-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
253 lines (209 loc) · 8.41 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import argparse
import random
import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.utils.data.sampler import Sampler
from typing import Sized
from tqdm import tqdm
from torch import linalg as LA
def import_class(name):
components = name.split('.')
mod = __import__(components[0])
for comp in components[1:]:
mod = getattr(mod, comp)
return mod
def count_params(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = False
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def init_seed(seed):
torch.cuda.manual_seed_all(seed)
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def get_masked_input_and_labels(inp, mask_value=1, mask_p=0.15, mask_random_p=0.1, mask_remain_p=0.1, mask_random_s=1):
# BERT masking
inp_mask = (torch.rand(*inp.shape[:2]) < mask_p).to(inp.device)
# Prepare input
inp_masked = inp.clone().float()
# Set input to [MASK] which is the last token for the 90% of tokens
# This means leaving 10% unchanged
inp_mask_2mask = (inp_mask & (torch.rand(*inp.shape[:2]) < 1 - mask_remain_p).to(inp.device))
inp_masked[inp_mask_2mask] = mask_value # mask token is the last in the dict
# Set 10% to a random token
inp_mask_2random = inp_mask_2mask & (torch.rand(*inp.shape[:2]) < mask_random_p / (1 - mask_remain_p)).to(inp.device)
inp_masked[inp_mask_2random] = (2 * mask_random_s * torch.rand(inp_mask_2random.sum().item(), inp.shape[2]) - mask_random_s).to(inp.device)
# y_labels would be same as encoded_texts i.e input tokens
gt = inp.clone()
return inp_masked, gt
def random_rot_mat(bs, uniform_dist):
rot_mat = torch.zeros(bs, 3, 3)
random_values = uniform_dist.rsample((bs,))
rot_mat[:, 0, 0] = torch.cos(random_values)
rot_mat[:, 0, 1] = -torch.sin(random_values)
rot_mat[:, 1, 0] = torch.sin(random_values)
rot_mat[:, 1, 1] = torch.cos(random_values)
rot_mat[:, 2, 2] = 1
return rot_mat
def repeat_rot_mat(rot_mat, num):
batch = rot_mat.shape[0]
res = torch.zeros([batch, 3*num, 3*num]).to(rot_mat.device)
for i in range(num):
res[:, 3*i:3*(i+1), 3*i:3*(i+1)] = rot_mat
return res
def align_skeleton(data):
N, C, T, V, M = data.shape
trans_data = np.zeros_like(data)
for i in tqdm(range(N)):
for p in range(M):
sample = data[i][..., p]
# if np.all((sample[:,0,:] == 0)):
# continue
d = sample[:,0,1:2]
v1 = sample[:,0,1]-sample[:,0,0]
if np.linalg.norm(v1) <= 0.0:
continue
v1 = v1/np.linalg.norm(v1)
v2_ = sample[:,0,12]-sample[:,0,16]
proj_v2_v1 = np.dot(v1.T,v2_)*v1/np.linalg.norm(v1)
v2 = v2_-np.squeeze(proj_v2_v1)
v2 = v2/(np.linalg.norm(v2))
v3 = np.cross(v2,v1)/(np.linalg.norm(np.cross(v2,v1)))
v1 = np.reshape(v1,(3,1))
v2 = np.reshape(v2,(3,1))
v3 = np.reshape(v3,(3,1))
R = np.hstack([v2,v3,v1])
for t in range(T):
trans_sample = (np.linalg.inv(R))@(sample[:,t,:]) # -d
trans_data[i, :, t, :, p] = trans_sample
return trans_data
def create_aligned_dataset(file_list=['data/ntu/NTU60_CS.npz', 'data/ntu/NTU60_CV.npz']):
for file in file_list:
org_data = np.load(file)
splits = ['x_train', 'x_test']
aligned_set = {}
for split in splits:
data = org_data[split]
N, T, _ = data.shape
data = data.reshape((N, T, 2, 25, 3)).transpose(0, 4, 1, 3, 2)
aligned_data = align_skeleton(data)
aligned_data = aligned_data.transpose(0, 2, 4, 3, 1).reshape(N, T, -1)
aligned_set[split] = aligned_data
np.savez(file.replace('.npz', '_aligned.npz'),
x_train=aligned_set['x_train'],
y_train=org_data['y_train'],
x_test=aligned_set['x_test'],
y_test=org_data['y_test'])
def get_motion(data, data_format=['x'], use_nonzero_mask=False, rot=False, jittering=False, random_dist=None):
N, C, T, V, M = data.size()
data = data.permute(0, 4, 2, 3, 1).contiguous().view(N*M, T, V, C)
# get motion features
x = data - data[:,:,0:1,:] # localize
if 'v' in data_format:
v = x[:,1:,:,:] - x[:,:-1,:,:]
v = torch.cat([torch.zeros(N*M, 1, V, C).to(v.device), v], dim=1)
if 'a' in data_format:
a = v[:,1:,:,:] - v[:,:-1,:,:]
a = torch.cat([torch.zeros(N*M, 1, V, C).to(a.device), a], dim=1)
# reshape x,v for PORT
x = x.view(N*M*T, V, C)
if 'v' in data_format:
v = v.view(N*M*T, V, C)
if 'a' in data_format:
a = a.view(N*M*T, V, C)
# apply nonzero mask
if use_nonzero_mask:
nonzero_mask = x.view(N*M*T, -1).count_nonzero(dim=-1) !=0
x = x[nonzero_mask]
if 'v' in data_format:
v = v[nonzero_mask]
if 'a' in data_format:
a = a[nonzero_mask]
# optionally rotate
if rot:
rot_mat = random_rot_mat(x.shape[0], random_dist).to(x.device)
x = x.transpose(1, 2) # (NMT, C, V)
x = torch.bmm(rot_mat, x) # rotate
x = x.transpose(1, 2) #(NMT, V, C)
if 'v' in data_format:
v = v.transpose(1, 2) # (NMT, C, V)
v = torch.bmm(rot_mat, v) # rotate
v = v.transpose(1, 2) #(NMT, V, C)
if 'a' in data_format:
a = a.transpose(1, 2) # (NMT, C, V)
a = torch.bmm(rot_mat, a) # rotate
a = a.transpose(1, 2) #(NMT, V, C)
if jittering:
jit = (torch.rand(x.shape[0], 1, x.shape[-1], device=x.device) - 0.5) / 10
x += jit
output = {'x':x}
if 'v' in data_format:
output['v'] = v
if 'a' in data_format:
output['a'] = a
return output
def get_attn(x, mask= None, similarity='scaled_dot'):
if similarity == 'scaled_dot':
sqrt_dim = np.sqrt(x.shape[-1])
score = torch.bmm(x, x.transpose(1, 2)) / sqrt_dim
elif similarity == 'euclidean':
score = torch.cdist(x, x)
if mask is not None:
score.masked_fill_(mask.view(score.size()), -float('Inf'))
attn = F.softmax(score, -1)
embd = torch.bmm(attn, x)
return embd, attn
def get_vector_property(x):
N, C = x.size()
x1 = x.unsqueeze(0).expand(N, N, C)
x2 = x.unsqueeze(1).expand(N, N, C)
x1 = x1.reshape(N*N, C)
x2 = x2.reshape(N*N, C)
cos_sim = F.cosine_similarity(x1, x2, dim=1, eps=1e-6).view(N, N)
cos_sim = torch.triu(cos_sim, diagonal=1).sum() * 2 / (N*(N-1))
pdist = (LA.norm(x1-x2, ord=2, dim=1)).view(N, N)
pdist = torch.triu(pdist, diagonal=1).sum() * 2 / (N*(N-1))
return cos_sim, pdist
class BalancedSampler(Sampler[int]):
data_source: Sized
replacement: bool
def __init__(self, data_source: Sized, args=None) -> None:
self.dt = data_source
self.args = args
self.n_cls = args.num_class
self.n_dt = len(self.dt)
self.n_per_cls = self.dt.n_per_cls
self.n_cls_wise_desired = int(self.n_dt/self.n_cls)
self.n_repeat = np.ceil(self.n_cls_wise_desired/np.array(self.n_per_cls)).astype(int)
self.n_samples = self.n_cls_wise_desired * self.n_cls
self.st_idx_cls = self.dt.csum_n_per_cls[:-1]
self.cls_idx = torch.from_numpy(self.st_idx_cls).\
unsqueeze(1).expand(self.n_cls, self.n_cls_wise_desired)
def num_samples(self) -> int:
return self.n_samples
def __iter__(self):
batch_rand_perm_lst = list()
for i_cls in range(self.n_cls):
rand = torch.rand(self.n_repeat[i_cls], self.n_per_cls[i_cls])
brp = rand.argsort(dim=-1).reshape(-1)[:self.n_cls_wise_desired]
batch_rand_perm_lst.append(brp)
batch_rand_perm = torch.stack(batch_rand_perm_lst, 0)
batch_rand_perm += self.cls_idx
b = batch_rand_perm.permute(1, 0).reshape(-1).tolist()
yield from b
def __len__(self):
return self.num_samples
if __name__ == "__main__":
create_aligned_dataset()