Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Thoughts on integrating Dexter with meteora DLMM #120

Open
MeltedMindz opened this issue Nov 27, 2024 · 0 comments
Open

Thoughts on integrating Dexter with meteora DLMM #120

MeltedMindz opened this issue Nov 27, 2024 · 0 comments

Comments

@MeltedMindz
Copy link

Overview
Dexter, an AI-driven liquidity management agent, leverages:

  • Meteora DLMM SDK for interacting with Solana DEXs.
  • DexBrain, a centralized knowledge database for storing and sharing performance insights among agents.
  • Advanced Machine Learning Models for predictive market analysis, risk profiling, and impermanent loss mitigation.
  • Auto-compounding and range adjustments to maximize user returns dynamically.
  • Workflow Steps

Step 1: User Interaction - Chatbot Conversation

  • Dexter interacts with the user to:
  • Select a token pair (e.g., SOL/USDC).
  • Define their risk tolerance: conservative, balanced, or aggressive.
  • Provide liquidity amount.

Dexter explains historical price data, predicts risks, and suggests tailored strategies.

Code:

def chatbot_conversation(self):
    print("Chatbot: Welcome! Which token pair would you like to create an LP for?")
    token_pair = input("User: ").strip().upper()

    print(f"Chatbot: What is your risk tolerance for {token_pair}? (conservative, balanced, aggressive)")
    user_risk = input("User: ").strip().lower()

    print(f"Chatbot: Analyzing data for {token_pair}...")
    suggestion = self.analyze_and_suggest(token_pair, user_risk)
    range_min, range_max = suggestion["range"]

    print(f"Chatbot: Suggested range: {range_min:.2f} - {range_max:.2f}. Shall we proceed?")
    if input("User: ").strip().lower() != "yes":
        print("Chatbot: Process canceled. Restart anytime.")
        return

    print("Chatbot: How much liquidity would you like to provide?")
    liquidity = float(input("User: ").strip())

    print(f"Chatbot: Adding {liquidity} liquidity in range {range_min:.2f} - {range_max:.2f}.")
    outcome = self.client.add_liquidity(token_pair, liquidity, range_min, range_max)

    # Store insights in DexBrain
    self.store_new_insight(token_pair, range_min, range_max, user_risk, outcome)
    print("Chatbot: Liquidity successfully added!")

Step 2:

  • Fetch Historical Price Data
  • Check DexBrain for past performance insights on the selected pair.
  • If no insights are available, fetch historical price data using the Meteora DLMM SDK.

Code:

def get_historical_price_data(self, token_pair, start_time, end_time):
    """
    Fetch historical price data using DLMM SDK.
    """
    return self.client.get_price_data(token_pair, start_time, end_time)

def get_past_insights(self, token_pair):
    """
    Query DexBrain for past insights related to the token pair.
    """
    connection = self.connect_to_db()
    cursor = connection.cursor()
    query = "SELECT * FROM performance_insights WHERE decision_details->>'token_pair' = %s"
    cursor.execute(query, (token_pair,))
    insights = cursor.fetchall()
    cursor.close()
    connection.close()
    return insights

Step 3:

  • Analyze Price Data and Suggest Liquidity Ranges
  • Use ML models to:
  • Predict future price trends using LSTM.
  • Mitigate impermanent loss with a Random Forest model.
  • Optimize liquidity ranges based on user risk tolerance.

Code:

def analyze_and_suggest(self, token_pair, user_risk):
    """
    Suggest a liquidity range using ML models and/or past insights.
    """
    risk_profiles = {
        "conservative": {"min": 0.95, "max": 1.05},
        "balanced": {"min": 0.90, "max": 1.10},
        "aggressive": {"min": 0.80, "max": 1.20}
    }
    risk_profile = risk_profiles.get(user_risk.lower(), risk_profiles["balanced"])

    # Check DexBrain
    past_insights = self.get_past_insights(token_pair)
    if past_insights:
        latest = past_insights[-1]
        return {"range": (latest[3]["min_price"], latest[3]["max_price"]), "source": "DexBrain"}

    # Fetch historical data via DLMM SDK
    start_time = (datetime.utcnow() - timedelta(days=365)).strftime("%Y-%m-%dT%H:%M:%SZ")
    end_time = datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ")
    price_data = self.get_historical_price_data(token_pair, start_time, end_time)

    # Predict price trends
    range_min, range_max = calculate_price_range(price_data, risk_profile)
    return {"range": (range_min, range_max), "source": "ML Analysis"}

Step 4:

  • Deploy Liquidity
  • Use the Meteora DLMM SDK to add liquidity.
  • Log outcomes in DexBrain for future use.

Code:

def add_liquidity(self, token_pair, amount, range_min, range_max):
    """
    Add liquidity using DLMM SDK.
    """
    print(f"Adding {amount} liquidity to {token_pair} in range {range_min} - {range_max}.")
    return self.client.add_liquidity(token_pair, amount, range_min, range_max)

def store_new_insight(self, token_pair, range_min, range_max, risk_profile, outcome):
    """
    Log insights into DexBrain for future use.
    """
    connection = self.connect_to_db()
    cursor = connection.cursor()
    query = """
        INSERT INTO performance_insights (agent_name, task_description, decision_details, outcome_details, performance_score)
        VALUES (%s, %s, %s, %s, %s)
    """
    decision_details = {"token_pair": token_pair, "min_price": range_min, "max_price": range_max, "risk_profile": risk_profile}
    cursor.execute(query, (
        "Dexter_Agent",
        f"Liquidity strategy for {token_pair}",
        Json(decision_details),
        Json(outcome),
        outcome.get("performance_score", 9.0)
    ))
    connection.commit()
    cursor.close()
    connection.close()

Step 5:

  • Auto-Compounding and Range Adjustments
  • Periodically adjust liquidity ranges using ML-based forecasts and DLMM SDK updates.

Code:

def auto_compound_and_adjust(self, token_pair, current_range):
    """
    Dynamically adjust liquidity ranges and compound rewards.
    """
    # Fetch new price data
    price_data = self.get_historical_price_data(token_pair, datetime.utcnow() - timedelta(days=7), datetime.utcnow())

    # Predict new range
    new_range = self.analyze_and_suggest(token_pair, "balanced")["range"]

    # Adjust liquidity
    print(f"Adjusting range from {current_range} to {new_range}.")
    self.client.adjust_liquidity(token_pair, current_range, new_range)

    # Compound rewards
    rewards = self.client.claim_rewards(token_pair)
    print(f"Compounded rewards: {rewards}.")

Step 6:

  • Machine Learning Pipeline in DexBrain
  • Train: Periodic jobs update models with new datasets.
  • Predict: Real-time predictions for LP strategies.

Example Pipeline:

Code:

def ml_pipeline():
    datasets = fetch_market_data()  # Fetch datasets for training
    il_model = train_il_model(datasets)
    dexbrain.store_model("IL_Model", il_model)

This workflow integrates Meteora DLMM SDK, DexBrain, and ML models into Dexter to provide:

  • Intelligent, tailored liquidity strategies.
  • Continuous improvement via shared knowledge in DexBrain.
  • Automated liquidity compounding and adjustments.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant