-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_DOOBNet_edge_80k.py
executable file
·231 lines (193 loc) · 8.58 KB
/
train_DOOBNet_edge_80k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import numpy as np
import random
import torch
seed=1
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
from tqdm import tqdm
from utils.lr_scheduler import PolyLrUpdaterHook
from dataloaders.datasets.bsds_hd5_dim1 import Mydataset
from torch.utils.data import DataLoader
from my_options.doobnet_options import DOOB_Options
from modeling.doobnet_edge import *
from modeling.sync_batchnorm.replicate import patch_replication_callback
from utils.edge_loss2 import AttentionLossSingleMap
from utils.saver import Saver
from utils.summaries import TensorboardSummary
import scipy.io as sio
import time
from utils.log import get_logger
import cv2
class Trainer(object):
def __init__(self, args):
self.args = args
# Define Saver
self.saver = Saver(args)
self.saver.save_experiment_config()
# Define Tensorboard Summary
self.summary = TensorboardSummary(self.saver.experiment_dir)
self.writer = self.summary.create_summary()
print(self.saver.experiment_dir)
self.output_dir = os.path.join(self.saver.experiment_dir)
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
self.logger = get_logger(self.output_dir+'/log.txt')
self.logger.info('*' * 80)
self.logger.info('the args are the below')
self.logger.info('*' * 80)
for x in self.args.__dict__:
self.logger.info(x + ',' + str(self.args.__dict__[x]))
self.logger.info('*' * 80)
# Define Dataloader
self.train_dataset = Mydataset(root_path=self.args.data_path, split='trainval', crop_size=self.args.crop_size)
self.test_dataset = Mydataset(root_path=self.args.data_path, split='test', crop_size=self.args.crop_size)
self.train_loader = DataLoader(self.train_dataset, batch_size=self.args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True)
self.test_loader = DataLoader(self.test_dataset, batch_size=1, shuffle=False,
num_workers=args.workers)
# Define network
self.model = DoobNet()
if self.args.resnet:
self.model.load_resnet(args.resnet)
self.logger.info(self.model)
# Define Criterion
self.criterion = AttentionLossSingleMap()
# Define Optimizer
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.args.lr, momentum=self.args.momentum,
weight_decay=self.args.weight_decay)
# Define lr scheduler
self.scheduler = PolyLrUpdaterHook(power=0.9, base_lr=self.args.lr, min_lr=self.args.minlr)
# Using cuda
if self.args.cuda:
self.model = torch.nn.DataParallel(self.model, device_ids=self.args.gpu_ids)
patch_replication_callback(self.model)
self.model = self.model.cuda()
# Resuming checkpoint
self.best_pred = 0.0
if args.resume is not None:
if not os.path.isfile(args.resume):
raise RuntimeError("=> no checkpoint found at '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
if args.cuda:
self.model.module.load_state_dict(checkpoint['state_dict'])
else:
self.model.load_state_dict(checkpoint['state_dict'])
if not args.ft:
self.optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
def training(self):
cur = 0
data_iter = iter(self.train_loader)
iter_per_epoch = len(self.train_loader)
self.logger.info('*' * 40)
self.logger.info('train images in all are %d ' % (iter_per_epoch*self.args.batch_size))
self.logger.info('*' * 40)
train_loss = 0.0
self.model.train()
start_time = time.time()
for step in range(self.args.start_iters, self.args.total_iters):
if cur == iter_per_epoch:
cur = 0
data_iter = iter(self.train_loader)
image, target = next(data_iter)
if self.args.cuda:
image, target = image.cuda(), target.cuda() #(b,3,w,h) (b,1,w,h)
target = target.unsqueeze(1)
output = self.model(image)
loss = self.criterion(output, target)
self.scheduler(self.optimizer, step, self.args.total_iters)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
train_loss += loss.item()
if (step+1) % self.args.snapshots == 0:
self.saver.save_checkpoint({
'epoch': step + 1, 'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(), 'best_pred': self.best_pred,
}, is_best=False)
self.test(step)
self.multiscale_test(step)
self.model.train()
if (step+1) % self.args.display == 0:
tm = time.time() - start_time
self.logger.info('iter: %d, lr: %e, loss: %f, time using: %f(%fs/iter)'
% ((step+1), self.optimizer.param_groups[0]['lr'], (train_loss / (step + 1)), tm, tm / self.args.display))
start_time = time.time()
cur = cur+1
print('Loss: %.3f' % train_loss)
def test(self, iters):
print('Test epoch: %d' % iters)
self.output_dir = os.path.join(self.saver.experiment_dir, str(iters+1), 'mat')
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
self.model.eval()
tbar = tqdm(self.test_loader, desc='\r')
for i, image in enumerate(tbar):
name = self.test_loader.dataset.images_name[i]
if self.args.cuda:
image = image.cuda()
with torch.no_grad():
output = self.model(image)
pred = output.squeeze()
pred = pred.data.cpu().numpy()
sio.savemat(os.path.join(self.output_dir, '{}.mat'.format(name)), {'result': pred})
def multiscale_test(self, iters):
print('Test epoch: %d' % iters)
self.output_dir = os.path.join(self.saver.experiment_dir, str(iters + 1) + '_ms','mat')
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
self.model.eval()
scale = [0.5, 1, 1.5]
tbar = tqdm(self.test_loader, desc='\r')
for i, image in enumerate(tbar):
name = self.test_loader.dataset.images_name[i]
image = image[0]
image_in = image.numpy().transpose((1, 2, 0))
_, H, W = image.shape
multi_fuse = np.zeros((H, W), np.float32)
for k in range(0, len(scale)):
im_ = cv2.resize(image_in, None, fx=scale[k], fy=scale[k], interpolation=cv2.INTER_LINEAR)
im_ = im_.transpose((2, 0, 1))
with torch.no_grad():
results = self.model(torch.unsqueeze(torch.from_numpy(im_).cuda(), 0))
result = torch.squeeze(results[-1].detach()).cpu().numpy()
fuse_result = cv2.resize(result, (W, H), interpolation=cv2.INTER_LINEAR)
multi_fuse += fuse_result
multi_fuse = multi_fuse / len(scale)
sio.savemat(os.path.join(self.output_dir, '{}.mat'.format(name)), {'result': multi_fuse})
def main():
options = DOOB_Options()
args = options.parse()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
try:
args.gpu_ids = [int(s) for s in args.gpu_ids.split(',')]
except ValueError:
raise ValueError('Argument --gpu_ids must be a comma-separated list of integers only')
if args.sync_bn is None:
if args.cuda and len(args.gpu_ids) > 1:
args.sync_bn = True
else:
args.sync_bn = False
args.checkname = 'doobnet'
args.data_path = 'data/BSDS-RIND/BSDS-RIND-Edge/Augmentation/'
args.lr = 1e-6
args.minlr = 1e-8
args.total_iters = 80000
args.start_iters = 0
args.display = 20
print(args)
trainer = Trainer(args)
print('Starting iters:', trainer.args.start_iters)
print('Total iters:', trainer.args.total_iters)
trainer.training()
if __name__ == "__main__":
main()