-
Notifications
You must be signed in to change notification settings - Fork 0
/
utilities.py
309 lines (235 loc) · 12.5 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import numpy as np
import cv2
import glob
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
def calibrate_camera():
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9, 0:6].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.
# Make a list of calibration images
images = glob.glob('camera_cal/calibration*.jpg')
# Step through the list and search for chessboard corners
for idx, fname in enumerate(images):
img = cv2.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
ret, corners = cv2.findChessboardCorners(gray, (9,6), None)
# If found, add object points, image points
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
# Draw and display the corners
#cv2.drawChessboardCorners(img, (9,6), corners, ret)
return cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
def adjust_gamma(image, gamma=0.7):
# build a lookup table mapping the pixel values [0, 255] to
# their adjusted gamma values
invGamma = 1.0 / gamma
table = np.array([((i / 255.0) ** invGamma) * 255
for i in np.arange(0, 256)]).astype("uint8")
# apply gamma correction using the lookup table
return cv2.LUT(image, table)
def undistort_image(img, mtx, dist):
return cv2.undistort(img, mtx, dist, None, mtx)
def gradient_color(img, s_thresh=(170, 255), l_thresh=(220, 255), b_thresh=(190,255), sx_thresh=(20, 100)):
HLS_img = np.copy(img)
LAB_img = np.copy(img)
Gray_image = np.copy(img)
# Convert to HLS color space and separate the channels
hls = cv2.cvtColor(HLS_img, cv2.COLOR_RGB2HLS)
l_HLSchannel = hls[:,:,1]
s_HLSchannel = hls[:,:,2]
s_HLSchannel=s_HLSchannel*(255/np.max(s_HLSchannel))
l_HLSchannel=l_HLSchannel*(255/np.max(l_HLSchannel))
# Threshold color channel
s_binary = np.zeros_like(s_HLSchannel)
s_binary[(s_HLSchannel >= s_thresh[0]) & (s_HLSchannel <= s_thresh[1])] = 1
l_HLSbinary = np.zeros_like(l_HLSchannel)
l_HLSbinary[(l_HLSchannel > l_thresh[0]) & (l_HLSchannel <= l_thresh[1])] = 1
####################################
# Convert to LAB color space and separate the channels
LAB = cv2.cvtColor(LAB_img, cv2.COLOR_RGB2LAB)
l_LABchannel = LAB[:,:,0]
b_LABchannel = LAB[:,:,2]
if np.max(b_LABchannel) > 175:
b_LABchannel = b_LABchannel*(255/np.max(b_LABchannel))
b_LABbinary = np.zeros_like(b_LABchannel)
b_LABbinary[((b_LABchannel > b_thresh[0]) & (b_LABchannel <= b_thresh[1]))] = 1
####################################
gray = cv2.cvtColor(Gray_image, cv2.COLOR_RGB2GRAY)
# Sobel x
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0) # Take the derivative in x
abs_sobelx = np.absolute(sobelx) # Absolute x derivative to accentuate lines away from horizontal
scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
# Threshold x gradient
sxbinary = np.zeros_like(scaled_sobel)
sxbinary[(scaled_sobel >= sx_thresh[0]) & (scaled_sobel <= sx_thresh[1])] = 1
####################################
# Combine the two binary thresholds
combined_binary = np.zeros_like(b_LABbinary)
combined_binary[(l_HLSbinary == 1) | (b_LABbinary == 1)] = 1
return combined_binary
def perspective_transform(img):
img_size =(img.shape[1], img.shape[0])
#define 4 source points src = np.float32([[,],[,],[,],[,]])
src = np.float32([[560,460],[715,460],[1150,720],[170,720]])
#define 4 destination points dst = np.float32([[,],[,],[,],[,]])
offset = 100
dst = np.float32([[offset, 0],
[img_size[0]-offset, 0],
[img_size[0]-offset, img_size[1]],
[offset, img_size[1]]])
#use cv2.getPerspectiveTransform() to get M, the transform matrix
M = cv2.getPerspectiveTransform(src, dst)
Minv = cv2.getPerspectiveTransform(dst, src)
#use cv2.warpPerspective() to warp your image to a top-down view
warped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_LINEAR)
return warped, M, Minv
def find_lane_pixels(top_view_binary):
# Take a histogram of the bottom half of the image
histogram = np.sum(top_view_binary[top_view_binary.shape[0]//2:,:], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((top_view_binary, top_view_binary, top_view_binary))
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]//2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# HYPERPARAMETERS
# Choose the number of sliding windows
nwindows = 10
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Set height of windows - based on nwindows above and image shape
window_height = np.int(top_view_binary.shape[0]//nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = top_view_binary.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated later for each window in nwindows
leftx_current = leftx_base
rightx_current = rightx_base
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = top_view_binary.shape[0] - (window+1)*window_height
win_y_high = top_view_binary.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img,(win_xleft_low,win_y_low),
(win_xleft_high,win_y_high),(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),
(win_xright_high,win_y_high),(0,255,0), 2)
# Identify the nonzero pixels in x and y within the window #
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices (previously was a list of lists of pixels)
try:
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
except ValueError:
# Avoids an error if the above is not implemented fully
pass
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
return leftx, lefty, rightx, righty, out_img
def fit_polynomial(top_view_binary):
#binary_warped = np.copy(top_view)
# Find our lane pixels first
leftx, lefty, rightx, righty, out_img = find_lane_pixels(top_view_binary)
# Fit a second order polynomial to each using `np.polyfit`
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, top_view_binary.shape[0]-1, top_view_binary.shape[0])
try:
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
except TypeError:
# Avoids an error if `left` and `right_fit` are still none or incorrect
print('The function failed to fit a line!')
left_fitx = 1*ploty**2 + 1*ploty
right_fitx = 1*ploty**2 + 1*ploty
## Visualization ##
# Colors in the left and right lane regions
out_img[lefty, leftx] = [255, 0, 0]
out_img[righty, rightx] = [0, 0, 255]
# Plots the left and right polynomials on the lane lines
#plt.plot(left_fitx, ploty, color='yellow')
#plt.plot(right_fitx, ploty, color='yellow')
return out_img, left_fit, right_fit, left_fitx, right_fitx
def measure_curvature(top_view_binary, left_fit, right_fit):
'''
Calculates the curvature of polynomial functions in meters.
'''
ploty = np.linspace(0, top_view_binary.shape[0]-1, top_view_binary.shape[0])
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# Define conversions in x and y from pixels space to meters
ym_per_pix = 3/100 #30/720 # meters per pixel in y dimension
xm_per_pix = 3.7/378 #3.7/700 # meters per pixel in x dimension
y_eval = np.max(ploty)
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(ploty*ym_per_pix, left_fitx*xm_per_pix, 2)
right_fit_cr = np.polyfit(ploty*ym_per_pix, right_fitx*xm_per_pix, 2)
# Calculate the new radii of curvature
left_curvature = ((1 + (2*left_fit_cr[0] *y_eval*ym_per_pix + left_fit_cr[1])**2) **1.5) / np.absolute(2*left_fit_cr[0])
right_curvature = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
# Calculate vehicle center
#left_lane and right lane bottom in pixels
left_lane_bottom = (left_fit[0]*y_eval)**2 + left_fit[0]*y_eval + left_fit[2]
right_lane_bottom = (right_fit[0]*y_eval)**2 + right_fit[0]*y_eval + right_fit[2]
# Lane center as mid of left and right lane bottom
lane_center = (left_lane_bottom + right_lane_bottom)/2.
center_image = 640
center = (lane_center - center_image)*xm_per_pix #Convert to meters
position = "left" if center < 0 else "right"
center = "Vehicle is {:.2f}m {}".format(center, position)
radius = 'Radius of curvature: {} m'.format(int(np.average([left_curvature, right_curvature])))
# Now our radius of curvature is in meters
return radius, center
def draw_text(img, text, x, y):
return cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_DUPLEX, 1.2, (255, 255, 255), 2)
def plot_lane_on_image(undistorted_img, top_view_binary, left_fitx, right_fitx, Minv):
# Create an image to draw the lines on
warp_zero = np.zeros_like(top_view_binary).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
ploty = np.linspace(0, top_view_binary.shape[0]-1, top_view_binary.shape[0])
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, Minv, (top_view_binary.shape[1], top_view_binary.shape[0]))
# Combine the result with the original image
result = cv2.addWeighted(undistorted_img, 1, newwarp, 0.3, 0)
# plt.imshow(result)
# plt.show()
return result