne.init.HeNormal(gain='relu'), flip_filters=False))
# add shortcut connections
if increase_dim:
if projection:
# projection shortcut, as option B in paper
projection = batch_norm(ConvLayer(l, num_filters=out_num_filters, filter_size=(1,1), stride=(2,2), nonlinearity=None, pad='same', b=None, flip_filters=False))
block = NonlinearityLayer(ElemwiseSumLayer([stack_2, projection]),nonlinearity=rectify)
else:
# identity shortcut, as option A in paper
identity = ExpressionLayer(l, lambda X: X[:, :, ::2, ::2], lambda s: (s[0], s[1], s[2]//2, s[3]//2))
padding = PadLayer(identity, [out_num_filters//4,0,0], batch_ndim=1)
block = NonlinearityLayer(ElemwiseSumLayer([stack_2, padding]),nonlinearity=rectify)
else:
block = NonlinearityLayer(ElemwiseSumLayer([stack_2, l]),nonlinearity=rectify)
return block
# Building the network
l_in = InputLayer(shape=(None, 3, 32, 32), input_var=input_var)
# first layer, output is 16 x 32 x 32
l = batch_norm(ConvLayer(l_in, num_filters=16, filter_size=(3,3), stride=(1,1), nonlinearity=rectify, pad='same', W=lasagne.init.HeNormal(gain='relu'), flip_filters=False))
# first stack of residual blocks, output is 16 x 32 x 32
for _ in range(n):
l = residual_block(l)
# second stack of residual blocks, output is 32 x 16 x 16
l = residual_block(l, increase_dim=True)
for _ in range(1,n):
l = residual_block(l)
# third stack of residual blocks, output is 64 x 8 x 8
l = residual_block(l, increase_dim=True)
for _ in range(1,n):
l = residual_block(l)
# average pooling
l = GlobalPoolLayer(l)
# fully connected layer
network = DenseLayer(
l, num_units=10,
W=lasagne.init.HeNormal(),
nonlinearity=softmax)
return network
# ############################# Batch iterator ###############################
def iterate_minibatches(inputs, targets, batchsize, shuffle=False, augment=False):
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
if augment:
# as in paper :
# pad feature arrays with 4 pixels on each side
# and do random cropping of 32x32
padded = np.pad(inputs[excerpt],((0,0),(0,0),(4,4),(4,4)),mode='constant')
random_cropped = np.zeros(inputs[excerpt].shape, dtype=np.float32)
crops = np.random.random_integers(0,high=8,size=(batchsize,2))
for r in range(batchsize):
random_cropped[r,:,:,:] = padded[r,:,crops[r,0]:(crops[r,0]+32),crops[r,1]:(crops[r,1]+32)]
inp_exc = random_cropped
else:
inp_exc = inputs[excerpt]
yield inp_exc, targets[excerpt]
# ############################## Main program ################################
def main(batch_size=128, lr=0.1, sync=False, n=5, num_epochs=82, model=None):
# Check if cifar data exists
if not os.path.exists("./cifar-10-batches-py"):
print("CIFAR-10 dataset can not be found. Please download the dataset from 'https://www.cs.toronto.edu/~kriz/cifar.html'.")
return
# Load the dataset
print("Loading data...")
data = load_data()
X_train = data['X_train']
Y_train = data['Y_train']
X_test = data['X_test']
Y_test = data['Y_test']
# Prepare Theano variables for inputs and targets
input_var = T.tensor4('inputs')
target_var = T.ivector('targets')
# Create neural network model
print("Building model and compiling functions...")
network = build_cnn(input_var, n)
print("number of parameters in model: %d" % lasagne.layers.count_params(network, trainable=True))
# MULTIVERSO: LasagneParamManager is a parameter manager which can
# synchronize parameters of Lasagne with multiverso.
lpm = param_manager.LasagneParamManager(network)
if model is None:
# Create a loss expression for training, i.e., a scalar objective we want
# to minimize (for our multi-class problem, it is the cross-entropy loss):
prediction = lasagne.layers.get_output(network)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
loss = loss.mean()
# add weight decay
all_layers = lasagne.layers.get_all_layers(network)
l2_penalty = lasagne.regularization.regularize_layer_params(all_layers, lasagne.regularization.l2) * 0.0001
loss = loss + l2_penalty
# Create update expressions for training
# Stochastic Gradient Descent (SGD) with momentum
params = lasagne.layers.get_all_params(network, trainable=True)
sh_lr = theano.shared(lasagne.utils.floatX(lr))
updates = lasagne.updates.momentum(
loss, params, learning_rate=sh_lr, momentum=0.9)
# Compile a function performing a training step on a mini-batch (by giving
# the updates dictionary) and returning the corresponding training loss:
train_fn = theano.function([input_var, target_var], loss, updates=updates)
# Create a loss expression for validation/testing
test_prediction = lasagne.layers.get_output(network, deterministic=True)
test_loss = lasagne.objectives.categorical_crossentropy(test_prediction,
target_var)
test_loss = test_loss.mean()
test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var),
dtype=theano.config.floatX)
# Compile a second function computing the validation loss and accuracy:
val_fn = theano.function([input_var, target_var], [test_loss, test_acc])
if model is None:
# launch the training loop
print("Starting training...")
# We iterate over epochs:
for epoch in range(num_epochs):
# devide the data into different process
examples_per_worker = X_train.shape[0] / workers_num
start_index = worker_id * (examples_per_worker)
train_indices = np.arange(start_index, start_index + examples_per_worker)
# shuffle training data
np.random.shuffle(train_indices)
rand_X_train = X_train[train_indices,:,:,:]
rand_Y_train = Y_train[train_indices]
# In each epoch, we do a full pass over the training data:
train_err = 0
train_batches = 0
start_time = time.time()
for batch in iterate_minibatches(rand_X_train, rand_Y_train, batch_size, shuffle=True, augment=True):
train_batches += 1
inputs, targets = batch
train_err += train_fn(inputs, targets)
# MULTIVERSO: when you want to commit all the delta of
# parameters manage by LasagneParamManager and update the latest
# parameters from parameter server, you can call this function to
# synchronize the values
lpm.sync_all_param()
# And a full pass over the validation data:
# MULTIVERSO: all the workers will synchronize at the place you call barrier
mv.barrier()
if mv.is_master_worker():
val_err = 0
val_acc = 0
val_batches = 0
for batch in iterate_minibatches(X_test, Y_test, 500, shuffle=False):
inputs, targets = batch
err, acc = val_fn(inputs, targets)
val_err += err
val_acc += acc
val_batches += 1
# Then we print the results for this epoch:
print("Epoch {} of {} took {:.3f}s".format(
epoch + 1, num_epochs, time.time() - start_time))
print(" training loss:\t\t{:.6f}".format(train_err / train_batches))
print(" validation loss:\t\t{:.6f}".format(val_err / val_batches))
print(" validation accuracy:\t\t{:.2f} %".format(
val_acc / val_batches * 100))
# adjust learning rate as in paper
# 32k and 48k iterations should be roughly equivalent to 41 and 61 epochs
if (epoch+1) == 41 or (epoch+1) == 61:
# TODO: because of ASGD and multiple GPU are used, so Learning
# rate change schedule should be reconsidered
new_lr = sh_lr.get_value() * 0.1
print("New LR:"+str(new_lr))
sh_lr.set_value(lasagne.utils.floatX(new_lr))
# MULTIVERSO: all the workers will synchronize at the place you call barrier
mv.barrier()
if mv.is_master_worker():
# MULTIVERSO: update the parameters before save the model
lpm.sync_all_param()
# dump the network weights to a file :
np.savez('cifar10_deep_residual_model.npz', *lasagne.layers.get_all_param_values(network))
else:
# load network weights from model file
with np.load(model) as f:
param_values = [f['arr_%d' % i] for i in range(len(f.files))]
lasagne.layers.set_all_param_values(network, param_values)
if mv.is_master_worker():
# Calculate validation error of model:
test_err = 0
test_acc = 0
test_batches = 0
for batch in iterate_minibatches(X_test, Y_test, 500, shuffle=False):
inputs, targets = batch
err, acc = val_fn(inputs, targets)
test_err += err
test_acc += acc
test_batches += 1
print("Final results:")
print(" test loss:\t\t\t{:.6f}".format(test_err / test_batches))
print(" test accuracy:\t\t{:.2f} %".format(
test_acc / test_batches * 100))
# MULTIVERSO: You must call shutdown at the end of the file
mv.shutdown()
def array_list(arr_list):
for arr in arr_list:
print(type(arr), arr.size)
print([(type(arr), arr.size, arr.shape) for arr in arr_list])
f = np.load("cifar10_deep_residual_model.npz")
print([f['arr_%d' % i].size for i in range(len(f.files))])
print([(arr.size) for arr in arr_list])
print([(arr.dtype) for arr in arr_list])
if __name__ == '__main__':
main(batch_size=args.batch_size, lr=args.lr, sync=args.sync, n=args.n,
num_epochs=args.epoches, model=args.model)