-
Notifications
You must be signed in to change notification settings - Fork 52
/
stgcn.py
219 lines (183 loc) · 7.78 KB
/
stgcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
import torch.nn as nn
import torch.nn.functional as F
from .stgcnutils.tgcn import ConvTemporalGraphical
from .stgcnutils.graph import Graph
__all__ = ["STGCN"]
class STGCN(nn.Module):
r"""Spatial temporal graph convolutional networks.
Args:
in_channels (int): Number of channels in the input data
num_class (int): Number of classes for the classification task
graph_args (dict): The arguments for building the graph
edge_importance_weighting (bool): If ``True``, adds a learnable
importance weighting to the edges of the graph
**kwargs (optional): Other parameters for graph convolution units
Shape:
- Input: :math:`(N, in_channels, T_{in}, V_{in}, M_{in})`
- Output: :math:`(N, num_class)` where
:math:`N` is a batch size,
:math:`T_{in}` is a length of input sequence,
:math:`V_{in}` is the number of graph nodes,
:math:`M_{in}` is the number of instance in a frame.
"""
def __init__(self, in_channels, num_class, graph_args,
edge_importance_weighting, device, **kwargs):
super().__init__()
self.device = device
self.num_class = num_class
self.losses = ["accuracy", "cross_entropy", "mixed"]
self.criterion = torch.nn.CrossEntropyLoss(reduction='mean')
# load graph
self.graph = Graph(**graph_args)
A = torch.tensor(self.graph.A, dtype=torch.float32, requires_grad=False)
self.register_buffer('A', A)
# build networks
spatial_kernel_size = A.size(0)
temporal_kernel_size = 9
kernel_size = (temporal_kernel_size, spatial_kernel_size)
self.data_bn = nn.BatchNorm1d(in_channels * A.size(1))
kwargs0 = {k: v for k, v in kwargs.items() if k != 'dropout'}
self.st_gcn_networks = nn.ModuleList((
st_gcn(in_channels, 64, kernel_size, 1, residual=False, **kwargs0),
st_gcn(64, 64, kernel_size, 1, **kwargs),
st_gcn(64, 64, kernel_size, 1, **kwargs),
st_gcn(64, 64, kernel_size, 1, **kwargs),
st_gcn(64, 128, kernel_size, 2, **kwargs),
st_gcn(128, 128, kernel_size, 1, **kwargs),
st_gcn(128, 128, kernel_size, 1, **kwargs),
st_gcn(128, 256, kernel_size, 2, **kwargs),
st_gcn(256, 256, kernel_size, 1, **kwargs),
st_gcn(256, 256, kernel_size, 1, **kwargs),
))
# initialize parameters for edge importance weighting
if edge_importance_weighting:
self.edge_importance = nn.ParameterList([
nn.Parameter(torch.ones(self.A.size()))
for i in self.st_gcn_networks
])
else:
self.edge_importance = [1] * len(self.st_gcn_networks)
# fcn for prediction
self.fcn = nn.Conv2d(256, num_class, kernel_size=1)
def forward(self, batch):
# TODO: use mask
# Received batch["x"] as
# Batch(48), Joints(23), Quat(4), Time(157
# Expecting:
# Batch, Quat:4, Time, Joints, 1
x = batch["x"].permute(0, 2, 3, 1).unsqueeze(4).contiguous()
# data normalization
N, C, T, V, M = x.size()
x = x.permute(0, 4, 3, 1, 2).contiguous()
x = x.view(N * M, V * C, T)
x = self.data_bn(x)
x = x.view(N, M, V, C, T)
x = x.permute(0, 1, 3, 4, 2).contiguous()
x = x.view(N * M, C, T, V)
# forward
for gcn, importance in zip(self.st_gcn_networks, self.edge_importance):
x, _ = gcn(x, self.A * importance)
# compute feature
# _, c, t, v = x.size()
# features = x.view(N, M, c, t, v).permute(0, 2, 3, 4, 1)
# batch["features"] = features
# global pooling
x = F.avg_pool2d(x, x.size()[2:])
x = x.view(N, M, -1, 1, 1).mean(dim=1)
# features
batch["features"] = x.squeeze()
# prediction
x = self.fcn(x)
x = x.view(x.size(0), -1)
batch["yhat"] = x
return batch
def compute_accuracy(self, batch):
confusion = torch.zeros(self.num_class, self.num_class, dtype=int)
yhat = batch["yhat"].max(dim=1).indices
ygt = batch["y"]
for label, pred in zip(ygt, yhat):
confusion[label][pred] += 1
accuracy = torch.trace(confusion)/torch.sum(confusion)
return accuracy
def compute_loss(self, batch):
cross_entropy = self.criterion(batch["yhat"], batch["y"])
mixed_loss = cross_entropy
acc = self.compute_accuracy(batch)
losses = {"cross_entropy": cross_entropy.item(),
"mixed": mixed_loss.item(),
"accuracy": acc.item()}
return mixed_loss, losses
class st_gcn(nn.Module):
r"""Applies a spatial temporal graph convolution over an input graph sequence.
Args:
in_channels (int): Number of channels in the input sequence data
out_channels (int): Number of channels produced by the convolution
kernel_size (tuple): Size of the temporal convolving kernel and graph convolving kernel
stride (int, optional): Stride of the temporal convolution. Default: 1
dropout (int, optional): Dropout rate of the final output. Default: 0
residual (bool, optional): If ``True``, applies a residual mechanism. Default: ``True``
Shape:
- Input[0]: Input graph sequence in :math:`(N, in_channels, T_{in}, V)` format
- Input[1]: Input graph adjacency matrix in :math:`(K, V, V)` format
- Output[0]: Outpu graph sequence in :math:`(N, out_channels, T_{out}, V)` format
- Output[1]: Graph adjacency matrix for output data in :math:`(K, V, V)` format
where
:math:`N` is a batch size,
:math:`K` is the spatial kernel size, as :math:`K == kernel_size[1]`,
:math:`T_{in}/T_{out}` is a length of input/output sequence,
:math:`V` is the number of graph nodes.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
dropout=0,
residual=True):
super().__init__()
assert len(kernel_size) == 2
assert kernel_size[0] % 2 == 1
padding = ((kernel_size[0] - 1) // 2, 0)
self.gcn = ConvTemporalGraphical(in_channels, out_channels,
kernel_size[1])
self.tcn = nn.Sequential(
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(
out_channels,
out_channels,
(kernel_size[0], 1),
(stride, 1),
padding,
),
nn.BatchNorm2d(out_channels),
nn.Dropout(dropout, inplace=True),
)
if not residual:
self.residual = lambda x: 0
elif (in_channels == out_channels) and (stride == 1):
self.residual = lambda x: x
else:
self.residual = nn.Sequential(
nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=(stride, 1)),
nn.BatchNorm2d(out_channels),
)
self.relu = nn.ReLU(inplace=True)
def forward(self, x, A):
res = self.residual(x)
x, A = self.gcn(x, A)
x = self.tcn(x) + res
return self.relu(x), A
if __name__ == "__main__":
model = STGCN(in_channels=3, num_class=60, edge_importance_weighting=True, graph_args={"layout": "smpl_noglobal", "strategy": "spatial"})
# Batch, in_channels, time, vertices, M
inp = torch.rand(10, 3, 16, 23, 1)
out = model(inp)
print(out.shape)
import pdb
pdb.set_trace()