-
-
Notifications
You must be signed in to change notification settings - Fork 19.3k
/
planner.cpp
3353 lines (2879 loc) · 136 KB
/
planner.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* planner.cpp
*
* Buffer movement commands and manage the acceleration profile plan
*
* Derived from Grbl
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* Ring buffer gleaned from wiring_serial library by David A. Mellis.
*
* Fast inverse function needed for Bézier interpolation for AVR
* was designed, written and tested by Eduardo José Tagle, April 2018.
*
* Planner mathematics (Mathematica-style):
*
* Where: s == speed, a == acceleration, t == time, d == distance
*
* Basic definitions:
* Speed[s_, a_, t_] := s + (a*t)
* Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
*
* Distance to reach a specific speed with a constant acceleration:
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
* d -> (m^2 - s^2) / (2 a)
*
* Speed after a given distance of travel with constant acceleration:
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
* m -> Sqrt[2 a d + s^2]
*
* DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
*
* When to start braking (di) to reach a specified destination speed (s2) after
* acceleration from initial speed s1 without ever reaching a plateau:
* Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
* di -> (2 a d - s1^2 + s2^2)/(4 a)
*
* We note, as an optimization, that if we have already calculated an
* acceleration distance d1 from s1 to m and a deceration distance d2
* from m to s2 then
*
* d1 -> (m^2 - s1^2) / (2 a)
* d2 -> (m^2 - s2^2) / (2 a)
* di -> (d + d1 - d2) / 2
*/
#include "planner.h"
#include "stepper.h"
#include "motion.h"
#include "temperature.h"
#include "../lcd/marlinui.h"
#include "../gcode/parser.h"
#include "../MarlinCore.h"
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
#include "../feature/filwidth.h"
#endif
#if ENABLED(BARICUDA)
#include "../feature/baricuda.h"
#endif
#if ENABLED(MIXING_EXTRUDER)
#include "../feature/mixing.h"
#endif
#if ENABLED(AUTO_POWER_CONTROL)
#include "../feature/power.h"
#endif
#if ENABLED(BACKLASH_COMPENSATION)
#include "../feature/backlash.h"
#endif
#if ENABLED(CANCEL_OBJECTS)
#include "../feature/cancel_object.h"
#endif
#if ENABLED(POWER_LOSS_RECOVERY)
#include "../feature/powerloss.h"
#endif
#if HAS_CUTTER
#include "../feature/spindle_laser.h"
#endif
// Delay for delivery of first block to the stepper ISR, if the queue contains 2 or
// fewer movements. The delay is measured in milliseconds, and must be less than 250ms
#define BLOCK_DELAY_FOR_1ST_MOVE 100
Planner planner;
// public:
/**
* A ring buffer of moves described in steps
*/
block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed
Planner::block_buffer_nonbusy, // Index of the first non-busy block
Planner::block_buffer_planned, // Index of the optimally planned block
Planner::block_buffer_tail; // Index of the busy block, if any
uint16_t Planner::cleaning_buffer_counter; // A counter to disable queuing of blocks
uint8_t Planner::delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
planner_settings_t Planner::settings; // Initialized by settings.load()
/**
* Set up inline block variables
* Set laser_power_floor based on SPEED_POWER_MIN to pevent a zero power output state with LASER_POWER_TRAP
*/
#if ENABLED(LASER_FEATURE)
laser_state_t Planner::laser_inline; // Current state for blocks
const uint8_t laser_power_floor = cutter.pct_to_ocr(SPEED_POWER_MIN);
#endif
uint32_t Planner::max_acceleration_steps_per_s2[DISTINCT_AXES]; // (steps/s^2) Derived from mm_per_s2
float Planner::mm_per_step[DISTINCT_AXES]; // (mm) Millimeters per step
#if HAS_JUNCTION_DEVIATION
float Planner::junction_deviation_mm; // (mm) M205 J
#if HAS_LINEAR_E_JERK
float Planner::max_e_jerk[DISTINCT_E]; // Calculated from junction_deviation_mm
#endif
#endif
#if HAS_CLASSIC_JERK
TERN(HAS_LINEAR_E_JERK, xyz_pos_t, xyze_pos_t) Planner::max_jerk;
#endif
#if ENABLED(SD_ABORT_ON_ENDSTOP_HIT)
bool Planner::abort_on_endstop_hit = false;
#endif
#if ENABLED(DISTINCT_E_FACTORS)
uint8_t Planner::last_extruder = 0; // Respond to extruder change
#endif
#if ENABLED(DIRECT_STEPPING)
uint32_t Planner::last_page_step_rate = 0;
xyze_bool_t Planner::last_page_dir{0};
#endif
#if HAS_EXTRUDERS
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0f); // The flow percentage and volumetric multiplier combine to scale E movement
#endif
#if DISABLED(NO_VOLUMETRICS)
float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
Planner::volumetric_area_nominal = CIRCLE_AREA(float(DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5f), // Nominal cross-sectional area
Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
#endif
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
float Planner::volumetric_extruder_limit[EXTRUDERS], // max mm^3/sec the extruder is able to handle
Planner::volumetric_extruder_feedrate_limit[EXTRUDERS]; // pre calculated extruder feedrate limit based on volumetric_extruder_limit; pre-calculated to reduce computation in the planner
#endif
#if HAS_LEVELING
bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
#if ABL_PLANAR
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float Planner::z_fade_height, // Initialized by settings.load()
Planner::inverse_z_fade_height,
Planner::last_fade_z;
#endif
#else
constexpr bool Planner::leveling_active;
#endif
skew_factor_t Planner::skew_factor; // Initialized by settings.load()
#if ENABLED(AUTOTEMP)
celsius_t Planner::autotemp_max = 250,
Planner::autotemp_min = 210;
float Planner::autotemp_factor = 0.1f;
bool Planner::autotemp_enabled = false;
#endif
// private:
xyze_long_t Planner::position{0};
uint32_t Planner::acceleration_long_cutoff;
xyze_float_t Planner::previous_speed;
float Planner::previous_nominal_speed;
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
last_move_t Planner::g_uc_extruder_last_move[E_STEPPERS] = { 0 };
#endif
#ifdef XY_FREQUENCY_LIMIT
int8_t Planner::xy_freq_limit_hz = XY_FREQUENCY_LIMIT;
float Planner::xy_freq_min_speed_factor = (XY_FREQUENCY_MIN_PERCENT) * 0.01f;
int32_t Planner::xy_freq_min_interval_us = LROUND(1000000.0f / (XY_FREQUENCY_LIMIT));
#endif
#if ENABLED(LIN_ADVANCE)
float Planner::extruder_advance_K[EXTRUDERS]; // Initialized by settings.load()
#endif
#if HAS_POSITION_FLOAT
xyze_pos_t Planner::position_float; // Needed for accurate maths. Steps cannot be used!
#endif
#if IS_KINEMATIC
xyze_pos_t Planner::position_cart;
#endif
#if HAS_WIRED_LCD
volatile uint32_t Planner::block_buffer_runtime_us = 0;
#endif
/**
* Class and Instance Methods
*/
Planner::Planner() { init(); }
void Planner::init() {
position.reset();
TERN_(HAS_POSITION_FLOAT, position_float.reset());
TERN_(IS_KINEMATIC, position_cart.reset());
previous_speed.reset();
previous_nominal_speed = 0;
TERN_(ABL_PLANAR, bed_level_matrix.set_to_identity());
clear_block_buffer();
delay_before_delivering = 0;
#if ENABLED(DIRECT_STEPPING)
last_page_step_rate = 0;
last_page_dir.reset();
#endif
}
#if ENABLED(S_CURVE_ACCELERATION)
#ifdef __AVR__
/**
* This routine returns 0x1000000 / d, getting the inverse as fast as possible.
* A fast-converging iterative Newton-Raphson method can reach full precision in
* just 1 iteration, and takes 211 cycles (worst case; the mean case is less, up
* to 30 cycles for small divisors), instead of the 500 cycles a normal division
* would take.
*
* Inspired by the following page:
* https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers
*
* Suppose we want to calculate floor(2 ^ k / B) where B is a positive integer
* Then, B must be <= 2^k, otherwise, the quotient is 0.
*
* The Newton - Raphson iteration for x = B / 2 ^ k yields:
* q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k)
*
* This can be rearranged to:
* q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k
*
* Each iteration requires only integer multiplications and bit shifts.
* It doesn't necessarily converge to floor(2 ^ k / B) but in the worst case
* it eventually alternates between floor(2 ^ k / B) and ceil(2 ^ k / B).
* So it checks for this case and extracts floor(2 ^ k / B).
*
* A simple but important optimization for this approach is to truncate
* multiplications (i.e., calculate only the higher bits of the product) in the
* early iterations of the Newton - Raphson method. This is done so the results
* of the early iterations are far from the quotient. Then it doesn't matter if
* they are done inaccurately.
* It's important to pick a good starting value for x. Knowing how many
* digits the divisor has, it can be estimated:
*
* 2^k / x = 2 ^ log2(2^k / x)
* 2^k / x = 2 ^(log2(2^k)-log2(x))
* 2^k / x = 2 ^(k*log2(2)-log2(x))
* 2^k / x = 2 ^ (k-log2(x))
* 2^k / x >= 2 ^ (k-floor(log2(x)))
* floor(log2(x)) is simply the index of the most significant bit set.
*
* If this estimation can be improved even further the number of iterations can be
* reduced a lot, saving valuable execution time.
* The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft
* Research, Silicon Valley,August 26, 2008, available at
* https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf
* suggests, for its integer division algorithm, using a table to supply the first
* 8 bits of precision, then, due to the quadratic convergence nature of the
* Newton-Raphon iteration, just 2 iterations should be enough to get maximum
* precision of the division.
* By precomputing values of inverses for small denominator values, just one
* Newton-Raphson iteration is enough to reach full precision.
* This code uses the top 9 bits of the denominator as index.
*
* The AVR assembly function implements this C code using the data below:
*
* // For small divisors, it is best to directly retrieve the results
* if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
*
* // Compute initial estimation of 0x1000000/x -
* // Get most significant bit set on divider
* uint8_t idx = 0;
* uint32_t nr = d;
* if (!(nr & 0xFF0000)) {
* nr <<= 8; idx += 8;
* if (!(nr & 0xFF0000)) { nr <<= 8; idx += 8; }
* }
* if (!(nr & 0xF00000)) { nr <<= 4; idx += 4; }
* if (!(nr & 0xC00000)) { nr <<= 2; idx += 2; }
* if (!(nr & 0x800000)) { nr <<= 1; idx += 1; }
*
* // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table
* uint32_t tidx = nr >> 15, // top 9 bits. bit8 is always set
* ie = inv_tab[tidx & 0xFF] + 256, // Get the table value. bit9 is always set
* x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place
*
* x = uint32_t((x * uint64_t(_BV(25) - x * d)) >> 24); // Refine estimation by newton-raphson. 1 iteration is enough
* const uint32_t r = _BV(24) - x * d; // Estimate remainder
* if (r >= d) x++; // Check whether to adjust result
* return uint32_t(x); // x holds the proper estimation
*/
static uint32_t get_period_inverse(uint32_t d) {
static const uint8_t inv_tab[256] PROGMEM = {
255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
};
// For small denominators, it is cheaper to directly store the result.
// For bigger ones, just ONE Newton-Raphson iteration is enough to get
// maximum precision we need
static const uint32_t small_inv_tab[111] PROGMEM = {
16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
};
// For small divisors, it is best to directly retrieve the results
if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
uint8_t r8 = d & 0xFF,
r9 = (d >> 8) & 0xFF,
r10 = (d >> 16) & 0xFF,
r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18;
const uint8_t *ptab = inv_tab;
__asm__ __volatile__(
// %8:%7:%6 = interval
// r31:r30: MUST be those registers, and they must point to the inv_tab
A("clr %13") // %13 = 0
// Now we must compute
// result = 0xFFFFFF / d
// %8:%7:%6 = interval
// %16:%15:%14 = nr
// %13 = 0
// A plain division of 24x24 bits should take 388 cycles to complete. We will
// use Newton-Raphson for the calculation, and will strive to get way less cycles
// for the same result - Using C division, it takes 500cycles to complete .
A("clr %3") // idx = 0
A("mov %14,%6")
A("mov %15,%7")
A("mov %16,%8") // nr = interval
A("tst %16") // nr & 0xFF0000 == 0 ?
A("brne 2f") // No, skip this
A("mov %16,%15")
A("mov %15,%14") // nr <<= 8, %14 not needed
A("subi %3,-8") // idx += 8
A("tst %16") // nr & 0xFF0000 == 0 ?
A("brne 2f") // No, skip this
A("mov %16,%15") // nr <<= 8, %14 not needed
A("clr %15") // We clear %14
A("subi %3,-8") // idx += 8
// here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0
L("2")
A("cpi %16,0x10") // (nr & 0xF00000) == 0 ?
A("brcc 3f") // No, skip this
A("swap %15") // Swap nybbles
A("swap %16") // Swap nybbles. Low nybble is 0
A("mov %14, %15")
A("andi %14,0x0F") // Isolate low nybble
A("andi %15,0xF0") // Keep proper nybble in %15
A("or %16, %14") // %16:%15 <<= 4
A("subi %3,-4") // idx += 4
L("3")
A("cpi %16,0x40") // (nr & 0xC00000) == 0 ?
A("brcc 4f") // No, skip this
A("add %15,%15")
A("adc %16,%16")
A("add %15,%15")
A("adc %16,%16") // %16:%15 <<= 2
A("subi %3,-2") // idx += 2
L("4")
A("cpi %16,0x80") // (nr & 0x800000) == 0 ?
A("brcc 5f") // No, skip this
A("add %15,%15")
A("adc %16,%16") // %16:%15 <<= 1
A("inc %3") // idx += 1
// Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
// we have at least 9 MSBits available to enter the initial estimation table
L("5")
A("add %15,%15")
A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
A("add r30,%16") // Only use top 8 bits
A("adc r31,%13") // r31:r30 = inv_tab + (tidx)
A("lpm %14, Z") // %14 = inv_tab[tidx]
A("ldi %15, 1") // %15 = 1 %15:%14 = inv_tab[tidx] + 256
// We must scale the approximation to the proper place
A("clr %16") // %16 will always be 0 here
A("subi %3,8") // idx == 8 ?
A("breq 6f") // yes, no need to scale
A("brcs 7f") // If C=1, means idx < 8, result was negative!
// idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
A("sbrs %3,0") // shift by 1bit position?
A("rjmp 8f") // No
A("add %14,%14")
A("adc %15,%15") // %15:16 <<= 1
L("8")
A("sbrs %3,1") // shift by 2bit position?
A("rjmp 9f") // No
A("add %14,%14")
A("adc %15,%15")
A("add %14,%14")
A("adc %15,%15") // %15:16 <<= 1
L("9")
A("sbrs %3,2") // shift by 4bits position?
A("rjmp 16f") // No
A("swap %15") // Swap nybbles. lo nybble of %15 will always be 0
A("swap %14") // Swap nybbles
A("mov %12,%14")
A("andi %12,0x0F") // isolate low nybble
A("andi %14,0xF0") // and clear it
A("or %15,%12") // %15:%16 <<= 4
L("16")
A("sbrs %3,3") // shift by 8bits position?
A("rjmp 6f") // No, we are done
A("mov %16,%15")
A("mov %15,%14")
A("clr %14")
A("jmp 6f")
// idx < 8, now %3 = idx - 8. Get the count of bits
L("7")
A("neg %3") // %3 = -idx = count of bits to move right. idx range:[1...8]
A("sbrs %3,0") // shift by 1 bit position ?
A("rjmp 10f") // No, skip it
A("asr %15") // (bit7 is always 0 here)
A("ror %14")
L("10")
A("sbrs %3,1") // shift by 2 bit position ?
A("rjmp 11f") // No, skip it
A("asr %15") // (bit7 is always 0 here)
A("ror %14")
A("asr %15") // (bit7 is always 0 here)
A("ror %14")
L("11")
A("sbrs %3,2") // shift by 4 bit position ?
A("rjmp 12f") // No, skip it
A("swap %15") // Swap nybbles
A("andi %14, 0xF0") // Lose the lowest nybble
A("swap %14") // Swap nybbles. Upper nybble is 0
A("or %14,%15") // Pass nybble from upper byte
A("andi %15, 0x0F") // And get rid of that nybble
L("12")
A("sbrs %3,3") // shift by 8 bit position ?
A("rjmp 6f") // No, skip it
A("mov %14,%15")
A("clr %15")
L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d
// Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
// of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough
// to get more than 18bits of precision (the initial table lookup gives 9 bits of
// precision to start from). 18bits of precision is all what is needed here for result
// %8:%7:%6 = d = interval
// %16:%15:%14 = x = initial estimation of 0x1000000 / d
// %13 = 0
// %3:%2:%1:%0 = working accumulator
// Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
A("clr %0")
A("clr %1")
A("clr %2")
A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000
A("mul %6,%14") // r1:r0 = LO(d) * LO(x)
A("sub %0,r0")
A("sbc %1,r1")
A("sbc %2,%13")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
A("mul %7,%14") // r1:r0 = MI(d) * LO(x)
A("sub %1,r0")
A("sbc %2,r1" )
A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
A("mul %8,%14") // r1:r0 = HI(d) * LO(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
A("mul %6,%15") // r1:r0 = LO(d) * MI(x)
A("sub %1,r0")
A("sbc %2,r1")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
A("mul %7,%15") // r1:r0 = MI(d) * MI(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
A("mul %8,%15") // r1:r0 = HI(d) * MI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
A("mul %6,%16") // r1:r0 = LO(d) * HI(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
A("mul %7,%16") // r1:r0 = MI(d) * HI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
// %3:%2:%1:%0 = (1<<25) - x*d [169]
// We need to multiply that result by x, and we are only interested in the top 24bits of that multiply
// %16:%15:%14 = x = initial estimation of 0x1000000 / d
// %3:%2:%1:%0 = (1<<25) - x*d = acc
// %13 = 0
// result = %11:%10:%9:%5:%4
A("mul %14,%0") // r1:r0 = LO(x) * LO(acc)
A("mov %4,r1")
A("clr %5")
A("clr %9")
A("clr %10")
A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
A("mul %15,%0") // r1:r0 = MI(x) * LO(acc)
A("add %4,r0")
A("adc %5,r1")
A("adc %9,%13")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
A("mul %16,%0") // r1:r0 = HI(x) * LO(acc)
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8
A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc)
A("add %4,r0")
A("adc %5,r1")
A("adc %9,%13")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc)
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc)
A("add %9,r0")
A("adc %10,r1")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16
A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc)
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc)
A("add %9,r0")
A("adc %10,r1")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc)
A("add %10,r0")
A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24
A("mul %14,%3") // r1:r0 = LO(x) * HI(acc)
A("add %9,r0")
A("adc %10,r1")
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
A("mul %15,%3") // r1:r0 = MI(x) * HI(acc)
A("add %10,r0")
A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
A("mul %16,%3") // r1:r0 = HI(x) * HI(acc)
A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32
// At this point, %11:%10:%9 contains the new estimation of x.
// Finally, we must correct the result. Estimate remainder as
// (1<<24) - x*d
// %11:%10:%9 = x
// %8:%7:%6 = d = interval" "\n\t"
A("ldi %3,1")
A("clr %2")
A("clr %1")
A("clr %0") // %3:%2:%1:%0 = 0x1000000
A("mul %6,%9") // r1:r0 = LO(d) * LO(x)
A("sub %0,r0")
A("sbc %1,r1")
A("sbc %2,%13")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
A("mul %7,%9") // r1:r0 = MI(d) * LO(x)
A("sub %1,r0")
A("sbc %2,r1")
A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
A("mul %8,%9") // r1:r0 = HI(d) * LO(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
A("mul %6,%10") // r1:r0 = LO(d) * MI(x)
A("sub %1,r0")
A("sbc %2,r1")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
A("mul %7,%10") // r1:r0 = MI(d) * MI(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
A("mul %8,%10") // r1:r0 = HI(d) * MI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
A("mul %6,%11") // r1:r0 = LO(d) * HI(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
A("mul %7,%11") // r1:r0 = MI(d) * HI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
// %3:%2:%1:%0 = r = (1<<24) - x*d
// %8:%7:%6 = d = interval
// Perform the final correction
A("sub %0,%6")
A("sbc %1,%7")
A("sbc %2,%8") // r -= d
A("brcs 14f") // if ( r >= d)
// %11:%10:%9 = x
A("ldi %3,1")
A("add %9,%3")
A("adc %10,%13")
A("adc %11,%13") // x++
L("14")
// Estimation is done. %11:%10:%9 = x
A("clr __zero_reg__") // Make C runtime happy
// [211 cycles total]
: "=r" (r2),
"=r" (r3),
"=r" (r4),
"=d" (r5),
"=r" (r6),
"=r" (r7),
"+r" (r8),
"+r" (r9),
"+r" (r10),
"=d" (r11),
"=r" (r12),
"=r" (r13),
"=d" (r14),
"=d" (r15),
"=d" (r16),
"=d" (r17),
"=d" (r18),
"+z" (ptab)
:
: "r0", "r1", "cc"
);
// Return the result
return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16);
}
#else
// All other 32-bit MPUs can easily do inverse using hardware division,
// so we don't need to reduce precision or to use assembly language at all.
// This routine, for all other archs, returns 0x100000000 / d ~= 0xFFFFFFFF / d
FORCE_INLINE static uint32_t get_period_inverse(const uint32_t d) {
return d ? 0xFFFFFFFF / d : 0xFFFFFFFF;
}
#endif
#endif
#define MINIMAL_STEP_RATE 120
/**
* Get the current block for processing
* and mark the block as busy.
* Return nullptr if the buffer is empty
* or if there is a first-block delay.
*
* WARNING: Called from Stepper ISR context!
*/
block_t* Planner::get_current_block() {
// Get the number of moves in the planner queue so far
const uint8_t nr_moves = movesplanned();
// If there are any moves queued ...
if (nr_moves) {
// If there is still delay of delivery of blocks running, decrement it
if (delay_before_delivering) {
--delay_before_delivering;
// If the number of movements queued is less than 3, and there is still time
// to wait, do not deliver anything
if (nr_moves < 3 && delay_before_delivering) return nullptr;
delay_before_delivering = 0;
}
// If we are here, there is no excuse to deliver the block
block_t * const block = &block_buffer[block_buffer_tail];
// No trapezoid calculated? Don't execute yet.
if (block->flag.recalculate) return nullptr;
// We can't be sure how long an active block will take, so don't count it.
TERN_(HAS_WIRED_LCD, block_buffer_runtime_us -= block->segment_time_us);
// As this block is busy, advance the nonbusy block pointer
block_buffer_nonbusy = next_block_index(block_buffer_tail);
// Push block_buffer_planned pointer, if encountered.
if (block_buffer_tail == block_buffer_planned)
block_buffer_planned = block_buffer_nonbusy;
// Return the block
return block;
}
// The queue became empty
TERN_(HAS_WIRED_LCD, clear_block_buffer_runtime()); // paranoia. Buffer is empty now - so reset accumulated time to zero.
return nullptr;
}
/**
* Calculate trapezoid parameters, multiplying the entry- and exit-speeds
* by the provided factors.
**
* ############ VERY IMPORTANT ############
* NOTE that the PRECONDITION to call this function is that the block is
* NOT BUSY and it is marked as RECALCULATE. That WARRANTIES the Stepper ISR
* is not and will not use the block while we modify it, so it is safe to
* alter its values.
*/
void Planner::calculate_trapezoid_for_block(block_t * const block, const_float_t entry_factor, const_float_t exit_factor) {
uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
// Limit minimal step rate (Otherwise the timer will overflow.)
NOLESS(initial_rate, uint32_t(MINIMAL_STEP_RATE));
NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE));
#if ENABLED(S_CURVE_ACCELERATION)
// If we have some plateau time, the cruise rate will be the nominal rate
uint32_t cruise_rate = block->nominal_rate;
#endif
const int32_t accel = block->acceleration_steps_per_s2;
// Steps for acceleration, plateau and deceleration
int32_t plateau_steps = block->step_event_count;
uint32_t accelerate_steps = 0,
decelerate_steps = 0;
if (accel != 0) {
// Steps required for acceleration, deceleration to/from nominal rate
const float nominal_rate_sq = sq(float(block->nominal_rate));
float accelerate_steps_float = (nominal_rate_sq - sq(float(initial_rate))) * (0.5f / accel);
accelerate_steps = CEIL(accelerate_steps_float);
const float decelerate_steps_float = (nominal_rate_sq - sq(float(final_rate))) * (0.5f / accel);
decelerate_steps = FLOOR(decelerate_steps_float);
// Steps between acceleration and deceleration, if any
plateau_steps -= accelerate_steps + decelerate_steps;
// Does accelerate_steps + decelerate_steps exceed step_event_count?
// Then we can't possibly reach the nominal rate, there will be no cruising.
// Calculate accel / braking time in order to reach the final_rate exactly
// at the end of this block.
if (plateau_steps < 0) {
accelerate_steps_float = CEIL((block->step_event_count + accelerate_steps_float - decelerate_steps_float) * 0.5f);
accelerate_steps = _MIN(uint32_t(_MAX(accelerate_steps_float, 0)), block->step_event_count);
decelerate_steps = block->step_event_count - accelerate_steps;
#if ENABLED(S_CURVE_ACCELERATION)
// We won't reach the cruising rate. Let's calculate the speed we will reach
cruise_rate = final_speed(initial_rate, accel, accelerate_steps);
#endif
}
}
#if ENABLED(S_CURVE_ACCELERATION)
// Jerk controlled speed requires to express speed versus time, NOT steps
uint32_t acceleration_time = (float(cruise_rate - initial_rate) / accel) * (STEPPER_TIMER_RATE),
deceleration_time = (float(cruise_rate - final_rate) / accel) * (STEPPER_TIMER_RATE),
// And to offload calculations from the ISR, we also calculate the inverse of those times here
acceleration_time_inverse = get_period_inverse(acceleration_time),
deceleration_time_inverse = get_period_inverse(deceleration_time);
#endif
// Store new block parameters
block->accelerate_until = accelerate_steps;
block->decelerate_after = block->step_event_count - decelerate_steps;
block->initial_rate = initial_rate;
#if ENABLED(S_CURVE_ACCELERATION)
block->acceleration_time = acceleration_time;
block->deceleration_time = deceleration_time;
block->acceleration_time_inverse = acceleration_time_inverse;
block->deceleration_time_inverse = deceleration_time_inverse;
block->cruise_rate = cruise_rate;
#endif
block->final_rate = final_rate;
#if ENABLED(LASER_POWER_TRAP)
/**
* Laser Trapezoid Calculations
*
* Approximate the trapezoid with the laser, incrementing the power every `trap_ramp_entry_incr`
* steps while accelerating, and decrementing the power every `trap_ramp_exit_decr` while decelerating,
* to keep power proportional to feedrate. Laser power trap will reduce the initial power to no less
* than the laser_power_floor value. Based on the number of calculated accel/decel steps the power is
* distributed over the trapezoid entry- and exit-ramp steps.
*
* trap_ramp_active_pwr - The active power is initially set at a reduced level factor of initial
* power / accel steps and will be additively incremented using a trap_ramp_entry_incr value for each
* accel step processed later in the stepper code. The trap_ramp_exit_decr value is calculated as
* power / decel steps and is also adjusted to no less than the power floor.
*
* If the power == 0 the inline mode variables need to be set to zero to prevent stepper processing.
* The method allows for simpler non-powered moves like G0 or G28.
*
* Laser Trap Power works for all Jerk and Curve modes; however Arc-based moves will have issues since
* the segments are usually too small.
*/
if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) {
if (block->laser.power > 0) {
NOLESS(block->laser.power, laser_power_floor);
block->laser.trap_ramp_active_pwr = (block->laser.power - laser_power_floor) * (initial_rate / float(block->nominal_rate)) + laser_power_floor;
block->laser.trap_ramp_entry_incr = (block->laser.power - block->laser.trap_ramp_active_pwr) / accelerate_steps;
float laser_pwr = block->laser.power * (final_rate / float(block->nominal_rate));
NOLESS(laser_pwr, laser_power_floor);
block->laser.trap_ramp_exit_decr = (block->laser.power - laser_pwr) / decelerate_steps;
#if ENABLED(DEBUG_LASER_TRAP)
SERIAL_ECHO_MSG("lp:",block->laser.power);
SERIAL_ECHO_MSG("as:",accelerate_steps);
SERIAL_ECHO_MSG("ds:",decelerate_steps);
SERIAL_ECHO_MSG("p.trap:",block->laser.trap_ramp_active_pwr);
SERIAL_ECHO_MSG("p.incr:",block->laser.trap_ramp_entry_incr);
SERIAL_ECHO_MSG("p.decr:",block->laser.trap_ramp_exit_decr);
#endif
}
else {
block->laser.trap_ramp_active_pwr = 0;
block->laser.trap_ramp_entry_incr = 0;
block->laser.trap_ramp_exit_decr = 0;
}
}
}
#endif // LASER_POWER_TRAP
}
/* PLANNER SPEED DEFINITION
+--------+ <- current->nominal_speed
/ \
current->entry_speed -> + \
| + <- next->entry_speed (aka exit speed)
+-------------+
time -->
Recalculates the motion plan according to the following basic guidelines:
1. Go over every feasible block sequentially in reverse order and calculate the junction speeds
(i.e. current->entry_speed) such that:
a. No junction speed exceeds the pre-computed maximum junction speed limit or nominal speeds of
neighboring blocks.
b. A block entry speed cannot exceed one reverse-computed from its exit speed (next->entry_speed)
with a maximum allowable deceleration over the block travel distance.
c. The last (or newest appended) block is planned from a complete stop (an exit speed of zero).
2. Go over every block in chronological (forward) order and dial down junction speed values if
a. The exit speed exceeds the one forward-computed from its entry speed with the maximum allowable
acceleration over the block travel distance.
When these stages are complete, the planner will have maximized the velocity profiles throughout the all
of the planner blocks, where every block is operating at its maximum allowable acceleration limits. In
other words, for all of the blocks in the planner, the plan is optimal and no further speed improvements
are possible. If a new block is added to the buffer, the plan is recomputed according to the said
guidelines for a new optimal plan.
To increase computational efficiency of these guidelines, a set of planner block pointers have been
created to indicate stop-compute points for when the planner guidelines cannot logically make any further
changes or improvements to the plan when in normal operation and new blocks are streamed and added to the
planner buffer. For example, if a subset of sequential blocks in the planner have been planned and are
bracketed by junction velocities at their maximums (or by the first planner block as well), no new block
added to the planner buffer will alter the velocity profiles within them. So we no longer have to compute
them. Or, if a set of sequential blocks from the first block in the planner (or a optimal stop-compute
point) are all accelerating, they are all optimal and can not be altered by a new block added to the
planner buffer, as this will only further increase the plan speed to chronological blocks until a maximum
junction velocity is reached. However, if the operational conditions of the plan changes from infrequently
used feed holds or feedrate overrides, the stop-compute pointers will be reset and the entire plan is
recomputed as stated in the general guidelines.
Planner buffer index mapping:
- block_buffer_tail: Points to the beginning of the planner buffer. First to be executed or being executed.
- block_buffer_head: Points to the buffer block after the last block in the buffer. Used to indicate whether
the buffer is full or empty. As described for standard ring buffers, this block is always empty.
- block_buffer_planned: Points to the first buffer block after the last optimally planned block for normal
streaming operating conditions. Use for planning optimizations by avoiding recomputing parts of the
planner buffer that don't change with the addition of a new block, as describe above. In addition,
this block can never be less than block_buffer_tail and will always be pushed forward and maintain
this requirement when encountered by the Planner::release_current_block() routine during a cycle.
NOTE: Since the planner only computes on what's in the planner buffer, some motions with many short
segments (e.g., complex curves) may seem to move slowly. This is because there simply isn't
enough combined distance traveled in the entire buffer to accelerate up to the nominal speed and
then decelerate to a complete stop at the end of the buffer, as stated by the guidelines. If this
happens and becomes an annoyance, there are a few simple solutions:
- Maximize the machine acceleration. The planner will be able to compute higher velocity profiles
within the same combined distance.
- Maximize line motion(s) distance per block to a desired tolerance. The more combined distance the
planner has to use, the faster it can go.
- Maximize the planner buffer size. This also will increase the combined distance for the planner to
compute over. It also increases the number of computations the planner has to perform to compute an
optimal plan, so select carefully.
- Use G2/G3 arcs instead of many short segments. Arcs inform the planner of a safe exit speed at the
end of the last segment, which alleviates this problem.
*/
// The kernel called by recalculate() when scanning the plan from last to first entry.
void Planner::reverse_pass_kernel(block_t * const current, const block_t * const next
OPTARG(HINTS_SAFE_EXIT_SPEED, const_float_t safe_exit_speed_sqr)
) {
if (current) {
// If entry speed is already at the maximum entry speed, and there was no change of speed
// in the next block, there is no need to recheck. Block is cruising and there is no need to
// compute anything for this block,
// If not, block entry speed needs to be recalculated to ensure maximum possible planned speed.
const float max_entry_speed_sqr = current->max_entry_speed_sqr;
// Compute maximum entry speed decelerating over the current block from its exit speed.
// If not at the maximum entry speed, or the previous block entry speed changed
if (current->entry_speed_sqr != max_entry_speed_sqr || (next && next->flag.recalculate)) {
// If nominal length true, max junction speed is guaranteed to be reached.
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
// the current block and next block junction speeds are guaranteed to always be at their maximum
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks.
const float next_entry_speed_sqr = next ? next->entry_speed_sqr : _MAX(TERN0(HINTS_SAFE_EXIT_SPEED, safe_exit_speed_sqr), sq(float(MINIMUM_PLANNER_SPEED))),
new_entry_speed_sqr = current->flag.nominal_length
? max_entry_speed_sqr
: _MIN(max_entry_speed_sqr, max_allowable_speed_sqr(-current->acceleration, next_entry_speed_sqr, current->millimeters));
if (current->entry_speed_sqr != new_entry_speed_sqr) {