-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
83 lines (70 loc) · 3.67 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import pathlib
import os
import tensorflow as tf
import librosa
from tqdm import tqdm
import argparse
import numpy as np
def load_data(dataset_folder, window_length=16384):
data_dir = pathlib.Path(dataset_folder)
_, ext = os.path.splitext(os.listdir(data_dir)[3])
paths = list(data_dir.glob("*" + ext))
x = [] # 18000, 16384, 1
for path in tqdm(paths):
raw_audio = tf.io.read_file(str(path))
audio_sample = tf.audio.decode_wav(raw_audio, desired_samples=window_length)
wav = audio_sample[0]# [1] contains sample freq
x.append(tf.expand_dims(wav, 0))
return tf.concat(x, axis=0)
def concat_piano(dataset_folder, fs=16000, window_length=16384):
data_dir = pathlib.Path(dataset_folder)
_, ext = os.path.splitext(os.listdir(data_dir)[3])
paths = list(data_dir.glob("*" + ext))
x = [] # 18000, 16384, 1
for path in tqdm(paths):
raw_audio = tf.io.read_file(str(path))
audio_sample = librosa.load(str(path), sr=fs)
audio_sample = audio_sample[0]
if tf.keras.backend.max(tf.abs(audio_sample)) > 1:
audio_sample /= tf.keras.backend.max(tf.abs(audio_sample))
x.append(audio_sample)
return tf.concat(x, axis=0)
def piano_generator(wav_file, batch_size, window_length=16384):
raw_audio = tf.io.read_file(wav_file)
audio_sample = tf.audio.decode_wav(raw_audio)[0]
audio_length = audio_sample.shape[0]
while True:
starts = tf.random.uniform([batch_size], minval=0, maxval=audio_length - window_length + 1, dtype=tf.int32)
x = []
for i in starts:
x.append(tf.expand_dims(audio_sample[i:i + window_length], 0))
yield tf.concat(x, axis=0)
def create_npy_from_wav(wav_file, stride=16384//2, window_length=16384):
raw_audio = tf.io.read_file(wav_file)
audio_sample = tf.audio.decode_wav(raw_audio)[0]
audio_length = audio_sample.shape[0]
start = 0
x = []
for start in tqdm(range(0, audio_length - window_length, stride)):
x.append(tf.expand_dims(audio_sample[start:start + window_length], axis=0))
return tf.concat(x, axis=0)
ap = argparse.ArgumentParser()
ap.add_argument("-create_piano_wav", "--create_piano_wav", required=False, action="store_true", help="Generates a wav file with the concatenation of all piano files in train")
ap.add_argument("-create_piano_npy", "--create_piano_npy", required=False, action="store_true", help="Generates a npy with windows of piano sounds of window length 16384")
ap.add_argument("-create_cat_npy", "--create_cat_npy", required=False, action="store_true", help="Generates a npy with windows of piano sounds of window length 16384")
ap.add_argument("-create_sc09_npy", "--create_sc09_npy", required=False, action="store_true", help="Generates a npy file with all the 1 second spoken utterances from sc09")
ap.add_argument("-path", "--path", required=True, help="Path to the folder")
ap.add_argument("-output_path", "--output_path", required=True, help="Where to store the output.")
args = vars(ap.parse_args())
if args['create_piano_wav']:
piano = concat_piano(args['path'])
string = tf.audio.encode_wav(tf.expand_dims(piano, 1), 16000)
tf.io.write_file(args['output_path'], string)
elif args['create_piano_npy']:
np.save(args['output_path'], create_npy_from_wav(args["path"], 16384 // 16))
elif args['create_cat_npy']:
np.save(args['output_path'], create_npy_from_wav(args["path"], 16384 // 16))
elif args['create_sc09_npy']:
np.save(args['output_path'], load_data(args['output_path']))
else:
print("Please give an argument: -create_piano_wav, -create_piano_npy or -create_sc09_npy")