-
Notifications
You must be signed in to change notification settings - Fork 3
/
matmef_write.c
471 lines (370 loc) · 20.7 KB
/
matmef_write.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
/**
* @file
* MEF 3.0 Library Matlab Wrapper
* Functions to write data to MEF3 files
*
* Copyright 2022, Max van den Boom (Multimodal Neuroimaging Lab, Mayo Clinic, Rochester MN)
* Adapted from PyMef (by Jan Cimbalnik, Matt Stead, Ben Brinkmann, and Dan Crepeau)
*
*
* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "matmef_write.h"
#include "mex.h"
#include "meflib/meflib/meflib.c"
#include "meflib/meflib/mefrec.c"
#include "matmef_utils.h"
#include "matmef_mapping.h"
/**
* Write time-series or video metadata to a segment directory
*
* @param segment_path The path to the segment directory
* @param password_l1 Level 1 password for the metadata (no password = NULL)
* @param password_l2 Level 2 password for the metadata (no password = NULL)
* @param start_time The start epoch time in microseconds (μUTC format) to be stored in the universal-header of the file
* @param end_time The end epoch time in microseconds (μUTC format) to be stored in the universal-header of the file
* @param anonymized_name The anonymized subject name to be stored in the universal-header of the file
* @param channel_type The type of channel [either TIME_SERIES_CHANNEL_TYPE or VIDEO_CHANNEL_TYPE]
* @param mat_md2 Pointer to a matlab-struct (mxArray) with either time-series or video section 2 metadata
* @param mat_md3 Pointer to a matlab-struct (mxArray) with the section 3 metadata
* @return True if succesfully written, or False on failure
*/
bool write_metadata(si1 *segment_path, si1 *password_l1, si1 *password_l2, si8 start_time, si8 end_time, si1 *anonymized_name, si4 channel_type, mxArray *mat_md2, mxArray *mat_md3) {
FILE_PROCESSING_STRUCT *gen_fps, *metadata_fps;
UNIVERSAL_HEADER *uh;
// if the password is just the null character, then correct to a null pointer
if (password_l1 != NULL && password_l1[0] == '\0') password_l1 = NULL;
if (password_l2 != NULL && password_l2[0] == '\0') password_l2 = NULL;
// initialize MEF library
(void) initialize_meflib();
MEF_globals->behavior_on_fail = SUPPRESS_ERROR_OUTPUT;
// set up a generic mef3 fps (is used later to base the time-series metadata fps on)
gen_fps = allocate_file_processing_struct(UNIVERSAL_HEADER_BYTES, NO_FILE_TYPE_CODE, NULL, NULL, 0);
initialize_universal_header(gen_fps, MEF_TRUE, MEF_FALSE, MEF_TRUE);
uh = gen_fps->universal_header;
// transfer the start-time, end-time and anonymized name from the arguments to the universal header
uh->start_time = start_time;
uh->end_time = end_time;
MEF_strncpy(uh->anonymized_name, anonymized_name, UNIVERSAL_HEADER_ANONYMIZED_NAME_BYTES);
// set the password data
MEF_globals->behavior_on_fail = SUPPRESS_ERROR_OUTPUT;
gen_fps->password_data = process_password_data(NULL, password_l1, password_l2, uh);
MEF_globals->behavior_on_fail = EXIT_ON_FAIL;
//
si1 path_in[MEF_FULL_FILE_NAME_BYTES], path_out[MEF_FULL_FILE_NAME_BYTES], name[MEF_BASE_FILE_NAME_BYTES], type[TYPE_BYTES];
si1 file_path[MEF_FULL_FILE_NAME_BYTES], segment_name[MEF_BASE_FILE_NAME_BYTES];
// extract the segment name and check the type (if indeed segment)
extract_path_parts(segment_path, path_out, name, type);
MEF_strncpy(file_path, segment_path, MEF_FULL_FILE_NAME_BYTES);
if (!strcmp(type, SEGMENT_DIRECTORY_TYPE_STRING)) {
// segment type/directory
// extract segment number from the segment name
uh->segment_number = extract_segment_number(&name[0]);
// copy the segment name for file name construction
MEF_strncpy(segment_name, name, MEF_BASE_FILE_NAME_BYTES);
// extract the channel name and check the type (if indeed time-series)
MEF_strncpy(path_in, path_out, MEF_FULL_FILE_NAME_BYTES);
extract_path_parts(path_in, path_out, name, type);
bool valid_type = (channel_type == TIME_SERIES_CHANNEL_TYPE && !strcmp(type, TIME_SERIES_CHANNEL_DIRECTORY_TYPE_STRING)) ||
(channel_type == VIDEO_CHANNEL_TYPE && !strcmp(type, VIDEO_CHANNEL_DIRECTORY_TYPE_STRING));
if (valid_type) {
// Correct/corresponding directory-type
// set the channel name in the universal header
MEF_strncpy(uh->channel_name, name, MEF_BASE_FILE_NAME_BYTES);
// extract the session name
MEF_strncpy(path_in, path_out, MEF_FULL_FILE_NAME_BYTES);
extract_path_parts(path_in, path_out, name, type);
// set the session name in the universal header
MEF_strncpy(uh->session_name, name, MEF_BASE_FILE_NAME_BYTES);
} else {
// incorrect directory-type
if (channel_type == TIME_SERIES_CHANNEL_TYPE) mexPrintf("Error: Not a time-series channel, exiting...\n");
if (channel_type == VIDEO_CHANNEL_TYPE) mexPrintf("Error: Not a video channel, exiting...\n");
return false;
}
} else {
// not segment type/directory
mexPrintf("Error: Not a segment, exiting...\n");
return false;
}
// generate level UUID into generic universal_header
generate_UUID(gen_fps->universal_header->level_UUID);
// set up mef3 metadata file
if (channel_type == TIME_SERIES_CHANNEL_TYPE) {
metadata_fps = allocate_file_processing_struct(METADATA_FILE_BYTES, TIME_SERIES_METADATA_FILE_TYPE_CODE, NULL, gen_fps, UNIVERSAL_HEADER_BYTES);
MEF_snprintf(metadata_fps->full_file_name, MEF_FULL_FILE_NAME_BYTES, "%s/%s.%s", file_path, segment_name, TIME_SERIES_METADATA_FILE_TYPE_STRING);
} else {
metadata_fps = allocate_file_processing_struct(METADATA_FILE_BYTES, VIDEO_METADATA_FILE_TYPE_CODE, NULL, gen_fps, UNIVERSAL_HEADER_BYTES);
MEF_snprintf(metadata_fps->full_file_name, MEF_FULL_FILE_NAME_BYTES, "%s/%s.%s", file_path, segment_name, VIDEO_METADATA_FILE_TYPE_STRING);
}
uh = metadata_fps->universal_header;
generate_UUID(uh->file_UUID);
uh->number_of_entries = 1;
uh->maximum_entry_size = METADATA_FILE_BYTES;
initialize_metadata(metadata_fps);
metadata_fps->metadata.section_1->section_2_encryption = LEVEL_1_ENCRYPTION_DECRYPTED;
metadata_fps->metadata.section_1->section_3_encryption = LEVEL_2_ENCRYPTION_DECRYPTED;
// transfer the section 2 metadata from the matlab struct to the metadata file
if (channel_type == TIME_SERIES_CHANNEL_TYPE) {
// time-series type
if (!map_matlab_tmd2(mat_md2, metadata_fps->metadata.time_series_section_2)) {
mexPrintf("Error: could not map the time-series section 2 metadata from the matlab struct, exiting...\n");
free_file_processing_struct(metadata_fps);
free_file_processing_struct(gen_fps);
return false;
}
} else {
// video type
if (!map_matlab_vmd2(mat_md2, metadata_fps->metadata.video_section_2)) {
mexPrintf("Error: could not map the video section 2 metadata from the matlab struct, exiting...\n");
free_file_processing_struct(metadata_fps);
free_file_processing_struct(gen_fps);
return false;
}
}
// transfer the section 3 metadata from the matlab struct to the metadata file
if (!map_matlab_md3(mat_md3, metadata_fps->metadata.section_3)) {
// upon error
mexPrintf("Error: could not map the section 3 metadata from the matlab struct, exiting...\n");
free_file_processing_struct(metadata_fps);
free_file_processing_struct(gen_fps);
return false;
}
// Assign recording_time_offset
MEF_globals->recording_time_offset = metadata_fps->metadata.section_3->recording_time_offset;
// write the metadata
write_MEF_file(metadata_fps);
// clean up
free_file_processing_struct(metadata_fps);
free_file_processing_struct(gen_fps);
// return succes
return true;
}
/**
* Write time-series data (.tdat & .tidx files) to a segment directory.
*
* Note: This function requires that a time-series metadata file (.tmet) is already written for the
* specified segment. The universal-header data of the metadata file (.tmet) will be the base for
* universal-headers of the data files (.tdat & tidx). In addition, universal header fields in the
* metadata file (.tmet) will be updated according to the data that is passed to this function
*
* @param segment_path The path to the segment directory
* @param password_l1 Level 1 password for the data (no password = NULL)
* @param password_l2 Level 2 password for the data (no password = NULL)
* @param samples_per_block Number of samples per MEF3 block
* @param data The data to write as a 1-D array of data-type int32
* @return True if succesfully written, or False on failure
*/
bool write_mef_ts_data_and_indices(si1 *segment_path, si1 *password_l1, si1 *password_l2, ui4 samples_per_block, const mxArray *data, bool lossy_flag) {
PASSWORD_DATA *pwd;
UNIVERSAL_HEADER *ts_data_uh;
FILE_PROCESSING_STRUCT *gen_fps, *metadata_fps;
TIME_SERIES_INDEX *tsi;
RED_PROCESSING_STRUCT *rps;
RED_BLOCK_HEADER *block_header;
si1 path_in[MEF_FULL_FILE_NAME_BYTES], path_out[MEF_FULL_FILE_NAME_BYTES], name[MEF_BASE_FILE_NAME_BYTES], type[TYPE_BYTES];
si1 full_file_name[MEF_FULL_FILE_NAME_BYTES], file_path[MEF_FULL_FILE_NAME_BYTES], segment_name[MEF_BASE_FILE_NAME_BYTES];
si4 max_samp, min_samp;
ui4 block_samps;
si8 start_sample, samps_remaining, file_offset;
si8 curr_time, time_inc;
//
//
//
// if the password is just the null character, then correct to a null pointer
if (password_l1 != NULL && password_l1[0] == '\0') password_l1 = NULL;
if (password_l2 != NULL && password_l2[0] == '\0') password_l2 = NULL;
//// check the data type
if (mxGetClassID(data) != mxINT32_CLASS) {
mexPrintf("Error: Incorrect data-type, should be int32, exiting...\n");
return false;
}
// create a pointer to the data
si4 *pData = (si4 *)mxGetData(data);
// initialize MEF library
(void) initialize_meflib();
MEF_globals->behavior_on_fail = SUPPRESS_ERROR_OUTPUT;
// set up a generic mef3 fps and process the password data with it
gen_fps = allocate_file_processing_struct(UNIVERSAL_HEADER_BYTES, NO_FILE_TYPE_CODE, NULL, NULL, 0);
initialize_universal_header(gen_fps, MEF_TRUE, MEF_FALSE, MEF_TRUE);
MEF_globals->behavior_on_fail = SUPPRESS_ERROR_OUTPUT;
pwd = process_password_data(NULL, password_l1, password_l2, gen_fps->universal_header);
MEF_globals->behavior_on_fail = EXIT_ON_FAIL;
// extract the segment name and check the directory-type (if indeed segment)
extract_path_parts(segment_path, path_out, name, type);
MEF_strncpy(file_path, segment_path, MEF_FULL_FILE_NAME_BYTES);
if (!strcmp(type, SEGMENT_DIRECTORY_TYPE_STRING)) {
// segment type/directory
// copy the segment name for file name construction later
MEF_strncpy(segment_name, name, MEF_BASE_FILE_NAME_BYTES);
// extract the channel name and check the type (if indeed time-series)
MEF_strncpy(path_in, path_out, MEF_FULL_FILE_NAME_BYTES);
extract_path_parts(path_in, path_out, name, type);
if (!strcmp(type, TIME_SERIES_CHANNEL_DIRECTORY_TYPE_STRING)) {
// correct/corresponding directory-type
// extract the session name
MEF_strncpy(path_in, path_out, MEF_FULL_FILE_NAME_BYTES);
extract_path_parts(path_in, path_out, name, type);
} else {
// incorrect directory-type
mexPrintf("Error: Not a time-series channel, exiting...\n");
return false;
}
} else {
// not segment type/directory
mexPrintf("Error: Not a segment, exiting...\n");
return false;
}
//
// Read the existing time-series metadata file
//
// Note: the start_time in the universal header struct does not match the binary start_time because
// the meflib read_MEF_file function does operations that offset the universal-header
//
MEF_snprintf(full_file_name, MEF_FULL_FILE_NAME_BYTES, "%s/%s.%s", file_path, segment_name, TIME_SERIES_METADATA_FILE_TYPE_STRING);
metadata_fps = read_MEF_file(NULL, full_file_name, password_l1, pwd, NULL, USE_GLOBAL_BEHAVIOR);
//
MEF_globals->recording_time_offset = metadata_fps->metadata.section_3->recording_time_offset;
//
// Point to and update the time-series section 2 of the metadata struct (from the .tmet file)
//
// The fields in this section 2 struct will be updated her and later to reflect the
// data (that we will be writing), in the end the updated metadata will be written (to the .tmet file)
//
//
// create a pointer to the existing time-series section 2 metadata (from the .tmet file)
TIME_SERIES_METADATA_SECTION_2 *tmd2 = metadata_fps->metadata.time_series_section_2;
// update fields in the time-series section 2 metadata based on the data (to be written)
const mwSize *dims = mxGetDimensions(data);
tmd2->number_of_samples = (si8) dims[0];
tmd2->recording_duration = (si8) (((sf8)tmd2->number_of_samples / (sf8) tmd2->sampling_frequency) * 1e6);
tmd2->number_of_blocks = (si8) ceil((sf8) tmd2->number_of_samples / (sf8)samples_per_block);
tmd2->maximum_block_samples = samples_per_block;
//
// Set up a file-processing-struct and universal-header for the time-series indices (file)
//
// allocate a fps and univeral header for the ts-indices (file), based on the ts-metadata (copying the directives, password data, and raw data)
si8 ts_indices_file_bytes = (tmd2->number_of_blocks * TIME_SERIES_INDEX_BYTES) + UNIVERSAL_HEADER_BYTES;
FILE_PROCESSING_STRUCT *ts_idx_fps = allocate_file_processing_struct(ts_indices_file_bytes, TIME_SERIES_INDICES_FILE_TYPE_CODE, NULL, metadata_fps, UNIVERSAL_HEADER_BYTES);
MEF_snprintf(ts_idx_fps->full_file_name, MEF_FULL_FILE_NAME_BYTES, "%s/%s.%s", file_path, segment_name, TIME_SERIES_INDICES_FILE_TYPE_STRING);
// generate a uuid and set some of the index entries fields
generate_UUID(ts_idx_fps->universal_header->file_UUID);
ts_idx_fps->universal_header->number_of_entries = tmd2->number_of_blocks;
ts_idx_fps->universal_header->maximum_entry_size = TIME_SERIES_INDEX_BYTES;
//
// Set up a file-processing-struct and universal-header for the time-series data and write to a file
//
// allocate a fps and univeral header for the ts-data, based on the ts-metadata (copying the directives, password data, and raw data, including start_)
FILE_PROCESSING_STRUCT *ts_data_fps = allocate_file_processing_struct(UNIVERSAL_HEADER_BYTES + RED_MAX_COMPRESSED_BYTES(samples_per_block, 1), TIME_SERIES_DATA_FILE_TYPE_CODE, NULL, metadata_fps, UNIVERSAL_HEADER_BYTES);
MEF_snprintf(ts_data_fps->full_file_name, MEF_FULL_FILE_NAME_BYTES, "%s/%s.%s", file_path, segment_name, TIME_SERIES_DATA_FILE_TYPE_STRING);
// pointer to the universal-header of the time-series data (file)
ts_data_uh = ts_data_fps->universal_header;
// generate/update the ts-data file uuid and set some of the index entries fields
generate_UUID(ts_data_uh->file_UUID);
ts_data_uh->number_of_entries = tmd2->number_of_blocks;
ts_data_uh->maximum_entry_size = samples_per_block;
// write the universal header of the ts-data file
ts_data_fps->directives.io_bytes = UNIVERSAL_HEADER_BYTES;
ts_data_fps->directives.close_file = MEF_FALSE;
write_MEF_file(ts_data_fps);
//
//
//
// TODO optional filtration
// use allocation below if lossy
if (lossy_flag == 1) {
rps = RED_allocate_processing_struct(samples_per_block, 0, samples_per_block, RED_MAX_DIFFERENCE_BYTES(samples_per_block), samples_per_block, samples_per_block, pwd);
// ASK RED lossy compression user specified???
rps->compression.mode = RED_MEAN_RESIDUAL_RATIO;
rps->directives.detrend_data = MEF_TRUE;
rps->directives.require_normality = MEF_TRUE;
rps->compression.goal_mean_residual_ratio = 0.10;
rps->compression.goal_tolerance = 0.01;
} else {
rps = RED_allocate_processing_struct(samples_per_block, 0, 0, RED_MAX_DIFFERENCE_BYTES(samples_per_block), 0, 0, pwd);
}
rps->block_header = (RED_BLOCK_HEADER *) (rps->compressed_data = ts_data_fps->RED_blocks);
// create new RED blocks
curr_time = metadata_fps->universal_header->start_time;
time_inc = (si8) (((sf8) samples_per_block / tmd2->sampling_frequency) * (sf8) 1e6);
samps_remaining = tmd2->number_of_samples;
block_header = rps->block_header;
tsi = ts_idx_fps->time_series_indices;
min_samp = RED_POSITIVE_INFINITY;
max_samp = RED_NEGATIVE_INFINITY;
block_samps = samples_per_block;
file_offset = UNIVERSAL_HEADER_BYTES;
start_sample = 0;
// Write the data and update the metadata
while (samps_remaining) {
// check
if (samps_remaining < block_samps)
block_samps = (ui4) samps_remaining;
block_header->number_of_samples = block_samps;
block_header->start_time = (si8) (curr_time + 0.5); // ASK Why 0.5 here?
curr_time += time_inc;
rps->original_data = rps->original_ptr = (si4 *)pData + (tmd2->number_of_samples - samps_remaining);
// filter - comment out if don't want
// filtps->data_length = block_samps;
// RED_filter(filtps);
samps_remaining -= (si8) block_samps;
// compress
(void) RED_encode(rps);
ts_data_fps->universal_header->body_CRC = CRC_update((ui1 *) block_header, block_header->block_bytes, ts_data_fps->universal_header->body_CRC);
e_fwrite((void *) block_header, sizeof(ui1), block_header->block_bytes, ts_data_fps->fp, ts_data_fps->full_file_name, __FUNCTION__, __LINE__, EXIT_ON_FAIL);
// time series indices
tsi->file_offset = file_offset;
file_offset += (tsi->block_bytes = block_header->block_bytes);
tsi->start_time = block_header->start_time;
tsi->start_sample = start_sample;
start_sample += (tsi->number_of_samples = (si8) block_samps);
RED_find_extrema(rps->original_ptr, block_samps, tsi);
if (max_samp < tsi->maximum_sample_value)
max_samp = tsi->maximum_sample_value;
if (min_samp > tsi->minimum_sample_value)
min_samp = tsi->minimum_sample_value;
tsi->RED_block_flags = block_header->flags;
++tsi;
// update metadata
if (tmd2->maximum_block_bytes < block_header->block_bytes)
tmd2->maximum_block_bytes = block_header->block_bytes;
if (tmd2->maximum_difference_bytes < block_header->difference_bytes)
tmd2->maximum_difference_bytes = block_header->difference_bytes;
}
// update metadata
tmd2->maximum_contiguous_block_bytes = file_offset - UNIVERSAL_HEADER_BYTES;
if (tmd2->units_conversion_factor >= 0.0) {
tmd2->maximum_native_sample_value = (sf8) max_samp * tmd2->units_conversion_factor;
tmd2->minimum_native_sample_value = (sf8) min_samp * tmd2->units_conversion_factor;
} else {
tmd2->maximum_native_sample_value = (sf8) min_samp * tmd2->units_conversion_factor;
tmd2->minimum_native_sample_value = (sf8) max_samp * tmd2->units_conversion_factor;
}
tmd2->maximum_contiguous_blocks = tmd2->number_of_blocks;
// calculate the CRC for the time-series data-file and set in the universal header
ts_data_fps->universal_header->header_CRC = CRC_calculate(ts_data_fps->raw_data + CRC_BYTES, UNIVERSAL_HEADER_BYTES - CRC_BYTES);
// re-write the universal header of the ts-data file (which now includes the CRC) and manually close (since directives.close_file was set to off for this file)
e_fseek(ts_data_fps->fp, 0, SEEK_SET, ts_data_fps->full_file_name, __FUNCTION__, __LINE__, MEF_globals->behavior_on_fail);
e_fwrite(ts_data_uh, sizeof(ui1), UNIVERSAL_HEADER_BYTES, ts_data_fps->fp, ts_data_fps->full_file_name, __FUNCTION__, __LINE__, MEF_globals->behavior_on_fail);
fclose(ts_data_fps->fp);
// write/update the time-series metadata file
write_MEF_file(metadata_fps);
// write time-series indices (file)
write_MEF_file(ts_idx_fps);
// clean up
free_file_processing_struct(metadata_fps);
free_file_processing_struct(ts_data_fps);
free_file_processing_struct(ts_idx_fps);
free_file_processing_struct(gen_fps);
rps->block_header = NULL;
rps->compressed_data = NULL;
rps->original_data = NULL;
rps->original_ptr = NULL;
RED_free_processing_struct(rps);
// return succes
return true;
}