-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdictionaries.py
75 lines (67 loc) · 2.33 KB
/
dictionaries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from cmocean import cm as cmo
import datetime
timelines = dict(
# Nordstream timelines
NS1=['SEA077_M11',
'SEA069_M11', 'SEA077_M13', 'SEA045_M69',
'SEA077_M15', 'SEA045_M71', 'SEA077_M17', 'SEA045_M73'], # This is the SAMBA trajectory
NS2=['SEA045_M67', 'SEA077_M13'],
NS3=['SEA077_M12'],
NS4=['SEA076_M8', 'SEA076_M9'],
NS5=['SEA070_M13', 'SEA070_M14', 'SEA070_M15'],
NS_methane_sensor=['SEA070_M13', 'SEA070_M14',
'SEA070_M15', 'SEA056_M54',
'SEA056_M55', 'SEA056_M56', 'SEA056_M57'],)
cmap_dict = dict(
conservative_temperature=cmo.thermal,
potential_density=cmo.dense,
temperature=cmo.thermal,
salinity=cmo.haline,
backscatter=cmo.turbid,
cdom=cmo.matter,
fdom=cmo.haline,
chlorophyll=cmo.algae,
oxygen_concentration=cmo.amp,
N2=cmo.balance, # cmo.amp,
spice=cmo.matter,
temperature_oxygen=cmo.thermal,
turbidity=cmo.turbid,
profile_num=cmo.haline,
methane_concentration=cmo.thermal,
methane_raw_concentration=cmo.thermal
)
limits_dict_below_mld = dict(
temperature=[3, 11],
salinity=[8, 15],
N2=[-0.010, 0.010],
potential_density=[1006, 1011],
oxygen_concentration=[0, 200],
chlorophyll=[0, 0.5],
cdom=[0, 10],
turbidity=[0.1, 0.2],
backscatter=[0, 0.0006])
limits_dict_mld = dict(
temperature=[15, 19],
salinity=[7, 10],
N2=[-0.010, 0.010],
potential_density=[1003, 1005],
oxygen_concentration=[250, 350],
chlorophyll=[0.4, 0.7],
cdom=[0, 10],
turbidity=[0.16, 0.23],
backscatter=[0, 0.0006])
leak1 = dict(lat=54.876667, lon=15.41, starttime=datetime.datetime(2022,9,26,2))
leak2 = dict(lat=55.535000, lon=15.698333, starttime=datetime.datetime(2022,9,26,19))
leak3 = dict(lat=55.556667, lon=15.788333, starttime=datetime.datetime(2022,9,26,19))
leak4 = dict(lat=55.557500, lon=15.779000, starttime=datetime.datetime(2022,9,26,19))
levels = [1e-8, 1e-7, 1e-6, 1e-5, 1e-3]
hatches = ['''\\''', '''////''', '''xx''', '''xxxx''']
spacing = [9, 9, 9, 99] # this has to be adjusted to the levels distance
hatchesdicts = [dict(vmin=levels[i],
vmax=levels[i+1],
hatch=hatches[i],
spacing=spacing[i]) for i in range(0,len(hatches))]
S_lim = 53.5
N_lim = 60
W_lim = 10
E_lim = 20