-
Notifications
You must be signed in to change notification settings - Fork 26
/
client.py
478 lines (405 loc) · 18.8 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
"""SQL client handling.
This includes PostgresStream and PostgresConnector.
"""
from __future__ import annotations
import datetime
import functools
import json
import select
import typing as t
from functools import cached_property
from types import MappingProxyType
from typing import TYPE_CHECKING, Any
import psycopg2
import singer_sdk.helpers._typing
import sqlalchemy as sa
import sqlalchemy.types
from psycopg2 import extras
from singer_sdk import SQLConnector, SQLStream
from singer_sdk.connectors.sql import SQLToJSONSchema
from singer_sdk.helpers._state import increment_state
from singer_sdk.helpers._typing import TypeConformanceLevel
from singer_sdk.streams.core import REPLICATION_INCREMENTAL
from sqlalchemy.dialects import postgresql
if TYPE_CHECKING:
from collections.abc import Iterable, Mapping
from singer_sdk.helpers.types import Context
from sqlalchemy.dialects import postgresql
from sqlalchemy.engine import Engine
from sqlalchemy.engine.reflection import Inspector
class PostgresSQLToJSONSchema(SQLToJSONSchema):
"""Custom SQL to JSON Schema conversion for Postgres."""
def __init__(self, dates_as_string: bool, json_as_object: bool, *args, **kwargs):
"""Initialize the SQL to JSON Schema converter."""
super().__init__(*args, **kwargs)
self.dates_as_string = dates_as_string
self.json_as_object = json_as_object
@SQLToJSONSchema.to_jsonschema.register # type: ignore[attr-defined]
def array_to_jsonschema(self, column_type: postgresql.ARRAY) -> dict:
"""Override the default mapping for NUMERIC columns.
For example, a scale of 4 translates to a multipleOf 0.0001.
"""
return {
"type": "array",
"items": self.to_jsonschema(column_type.item_type),
}
@SQLToJSONSchema.to_jsonschema.register # type: ignore[attr-defined]
def json_to_jsonschema(self, column_type: postgresql.JSON) -> dict:
"""Override the default mapping for JSON and JSONB columns."""
if self.json_as_object:
return {"type": ["object", "null"]}
return {"type": ["string", "number", "integer", "array", "object", "boolean"]}
@SQLToJSONSchema.to_jsonschema.register # type: ignore[attr-defined]
def datetime_to_jsonschema(self, column_type: sqlalchemy.types.DateTime) -> dict:
"""Override the default mapping for DATETIME columns."""
if self.dates_as_string:
return {"type": ["string", "null"]}
return super().datetime_to_jsonschema(column_type)
@SQLToJSONSchema.to_jsonschema.register # type: ignore[attr-defined]
def date_to_jsonschema(self, column_type: sqlalchemy.types.Date) -> dict:
"""Override the default mapping for DATE columns."""
if self.dates_as_string:
return {"type": ["string", "null"]}
return super().date_to_jsonschema(column_type)
def patched_conform(
elem: Any,
property_schema: dict,
) -> Any:
"""Overrides Singer SDK type conformance.
Most logic here is from singer_sdk.helpers._typing._conform_primitive_property, as
marked by "# copied". This is a full override rather than calling the "super"
because the final piece of logic in the super `if is_boolean_type(property_schema):`
is flawed. is_boolean_type will return True if the schema contains a boolean
anywhere. Therefore, a jsonschema type like ["boolean", "integer"] will return true
and will have its values coerced to either True or False. In practice, this occurs
for columns with JSONB type: no guarantees can be made about their data, so the
schema has every possible data type, including boolean. Without this override, all
JSONB columns would be coerced to True or False.
Modifications:
- prevent dates from turning into datetimes.
- prevent collapsing values to booleans. (discussed above)
Converts a primitive (i.e. not object or array) to a json compatible type.
Returns:
The appropriate json compatible type.
"""
if isinstance(elem, datetime.date): # not copied, original logic
return elem.isoformat()
if isinstance(elem, (datetime.datetime,)): # copied
return singer_sdk.helpers._typing.to_json_compatible(elem)
if isinstance(elem, datetime.timedelta): # copied
epoch = datetime.datetime.fromtimestamp(0, datetime.timezone.utc)
timedelta_from_epoch = epoch + elem
if timedelta_from_epoch.tzinfo is None:
timedelta_from_epoch = timedelta_from_epoch.replace(
tzinfo=datetime.timezone.utc
)
return timedelta_from_epoch.isoformat()
if isinstance(elem, datetime.time): # copied
return str(elem)
if isinstance(elem, bytes): # copied, modified to import is_boolean_type
# for BIT value, treat 0 as False and anything else as True
# Will only due this for booleans, not `bytea` data.
return (
elem != b"\x00"
if singer_sdk.helpers._typing.is_boolean_type(property_schema)
else elem.hex()
)
return elem
singer_sdk.helpers._typing._conform_primitive_property = patched_conform
class PostgresConnector(SQLConnector):
"""Connects to the Postgres SQL source."""
def __init__(
self,
config: dict | None = None,
sqlalchemy_url: str | None = None,
) -> None:
"""Initialize the SQL connector.
Args:
config: The parent tap or target object's config.
sqlalchemy_url: Optional URL for the connection.
"""
# Dates in postgres don't all convert to python datetime objects, so we
# need to register a custom type caster to convert these to a string
# See https://www.psycopg.org/psycopg3/docs/advanced/adapt.html#example-handling-infinity-date # noqa: E501
# For more information
if config is not None and config["dates_as_string"] is True:
string_dates = psycopg2.extensions.new_type(
(1082, 1114, 1184), "STRING_DATES", psycopg2.STRING
)
string_date_arrays = psycopg2.extensions.new_array_type(
(1182, 1115, 1188), "STRING_DATE_ARRAYS[]", psycopg2.STRING
)
psycopg2.extensions.register_type(string_dates)
psycopg2.extensions.register_type(string_date_arrays)
super().__init__(config=config, sqlalchemy_url=sqlalchemy_url)
@functools.cached_property
def sql_to_jsonschema(self):
"""Return a mapping of SQL types to JSON Schema types."""
return PostgresSQLToJSONSchema(
dates_as_string=self.config["dates_as_string"],
json_as_object=self.config["json_as_object"],
)
def get_schema_names(self, engine: Engine, inspected: Inspector) -> list[str]:
"""Return a list of schema names in DB, or overrides with user-provided values.
Args:
engine: SQLAlchemy engine
inspected: SQLAlchemy inspector instance for engine
Returns:
List of schema names
"""
if "filter_schemas" in self.config and len(self.config["filter_schemas"]) != 0:
return self.config["filter_schemas"]
return super().get_schema_names(engine, inspected)
class PostgresStream(SQLStream):
"""Stream class for Postgres streams."""
connector_class = PostgresConnector
supports_nulls_first = True
# JSONB Objects won't be selected without type_conformance_level to ROOT_ONLY
TYPE_CONFORMANCE_LEVEL = TypeConformanceLevel.ROOT_ONLY
def max_record_count(self) -> int | None:
"""Return the maximum number of records to fetch in a single query."""
return self.config.get("max_record_count")
# Get records from stream
def get_records(self, context: Context | None) -> t.Iterable[dict[str, t.Any]]:
"""Return a generator of record-type dictionary objects.
If the stream has a replication_key value defined, records will be sorted by the
incremental key. If the stream also has an available starting bookmark, the
records will be filtered for values greater than or equal to the bookmark value.
Args:
context: If partition context is provided, will read specifically from this
data slice.
Yields:
One dict per record.
Raises:
NotImplementedError: If partition is passed in context and the stream does
not support partitioning.
"""
if context:
msg = f"Stream '{self.name}' does not support partitioning."
raise NotImplementedError(msg)
selected_column_names = self.get_selected_schema()["properties"].keys()
table = self.connector.get_table(
full_table_name=self.fully_qualified_name,
column_names=selected_column_names,
)
query = table.select()
if self.replication_key:
replication_key_col = table.columns[self.replication_key]
order_by = (
sa.nulls_first(replication_key_col.asc())
if self.supports_nulls_first
else replication_key_col.asc()
)
query = query.order_by(order_by)
start_val = self.get_starting_replication_key_value(context)
if start_val:
query = query.where(replication_key_col >= start_val)
if self.ABORT_AT_RECORD_COUNT is not None:
# Limit record count to one greater than the abort threshold. This ensures
# `MaxRecordsLimitException` exception is properly raised by caller
# `Stream._sync_records()` if more records are available than can be
# processed.
query = query.limit(self.ABORT_AT_RECORD_COUNT + 1)
if self.max_record_count():
query = query.limit(self.max_record_count())
with self.connector._connect() as conn:
for record in conn.execute(query).mappings():
# TODO: Standardize record mapping type
# https://github.com/meltano/sdk/issues/2096
transformed_record = self.post_process(dict(record))
if transformed_record is None:
# Record filtered out during post_process()
continue
yield transformed_record
class PostgresLogBasedStream(SQLStream):
"""Stream class for Postgres log-based streams."""
connector_class = PostgresConnector
# JSONB Objects won't be selected without type_confomance_level to ROOT_ONLY
TYPE_CONFORMANCE_LEVEL = TypeConformanceLevel.ROOT_ONLY
replication_key = "_sdc_lsn"
@property
def config(self) -> Mapping[str, Any]:
"""Return a read-only config dictionary."""
return MappingProxyType(self._config)
@cached_property
def schema(self) -> dict:
"""Override schema for log-based replication adding _sdc columns."""
schema_dict = t.cast(dict, self._singer_catalog_entry.schema.to_dict())
for property in schema_dict["properties"].values():
if isinstance(property["type"], list):
property["type"].append("null")
else:
property["type"] = [property["type"], "null"]
if "required" in schema_dict:
schema_dict.pop("required")
schema_dict["properties"].update({"_sdc_deleted_at": {"type": ["string"]}})
schema_dict["properties"].update({"_sdc_lsn": {"type": ["integer"]}})
return schema_dict
def _increment_stream_state(
self,
latest_record: dict[str, Any],
*,
context: Context | None = None,
) -> None:
"""Update state of stream or partition with data from the provided record.
The default implementation does not advance any bookmarks unless
`self.replication_method == 'INCREMENTAL'`. For us, `self.replication_method ==
'LOG_BASED'`, so an override is required.
"""
# This also creates a state entry if one does not yet exist:
state_dict = self.get_context_state(context)
# Advance state bookmark values if applicable
if latest_record: # This is the only line that has been overridden.
if not self.replication_key:
msg = (
f"Could not detect replication key for '{self.name}' "
f"stream(replication method={self.replication_method})"
)
raise ValueError(msg)
treat_as_sorted = self.is_sorted()
if not treat_as_sorted and self.state_partitioning_keys is not None:
# Streams with custom state partitioning are not resumable.
treat_as_sorted = False
increment_state(
state_dict,
replication_key=self.replication_key,
latest_record=latest_record,
is_sorted=treat_as_sorted,
check_sorted=self.check_sorted,
)
def get_records(self, context: Context | None) -> Iterable[dict[str, Any]]:
"""Return a generator of row-type dictionary objects."""
status_interval = 5.0 # if no records in 5 seconds the tap can exit
start_lsn = self.get_starting_replication_key_value(context=context)
if start_lsn is None:
start_lsn = 0
logical_replication_connection = self.logical_replication_connection()
logical_replication_cursor = logical_replication_connection.cursor()
# Flush logs from the previous sync. send_feedback() will only flush LSNs before
# the value of flush_lsn, not including the value of flush_lsn, so this is safe
# even though we still want logs with an LSN == start_lsn.
logical_replication_cursor.send_feedback(flush_lsn=start_lsn)
logical_replication_cursor.start_replication(
slot_name="tappostgres",
decode=True,
start_lsn=start_lsn,
status_interval=status_interval,
options={
"format-version": 2,
"include-transaction": False,
"add-tables": self.fully_qualified_name,
},
)
# Using scaffolding layout from:
# https://www.psycopg.org/docs/extras.html#psycopg2.extras.ReplicationCursor
while True:
message = logical_replication_cursor.read_message()
if message:
row = self.consume(message, logical_replication_cursor)
if row:
yield row
else:
timeout = (
status_interval
- (
datetime.datetime.now()
- logical_replication_cursor.feedback_timestamp
).total_seconds()
)
try:
# If the timeout has passed and the cursor still has no new
# messages, the sync has completed.
if (
select.select(
[logical_replication_cursor], [], [], max(0, timeout)
)[0]
== []
):
break
except InterruptedError:
pass
logical_replication_cursor.close()
logical_replication_connection.close()
def consume(self, message, cursor) -> dict | None:
"""Ingest WAL message."""
try:
message_payload = json.loads(message.payload)
except json.JSONDecodeError:
self.logger.warning(
"A message payload of %s could not be converted to JSON",
message.payload,
)
return {}
row = {}
upsert_actions = {"I", "U"}
delete_actions = {"D"}
truncate_actions = {"T"}
transaction_actions = {"B", "C"}
if message_payload["action"] in upsert_actions:
for column in message_payload["columns"]:
row.update({column["name"]: self._parse_column_value(column, cursor)})
row.update({"_sdc_deleted_at": None})
row.update({"_sdc_lsn": message.data_start})
elif message_payload["action"] in delete_actions:
for column in message_payload["identity"]:
row.update({column["name"]: self._parse_column_value(column, cursor)})
row.update(
{
"_sdc_deleted_at": datetime.datetime.utcnow().strftime(
r"%Y-%m-%dT%H:%M:%SZ"
)
}
)
row.update({"_sdc_lsn": message.data_start})
elif message_payload["action"] in truncate_actions:
self.logger.debug(
(
"A message payload of %s (corresponding to a truncate action) "
"could not be processed."
),
message.payload,
)
elif message_payload["action"] in transaction_actions:
self.logger.debug(
(
"A message payload of %s (corresponding to a transaction beginning "
"or commit) could not be processed."
),
message.payload,
)
else:
raise RuntimeError(
(
"A message payload of %s (corresponding to an unknown action type) "
"could not be processed."
),
message.payload,
)
return row
def _parse_column_value(self, column, cursor):
# When using log based replication, the wal2json output for columns of
# array types returns a string encoded in sql format, e.g. '{a,b}'
# https://github.com/eulerto/wal2json/issues/221#issuecomment-1025143441
if column["type"] == "text[]":
return psycopg2.extensions.STRINGARRAY(column["value"], cursor)
return column["value"]
def logical_replication_connection(self):
"""A logical replication connection to the database.
Uses a direct psycopg2 implementation rather than through sqlalchemy.
"""
connection_string = (
f"dbname={self.config['database']} user={self.config['user']} password="
f"{self.config['password']} host={self.config['host']} port="
f"{self.config['port']}"
)
return psycopg2.connect(
connection_string,
application_name="tap_postgres",
connection_factory=extras.LogicalReplicationConnection,
)
# TODO: Make this change upstream in the SDK?
# I'm not sure if in general SQL databases don't guarantee order of records log
# replication, but at least Postgres does not.
def is_sorted(self) -> bool: # type: ignore[override]
"""Return True if the stream is sorted by the replication key."""
return self.replication_method == REPLICATION_INCREMENTAL