forked from chenxin-dlut/TransT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visdom.py
executable file
·428 lines (329 loc) · 15.8 KB
/
visdom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import visdom
import visdom.server
from pytracking.features.preprocessing import numpy_to_torch
from pytracking.utils.plotting import show_image_with_boxes, overlay_mask
import cv2
import torch
import copy
import numpy as np
from collections import OrderedDict
class VisBase:
def __init__(self, visdom, show_data, title):
self.visdom = visdom
self.show_data = show_data
self.title = title
self.raw_data = None
def update(self, data, **kwargs):
self.save_data(data, **kwargs)
if self.show_data:
self.draw_data()
def save_data(self, data, **kwargs):
raise NotImplementedError
def draw_data(self):
raise NotImplementedError
def toggle_display(self, new_mode=None):
if new_mode is not None:
self.show_data = new_mode
else:
self.show_data = not self.show_data
if self.show_data:
self.draw_data()
else:
self.visdom.close(self.title)
class VisImage(VisBase):
def __init__(self, visdom, show_data, title):
super().__init__(visdom, show_data, title)
def save_data(self, data):
data = data.float()
self.raw_data = data
def draw_data(self):
self.visdom.image(self.raw_data.clone(), opts={'title': self.title}, win=self.title)
class VisHeatmap(VisBase):
def __init__(self, visdom, show_data, title):
super().__init__(visdom, show_data, title)
def save_data(self, data):
data = data.squeeze().flip(0)
self.raw_data = data
def draw_data(self):
self.visdom.heatmap(self.raw_data.clone(), opts={'title': self.title}, win=self.title)
class VisFeaturemap(VisBase):
def __init__(self, visdom, show_data, title):
super().__init__(visdom, show_data, title)
self.block_list = None
def block_list_callback_handler(self, data):
self.block_list[data['propertyId']]['value'] = data['value']
self.visdom.properties(self.block_list, opts={'title': 'Featuremap UI'}, win='featuremap_ui')
self.draw_data()
def save_data(self, data):
data = data.view(-1, *data.shape[-2:])
data = data.flip(1)
if self.block_list is None:
self.block_list = []
self.draw_feat = []
for i in range(data.shape[0]):
self.block_list.append({'type': 'checkbox', 'name': 'Channel {:04d}'.format(i), 'value': False})
self.visdom.properties(self.block_list, opts={'title': 'Featuremap UI'}, win='featuremap_ui')
self.visdom.register_event_handler(self.block_list_callback_handler, 'featuremap_ui')
self.raw_data = data
def draw_data(self):
if self.block_list is not None and self.show_data:
for i, d in enumerate(self.block_list):
if d['value']:
fig_title = '{} ch: {:04d}'.format(self.title, i)
self.visdom.heatmap(self.raw_data[i, :, :].clone(),
opts={'title': fig_title}, win=fig_title)
class VisCostVolume(VisBase):
def __init__(self, visdom, show_data, title, flip=False):
super().__init__(visdom, show_data, title)
self.show_slice = False
self.slice_pos = None
self.flip = flip
def show_cost_volume(self):
data = self.raw_data.clone()
# data_perm = data.permute(2, 0, 3, 1).contiguous()
data_perm = data.permute(0, 2, 1, 3).contiguous()
if self.flip:
data_perm = data_perm.permute(2, 3, 0, 1).contiguous()
data_perm = data_perm.view(data_perm.shape[0] * data_perm.shape[1], -1)
self.visdom.heatmap(data_perm.flip(0), opts={'title': self.title}, win=self.title)
def set_zoom_pos(self, slice_pos):
self.slice_pos = slice_pos
def toggle_show_slice(self, new_mode=None):
if new_mode is not None:
self.show_slice = new_mode
else:
self.show_slice = not self.show_slice
def show_cost_volume_slice(self):
slice_pos = self.slice_pos
# slice_pos: [row, col]
cost_volume_data = self.raw_data.clone()
if self.flip:
cost_volume_slice = cost_volume_data[:, :, slice_pos[0], slice_pos[1]]
else:
cost_volume_slice = cost_volume_data[slice_pos[0], slice_pos[1], :, :]
self.visdom.heatmap(cost_volume_slice.flip(0), opts={'title': self.title}, win=self.title)
def save_data(self, data):
data = data.view(data.shape[-2], data.shape[-1], data.shape[-2], data.shape[-1])
self.raw_data = data
def draw_data(self):
if self.show_slice:
self.show_cost_volume_slice()
else:
self.show_cost_volume()
class VisCostVolumeUI(VisBase):
def cv_ui_handler(self, data):
zoom_toggled = False
if data['event_type'] == 'KeyPress':
if data['key'] == 'ArrowRight':
self.zoom_pos[1] = min(self.zoom_pos[1] + 1, self.feat_shape[1]-1)
elif data['key'] == 'ArrowLeft':
self.zoom_pos[1] = max(self.zoom_pos[1] - 1, 0)
elif data['key'] == 'ArrowUp':
self.zoom_pos[0] = max(self.zoom_pos[0] - 1, 0)
elif data['key'] == 'ArrowDown':
self.zoom_pos[0] = min(self.zoom_pos[0] + 1, self.feat_shape[0]-1)
elif data['key'] == 'Enter':
self.zoom_mode = not self.zoom_mode
zoom_toggled = True
# Update image
self.show_image()
# Update cost volumes
for block_title, block in self.registered_blocks.items():
if isinstance(block, VisCostVolume):
block.set_zoom_pos(self.zoom_pos)
block.toggle_show_slice(self.zoom_mode)
if (self.zoom_mode or zoom_toggled) and block.show_data:
block.draw_data()
def __init__(self, visdom, show_data, title, feat_shape, registered_blocks):
super().__init__(visdom, show_data, title)
self.feat_shape = feat_shape
self.zoom_mode = False
self.zoom_pos = [int((feat_shape[0] - 1) / 2), int((feat_shape[1] - 1) / 2)]
self.registered_blocks = registered_blocks
self.visdom.register_event_handler(self.cv_ui_handler, title)
def draw_grid(self, data):
stride_r = int(data.shape[1] / self.feat_shape[0])
stride_c = int(data.shape[2] / self.feat_shape[1])
# Draw grid
data[:, list(range(0, data.shape[1], stride_r)), :] = 0
data[:, :, list(range(0, data.shape[2], stride_c))] = 0
data[0, list(range(0, data.shape[1], stride_r)), :] = 255
data[0, :, list(range(0, data.shape[2], stride_c))] = 255
return data
def shade_cell(self, data):
stride_r = int(data.shape[1] / self.feat_shape[0])
stride_c = int(data.shape[2] / self.feat_shape[1])
r1 = self.zoom_pos[0]*stride_r
r2 = min((self.zoom_pos[0] + 1)*stride_r, data.shape[1])
c1 = self.zoom_pos[1] * stride_c
c2 = min((self.zoom_pos[1] + 1) * stride_c, data.shape[2])
factor = 0.8 if self.zoom_mode else 0.5
data[:, r1:r2, c1:c2] = data[:, r1:r2, c1:c2] * (1 - factor) + torch.tensor([255.0, 0.0, 0.0]).view(3, 1, 1).to(data.device) * factor
return data
def show_image(self, data=None):
if data is None:
data = self.raw_data.clone()
data = self.draw_grid(data)
data = self.shade_cell(data)
self.visdom.image(data, opts={'title': self.title}, win=self.title)
def save_data(self, data):
# Ignore feat shape
data = data[0]
data = data.float()
self.raw_data = data
def draw_data(self):
self.show_image(self.raw_data.clone())
class VisInfoDict(VisBase):
def __init__(self, visdom, show_data, title):
super().__init__(visdom, show_data, title)
self.raw_data = OrderedDict()
def generate_display_text(self, data):
display_text = ''
for key, value in data.items():
key = key.replace('_', ' ')
if value is None:
display_text += '<b>{}</b>: {}<br>'.format(key, 'None')
elif isinstance(value, (str, int)):
display_text += '<b>{}</b>: {}<br>'.format(key, value)
else:
display_text += '<b>{}</b>: {:.2f}<br>'.format(key, value)
return display_text
def save_data(self, data):
for key, val in data.items():
self.raw_data[key] = val
def draw_data(self):
data = copy.deepcopy(self.raw_data)
display_text = self.generate_display_text(data)
self.visdom.text(display_text, opts={'title': self.title}, win=self.title)
class VisText(VisBase):
def __init__(self, visdom, show_data, title):
super().__init__(visdom, show_data, title)
def save_data(self, data):
self.raw_data = data
def draw_data(self):
data = copy.deepcopy(self.raw_data)
self.visdom.text(data, opts={'title': self.title}, win=self.title)
class VisLinePlot(VisBase):
def __init__(self, visdom, show_data, title):
super().__init__(visdom, show_data, title)
def save_data(self, data):
self.raw_data = data
def draw_data(self):
if isinstance(self.raw_data, (list, tuple)):
data_y = self.raw_data[0].clone()
data_x = self.raw_data[1].clone()
else:
data_y = self.raw_data.clone()
data_x = torch.arange(data_y.shape[0])
self.visdom.line(data_y, data_x, opts={'title': self.title}, win=self.title)
class VisTracking(VisBase):
def __init__(self, visdom, show_data, title):
super().__init__(visdom, show_data, title)
def save_data(self, data):
image = data[0]
boxes_masks = data[1:]
boxes, masks = [], []
for bm in boxes_masks:
if bm is None:
continue
if isinstance(bm, list):
boxes.append(torch.Tensor(bm)); continue
if len(bm.shape) > 1:
# Binarize segmentation if a float tensor is provided
if bm.dtype != np.uint8:
bm = (bm > 0.5).astype(np.uint8)
masks.append(bm); continue
boxes.append(bm.float())
self.raw_data = [image, boxes, masks]
def draw_data(self):
disp_image = self.raw_data[0].copy()
resize_factor = 1
if max(disp_image.shape) > 480:
resize_factor = 480.0 / float(max(disp_image.shape))
disp_image = cv2.resize(disp_image, None, fx=resize_factor, fy=resize_factor)
for i, mask in enumerate(self.raw_data[2]):
self.raw_data[2][i] = cv2.resize(mask, None, fx=resize_factor, fy=resize_factor)
boxes = [resize_factor * b.clone() for b in self.raw_data[1]]
for i, disp_rect in enumerate(boxes):
color = ((255*((i%3)>0)), 255*((i+1)%2), (255*(i%5))//4)
cv2.rectangle(disp_image,
(int(disp_rect[0]), int(disp_rect[1])),
(int(disp_rect[0] + disp_rect[2]), int(disp_rect[1] + disp_rect[3])), color, 2)
for i, mask in enumerate(self.raw_data[2], 1):
disp_image = overlay_mask(disp_image, mask * i)
disp_image = numpy_to_torch(disp_image).squeeze(0)
disp_image = disp_image.float()
self.visdom.image(disp_image, opts={'title': self.title}, win=self.title)
class VisBBReg(VisBase):
def __init__(self, visdom, show_data, title):
super().__init__(visdom, show_data, title)
self.block_list = []
def block_list_callback_handler(self, data):
self.block_list[data['propertyId']]['value'] = data['value']
self.visdom.properties(self.block_list, opts={'title': 'BBReg Vis'}, win='bbreg_vis')
self.draw_data()
def save_data(self, data):
self.image = data[0].float()
self.init_boxes = data[1]
self.final_boxes = data[2]
self.final_ious = data[3]
def draw_data(self):
if len(self.block_list) == 0:
self.block_list.append({'type': 'checkbox', 'name': 'ID 0', 'value': True})
self.block_list.append({'type': 'checkbox', 'name': 'ID 1', 'value': True})
self.visdom.properties(self.block_list, opts={'title': 'BBReg Vis'}, win='bbreg_vis')
self.visdom.register_event_handler(self.block_list_callback_handler, 'bbreg_vis')
disp_image = self.image
ids = [x['value'] for x in self.block_list]
init_box_image = show_image_with_boxes(disp_image.clone(), self.init_boxes.clone(), disp_ids=ids)
final_box_image = show_image_with_boxes(disp_image.clone(), self.final_boxes.clone(), self.final_ious.clone(), disp_ids=ids)
self.visdom.image(init_box_image, opts={'title': 'Init Boxes'}, win='Init Boxes')
self.visdom.image(final_box_image, opts={'title': 'Final Boxes'}, win='Final Boxes')
class Visdom:
def __init__(self, debug=0, ui_info=None, visdom_info=None):
self.debug = debug
self.visdom = visdom.Visdom(server=visdom_info.get('server', '127.0.0.1'), port=visdom_info.get('port', 8097))
self.registered_blocks = {}
self.blocks_list = []
self.visdom.properties(self.blocks_list, opts={'title': 'Block List'}, win='block_list')
self.visdom.register_event_handler(self.block_list_callback_handler, 'block_list')
if ui_info is not None:
self.visdom.register_event_handler(ui_info['handler'], ui_info['win_id'])
def block_list_callback_handler(self, data):
field_name = self.blocks_list[data['propertyId']]['name']
self.registered_blocks[field_name].toggle_display(data['value'])
self.blocks_list[data['propertyId']]['value'] = data['value']
self.visdom.properties(self.blocks_list, opts={'title': 'Block List'}, win='block_list')
def register(self, data, mode, debug_level=0, title='Data', **kwargs):
if title not in self.registered_blocks.keys():
show_data = self.debug >= debug_level
if title != 'Tracking':
self.blocks_list.append({'type': 'checkbox', 'name': title, 'value': show_data})
self.visdom.properties(self.blocks_list, opts={'title': 'Block List'}, win='block_list')
if mode == 'image':
self.registered_blocks[title] = VisImage(self.visdom, show_data, title)
elif mode == 'heatmap':
self.registered_blocks[title] = VisHeatmap(self.visdom, show_data, title)
elif mode == 'cost_volume':
self.registered_blocks[title] = VisCostVolume(self.visdom, show_data, title)
elif mode == 'cost_volume_flip':
self.registered_blocks[title] = VisCostVolume(self.visdom, show_data, title, flip=True)
elif mode == 'cost_volume_ui':
self.registered_blocks[title] = VisCostVolumeUI(self.visdom, show_data, title, data[1],
self.registered_blocks)
elif mode == 'info_dict':
self.registered_blocks[title] = VisInfoDict(self.visdom, show_data, title)
elif mode == 'text':
self.registered_blocks[title] = VisText(self.visdom, show_data, title)
elif mode == 'lineplot':
self.registered_blocks[title] = VisLinePlot(self.visdom, show_data, title)
elif mode == 'Tracking':
self.registered_blocks[title] = VisTracking(self.visdom, show_data, title)
elif mode == 'bbreg':
self.registered_blocks[title] = VisBBReg(self.visdom, show_data, title)
elif mode == 'featmap':
self.registered_blocks[title] = VisFeaturemap(self.visdom, show_data, title)
else:
raise ValueError('Visdom Error: Unknown data mode {}'.format(mode))
# Update
self.registered_blocks[title].update(data, **kwargs)