forked from bghojogh/Affective-Manifold
-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_siamese.py
195 lines (157 loc) · 6.56 KB
/
main_siamese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# triplet loss resnet pytorch:
# https://www.kaggle.com/code/hirotaka0122/triplet-loss-with-pytorch/notebook
import time
import os
import torch
import random
import numpy as np
import pandas as pd
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
import matplotlib.pyplot as plt
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
import json
with open('./configs/config.json') as f:
config = json.load(f)
torch.manual_seed(2020)
np.random.seed(2020)
random.seed(2020)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device.type == "cuda":
torch.cuda.get_device_name()
class MNIST(Dataset):
def __init__(self, df, train=True, transform=None):
self.is_train = train
self.transform = transform
self.to_pil = transforms.ToPILImage()
if self.is_train:
self.images = df.iloc[:, 1:].values.astype(np.uint8)
self.labels = df.iloc[:, 0].values
self.index = df.index.values
else:
self.images = df.values.astype(np.uint8)
def __len__(self):
return len(self.images)
def __getitem__(self, item):
anchor_img = self.images[item].reshape(28, 28, 1)
if self.is_train:
anchor_label = self.labels[item]
positive_list = self.index[self.index!=item][self.labels[self.index!=item]==anchor_label]
positive_item = random.choice(positive_list)
positive_img = self.images[positive_item].reshape(28, 28, 1)
negative_list = self.index[self.index!=item][self.labels[self.index!=item]!=anchor_label]
negative_item = random.choice(negative_list)
negative_img = self.images[negative_item].reshape(28, 28, 1)
if self.transform:
anchor_img = self.transform(self.to_pil(anchor_img))
positive_img = self.transform(self.to_pil(positive_img))
negative_img = self.transform(self.to_pil(negative_img))
return anchor_img, positive_img, negative_img, anchor_label
else:
if self.transform:
anchor_img = self.transform(self.to_pil(anchor_img))
return anchor_img
class TripletLoss(nn.Module):
def __init__(self, margin=1.0):
super(TripletLoss, self).__init__()
self.margin = margin
def calc_euclidean(self, x1, x2):
return (x1 - x2).pow(2).sum(1)
def forward(self, anchor: torch.Tensor, positive: torch.Tensor, negative: torch.Tensor) -> torch.Tensor:
distance_positive = self.calc_euclidean(anchor, positive)
distance_negative = self.calc_euclidean(anchor, negative)
losses = torch.relu(distance_positive - distance_negative + self.margin)
return losses.mean()
class Network(nn.Module):
def __init__(self, emb_dim=128):
super(Network, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 32, 5),
nn.PReLU(),
nn.MaxPool2d(2, stride=2),
nn.Dropout(0.3),
nn.Conv2d(32, 64, 5),
nn.PReLU(),
nn.MaxPool2d(2, stride=2),
nn.Dropout(0.3)
)
self.fc = nn.Sequential(
nn.Linear(64*4*4, 512),
nn.PReLU(),
nn.Linear(512, emb_dim)
)
def forward(self, x):
x = self.conv(x)
x = x.view(-1, 64*4*4)
x = self.fc(x)
# x = nn.functional.normalize(x)
return x
def init_weights(m):
if isinstance(m, nn.Conv2d):
torch.nn.init.kaiming_normal_(m.weight)
def load_dataset():
train_df = pd.read_csv(config['path_dataset']+"train.csv")
test_df = pd.read_csv(config['path_dataset']+"test.csv")
train_ds = MNIST(train_df,
train=True,
transform=transforms.Compose([
transforms.ToTensor()
]))
train_loader = DataLoader(train_ds, batch_size=config['batch_size'], shuffle=True, num_workers=4)
test_ds = MNIST(test_df, train=False, transform=transforms.ToTensor())
test_loader = DataLoader(test_ds, batch_size=config['batch_size'], shuffle=False, num_workers=4)
return train_loader, test_loader
def main():
train_loader, test_loader = load_dataset()
model = Network(config['embedding_dims'])
model.apply(init_weights)
model = torch.jit.script(model).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = torch.jit.script(TripletLoss())
model.train()
for epoch in tqdm(range(config['epochs']), desc="Epochs"):
running_loss = []
for step, (anchor_img, positive_img, negative_img, anchor_label) in enumerate(tqdm(train_loader, desc="Training", leave=False)):
anchor_img = anchor_img.to(device)
positive_img = positive_img.to(device)
negative_img = negative_img.to(device)
optimizer.zero_grad()
anchor_out = model(anchor_img)
positive_out = model(positive_img)
negative_out = model(negative_img)
loss = criterion(anchor_out, positive_out, negative_out)
loss.backward()
optimizer.step()
running_loss.append(loss.cpu().detach().numpy())
print("Epoch: {}/{} - Loss: {:.4f}".format(epoch+1, config['epochs'], np.mean(running_loss)))
# save the model:
if not os.path.exists(config['path_log']):
os.makedirs(config['path_log'])
torch.save({"model_state_dict": model.state_dict(),
"optimzier_state_dict": optimizer.state_dict()
}, config['path_log']+"trained_model.pth")
# get the embedding of training data:
train_results = []
labels = []
model.eval()
with torch.no_grad():
for img, _, _, label in tqdm(train_loader):
train_results.append(model(img.to(device)).cpu().numpy())
labels.append(label)
train_results = np.concatenate(train_results)
labels = np.concatenate(labels)
# save the embedding of training data:
np.save(config['path_log']+"train_results.npy", train_results)
np.save(config['path_log']+"labels.npy", labels)
# plot the embedding of training data:
plt.figure(figsize=(15, 10), facecolor="azure")
for label in np.unique(labels):
tmp = train_results[labels==label]
plt.scatter(tmp[:, 0], tmp[:, 1], label=label)
plt.legend()
plt.savefig(config['path_log']+"embedding.png")
plt.show()
if __name__ == "__main__":
main()