-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_HED_80k.py
executable file
·353 lines (304 loc) · 16 KB
/
train_HED_80k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import os
import numpy as np
import random
import torch
seed=1
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
from tqdm import tqdm
from collections import defaultdict
from utils.lr_scheduler import PolyLrUpdaterHook
from dataloaders.datasets.bsds_hd5 import Mydataset
from torch.utils.data import DataLoader
from utils.hed_utils import *
import torch.nn as nn
from my_options.hed_options import HED_Options
from modeling.hed import HED
from utils.hed_loss import HED_Loss
from modeling.sync_batchnorm.replicate import patch_replication_callback
from utils.saver import Saver
from utils.summaries import TensorboardSummary
import scipy.io as sio
import time
from utils.log import get_logger
import cv2
class Trainer(object):
def __init__(self, args):
self.args = args
# Define Saver
self.saver = Saver(args)
self.saver.save_experiment_config()
# Define Tensorboard Summary
self.summary = TensorboardSummary(self.saver.experiment_dir)
self.writer = self.summary.create_summary()
print(self.saver.experiment_dir)
self.output_dir = os.path.join(self.saver.experiment_dir)
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
self.logger = get_logger(self.output_dir+'/log.txt')
self.logger.info('*' * 80)
self.logger.info('the args are the below')
self.logger.info('*' * 80)
for x in self.args.__dict__:
self.logger.info(x + ',' + str(self.args.__dict__[x]))
self.logger.info('*' * 80)
# Define Dataloader
self.train_dataset = Mydataset(root_path=self.args.data_path, split='trainval', crop_size=self.args.crop_size)
self.test_dataset = Mydataset(root_path=self.args.data_path, split='test', crop_size=self.args.crop_size)
self.train_loader = DataLoader(self.train_dataset, batch_size=self.args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True)
self.test_loader = DataLoader(self.test_dataset, batch_size=1, shuffle=False,
num_workers=args.workers)
# Define network
# Define network
self.model = HED('cuda')
self.model = nn.DataParallel(self.model)
self.model.to('cuda')
# Initialize the weights for HED model.
def weights_init(m):
""" Weight initialization function. """
if isinstance(m, nn.Conv2d):
# Initialize: m.weight.
if m.weight.data.shape == torch.Size([1, 5, 1, 1]):
# Constant initialization for fusion layer in HED network.
torch.nn.init.constant_(m.weight, 0.2)
else:
# Zero initialization following official repository.
# Reference: hed/docs/tutorial/layers.md
m.weight.data.zero_()
# Initialize: m.bias.
if m.bias is not None:
# Zero initialization.
m.bias.data.zero_()
self.model.apply(weights_init)
# Optimizer settings.
net_parameters_id = defaultdict(list)
for name, param in self.model.named_parameters():
if name in ['module.conv1_1.weight', 'module.conv1_2.weight',
'module.conv2_1.weight', 'module.conv2_2.weight',
'module.conv3_1.weight', 'module.conv3_2.weight', 'module.conv3_3.weight',
'module.conv4_1.weight', 'module.conv4_2.weight', 'module.conv4_3.weight']:
print('{:26} lr: 1 decay:1'.format(name));
net_parameters_id['conv1-4.weight'].append(param)
elif name in ['module.conv1_1.bias', 'module.conv1_2.bias',
'module.conv2_1.bias', 'module.conv2_2.bias',
'module.conv3_1.bias', 'module.conv3_2.bias', 'module.conv3_3.bias',
'module.conv4_1.bias', 'module.conv4_2.bias', 'module.conv4_3.bias']:
print('{:26} lr: 2 decay:0'.format(name));
net_parameters_id['conv1-4.bias'].append(param)
elif name in ['module.conv5_1.weight', 'module.conv5_2.weight', 'module.conv5_3.weight']:
print('{:26} lr: 100 decay:1'.format(name));
net_parameters_id['conv5.weight'].append(param)
elif name in ['module.conv5_1.bias', 'module.conv5_2.bias', 'module.conv5_3.bias']:
print('{:26} lr: 200 decay:0'.format(name));
net_parameters_id['conv5.bias'].append(param)
elif name in ['module.score_dsn1.weight', 'module.score_dsn2.weight',
'module.score_dsn3.weight', 'module.score_dsn4.weight', 'module.score_dsn5.weight']:
print('{:26} lr: 0.01 decay:1'.format(name));
net_parameters_id['score_dsn_1-5.weight'].append(param)
elif name in ['module.score_dsn1.bias', 'module.score_dsn2.bias',
'module.score_dsn3.bias', 'module.score_dsn4.bias', 'module.score_dsn5.bias']:
print('{:26} lr: 0.02 decay:0'.format(name));
net_parameters_id['score_dsn_1-5.bias'].append(param)
elif name in ['module.score_final.weight']:
print('{:26} lr:0.001 decay:1'.format(name));
net_parameters_id['score_final.weight'].append(param)
elif name in ['module.score_final.bias']:
print('{:26} lr:0.002 decay:0'.format(name));
net_parameters_id['score_final.bias'].append(param)
# Define Optimizer
self.optimizer = torch.optim.SGD([
{'params': net_parameters_id['conv1-4.weight'], 'lr': self.args.lr * 1,
'weight_decay': self.args.weight_decay},
{'params': net_parameters_id['conv1-4.bias'], 'lr': self.args.lr * 2, 'weight_decay': 0.},
{'params': net_parameters_id['conv5.weight'], 'lr': self.args.lr * 100,
'weight_decay': self.args.weight_decay},
{'params': net_parameters_id['conv5.bias'], 'lr': self.args.lr * 200, 'weight_decay': 0.},
{'params': net_parameters_id['score_dsn_1-5.weight'], 'lr': self.args.lr * 0.01,
'weight_decay': self.args.weight_decay},
{'params': net_parameters_id['score_dsn_1-5.bias'], 'lr': self.args.lr * 0.02, 'weight_decay': 0.},
{'params': net_parameters_id['score_final.weight'], 'lr': self.args.lr * 0.001,
'weight_decay': self.args.weight_decay},
{'params': net_parameters_id['score_final.bias'], 'lr': self.args.lr * 0.002, 'weight_decay': 0.},
], lr=self.args.lr, momentum=self.args.momentum, weight_decay=self.args.weight_decay)
# Note: In train_val.prototxt and deploy.prototxt, the learning rates of score_final.weight/bias are different.
# Define lr scheduler
self.scheduler = PolyLrUpdaterHook(power=0.9, base_lr=self.args.lr, min_lr=self.args.minlr)
# Loading pre-trained model
if self.args.vgg16_caffe:
load_vgg16_caffe(self.model, self.args.vgg16_caffe)
# Define Criterion
self.criterion = HED_Loss()
# Resuming checkpoint
self.best_pred = 0.0
def training(self):
cur = 0
data_iter = iter(self.train_loader)
iter_per_epoch = len(self.train_loader)
self.logger.info('*' * 40)
self.logger.info('train images in all are %d ' % (iter_per_epoch*self.args.batch_size))
self.logger.info('*' * 40)
train_loss = 0.0
self.model.train()
start_time = time.time()
for step in range(self.args.start_iters, self.args.total_iters):
if cur == iter_per_epoch:
cur = 0
data_iter = iter(self.train_loader)
image, target = next(data_iter)
if self.args.cuda:
image, target = image.cuda(), target.cuda() #(b,3,w,h) (b,1,w,h)
target = target[:, 1:5, :, :]
preds_list = self.model(image)
loss = sum([self.criterion(preds, target) for preds in preds_list])
self.scheduler(self.optimizer, step, self.args.total_iters)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
train_loss += loss.item()
if (step+1) % self.args.snapshots == 0:
self.saver.save_checkpoint({
'epoch': step + 1, 'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(), 'best_pred': self.best_pred,
}, is_best=False)
self.test(step)
self.multiscale_test(step)
self.model.train()
if (step+1) % self.args.display == 0:
tm = time.time() - start_time
self.logger.info('iter: %d, lr: %e, loss: %f, time using: %f(%fs/iter)'
% ((step+1), self.optimizer.param_groups[0]['lr'], (train_loss / (step + 1)), tm, tm / self.args.display))
start_time = time.time()
cur = cur+1
print('Loss: %.3f' % train_loss)
def test(self, iters):
print('Test epoch: %d' % iters)
self.output_dir = os.path.join(self.saver.experiment_dir, str(iters+1))
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
self.depth_output_dir = os.path.join(self.output_dir, 'depth/mat')
if not os.path.exists(self.depth_output_dir):
os.makedirs(self.depth_output_dir)
self.normal_output_dir = os.path.join(self.output_dir, 'normal/mat')
if not os.path.exists(self.normal_output_dir):
os.makedirs(self.normal_output_dir)
self.reflectance_output_dir = os.path.join(self.output_dir, 'reflectance/mat')
if not os.path.exists(self.reflectance_output_dir):
os.makedirs(self.reflectance_output_dir)
self.illumination_output_dir = os.path.join(self.output_dir, 'illumination/mat')
if not os.path.exists(self.illumination_output_dir):
os.makedirs(self.illumination_output_dir)
self.model.eval()
tbar = tqdm(self.test_loader, desc='\r')
for i, image in enumerate(tbar):
name = self.test_loader.dataset.images_name[i]
if self.args.cuda:
image = image.cuda()
with torch.no_grad():
preds_list = self.model(image)
pred = preds_list[-1]
pred = pred.squeeze()
out_depth = pred[0, :, :]
out_normal = pred[1, :, :]
out_reflectance = pred[2, :, :]
out_illumination = pred[3, :, :]
depth_pred = out_depth.data.cpu().numpy()
depth_pred = depth_pred.squeeze()
sio.savemat(os.path.join(self.depth_output_dir, '{}.mat'.format(name)), {'result': depth_pred})
normal_pred = out_normal.data.cpu().numpy()
normal_pred = normal_pred.squeeze()
sio.savemat(os.path.join(self.normal_output_dir, '{}.mat'.format(name)), {'result': normal_pred})
reflectance_pred = out_reflectance.data.cpu().numpy()
reflectance_pred = reflectance_pred.squeeze()
sio.savemat(os.path.join(self.reflectance_output_dir, '{}.mat'.format(name)), {'result': reflectance_pred})
illumination_pred = out_illumination.data.cpu().numpy()
illumination_pred = illumination_pred.squeeze()
sio.savemat(os.path.join(self.illumination_output_dir, '{}.mat'.format(name)),
{'result': illumination_pred})
def multiscale_test(self, iters):
print('Test epoch: %d' % iters)
self.output_dir = os.path.join(self.saver.experiment_dir, str(iters + 1) + '_ms')
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
self.depth_output_dir = os.path.join(self.output_dir, 'depth/mat')
if not os.path.exists(self.depth_output_dir):
os.makedirs(self.depth_output_dir)
self.normal_output_dir = os.path.join(self.output_dir, 'normal/mat')
if not os.path.exists(self.normal_output_dir):
os.makedirs(self.normal_output_dir)
self.reflectance_output_dir = os.path.join(self.output_dir, 'reflectance/mat')
if not os.path.exists(self.reflectance_output_dir):
os.makedirs(self.reflectance_output_dir)
self.illumination_output_dir = os.path.join(self.output_dir, 'illumination/mat')
if not os.path.exists(self.illumination_output_dir):
os.makedirs(self.illumination_output_dir)
self.model.eval()
scale = [0.5, 1, 1.5]
tbar = tqdm(self.test_loader, desc='\r')
for i, image in enumerate(tbar):
name = self.test_loader.dataset.images_name[i]
image = image[0]
image_in = image.numpy().transpose((1, 2, 0))
_, H, W = image.shape
multi_fuse_depth = np.zeros((H, W), np.float32)
multi_fuse_normal = np.zeros((H, W), np.float32)
multi_fuse_reflectance = np.zeros((H, W), np.float32)
multi_fuse_illumination = np.zeros((H, W), np.float32)
for k in range(0, len(scale)):
im_ = cv2.resize(image_in, None, fx=scale[k], fy=scale[k], interpolation=cv2.INTER_LINEAR)
im_ = im_.transpose((2, 0, 1))
with torch.no_grad():
results = self.model(torch.unsqueeze(torch.from_numpy(im_).cuda(), 0))
result = torch.squeeze(results[-1].detach()).cpu().numpy()
res_depth = result[0, :, :]
res_normal = result[1, :, :]
res_reflectance = result[2, :, :]
res_illumination = result[3, :, :]
fuse_depth = cv2.resize(res_depth, (W, H), interpolation=cv2.INTER_LINEAR)
multi_fuse_depth += fuse_depth
fuse_normal = cv2.resize(res_normal, (W, H), interpolation=cv2.INTER_LINEAR)
multi_fuse_normal += fuse_normal
fuse_reflectance = cv2.resize(res_reflectance, (W, H), interpolation=cv2.INTER_LINEAR)
multi_fuse_reflectance += fuse_reflectance
fuse_illumination = cv2.resize(res_illumination, (W, H), interpolation=cv2.INTER_LINEAR)
multi_fuse_illumination += fuse_illumination
multi_fuse_depth = multi_fuse_depth / len(scale)
multi_fuse_normal = multi_fuse_normal / len(scale)
multi_fuse_reflectance = multi_fuse_reflectance / len(scale)
multi_fuse_illumination = multi_fuse_illumination / len(scale)
sio.savemat(os.path.join(self.depth_output_dir, '{}.mat'.format(name)), {'result': multi_fuse_depth})
sio.savemat(os.path.join(self.normal_output_dir, '{}.mat'.format(name)), {'result': multi_fuse_normal})
sio.savemat(os.path.join(self.reflectance_output_dir, '{}.mat'.format(name)), {'result': multi_fuse_reflectance})
sio.savemat(os.path.join(self.illumination_output_dir, '{}.mat'.format(name)), {'result': multi_fuse_illumination})
def main():
options = HED_Options()
args = options.parse()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
try:
args.gpu_ids = [int(s) for s in args.gpu_ids.split(',')]
except ValueError:
raise ValueError('Argument --gpu_ids must be a comma-separated list of integers only')
if args.sync_bn is None:
if args.cuda and len(args.gpu_ids) > 1:
args.sync_bn = True
else:
args.sync_bn = False
args.checkname = 'hed'
args.lr = 1e-8
args.minlr = 1e-10
args.total_iters = 80000
args.start_iters = 0
args.display = 20
print(args)
trainer = Trainer(args)
print('Starting iters:', trainer.args.start_iters)
print('Total iters:', trainer.args.total_iters)
trainer.training()
if __name__ == "__main__":
main()