forked from bghojogh/Affective-Manifold
-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_affective.py
255 lines (212 loc) · 10.3 KB
/
main_affective.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import time
import os
import torch
import random
import numpy as np
import pandas as pd
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
import matplotlib.pyplot as plt
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
import json
with open('./configs/config.json') as f:
config = json.load(f)
torch.manual_seed(2020)
np.random.seed(2020)
random.seed(2020)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device.type == "cuda":
torch.cuda.get_device_name()
class MNIST(Dataset):
def __init__(self, df, train=True, transform=None):
self.is_train = train
self.transform = transform
self.to_pil = transforms.ToPILImage()
if self.is_train:
self.images = df.iloc[:, 1:].values.astype(np.uint8)
self.labels = df.iloc[:, 0].values
self.index = df.index.values
else:
self.images = df.values.astype(np.uint8)
# if len(config['margin_matrix']) != len(np.unique(self.labels)):
n_classes = len(config['margin_matrix'])
if self.is_train:
self.images = self.images[self.labels < n_classes, :]
self.labels = self.labels[self.labels < n_classes]
self.index = np.asarray([i for i in range(self.images.shape[0])])
def __len__(self):
return len(self.images)
def __getitem__(self, item):
anchor_img = self.images[item].reshape(28, 28, 1)
if self.is_train:
anchor_label = self.labels[item]
positive_list = self.index[self.index!=item][self.labels[self.index!=item]==anchor_label]
positive_item = random.choice(positive_list)
positive_img = self.images[positive_item].reshape(28, 28, 1)
negative_list = self.index[self.index!=item][self.labels[self.index!=item]!=anchor_label]
negative_item = random.choice(negative_list)
negative_img = self.images[negative_item].reshape(28, 28, 1)
negative_label = self.labels[negative_item]
if self.transform:
anchor_img = self.transform(self.to_pil(anchor_img))
positive_img = self.transform(self.to_pil(positive_img))
negative_img = self.transform(self.to_pil(negative_img))
return anchor_img, positive_img, negative_img, anchor_label, negative_label
else:
if self.transform:
anchor_img = self.transform(self.to_pil(anchor_img))
return anchor_img
class TripletLoss(nn.Module):
def __init__(self, margin=1.0):
super(TripletLoss, self).__init__()
self.margin = margin
def calc_euclidean(self, x1, x2):
return (x1 - x2).pow(2).sum(1)
def forward(self, anchor_output: torch.Tensor, positive_output: torch.Tensor, negative_output: torch.Tensor) -> torch.Tensor:
distance_positive = self.calc_euclidean(anchor_output, positive_output)
distance_negative = self.calc_euclidean(anchor_output, negative_output)
losses = torch.relu(distance_positive - distance_negative + self.margin)
return losses.mean()
class TripletLossMultipleMargins(nn.Module):
def __init__(self, margin_matrix):
super(TripletLossMultipleMargins, self).__init__()
self.margin_matrix = margin_matrix
def calc_euclidean(self, x1, x2):
return (x1 - x2).pow(2).sum(1)
def forward(self, anchor_output: torch.Tensor, positive_output: torch.Tensor, negative_output: torch.Tensor,
anchor_label, negative_label) -> torch.Tensor:
distance_positive = self.calc_euclidean(anchor_output, positive_output)
distance_negative = self.calc_euclidean(anchor_output, negative_output)
batch_size = anchor_output.shape[0]
term_before_clipping_with_zero = torch.empty(batch_size,)
for sample_index in range(batch_size):
margin = self.margin_matrix[anchor_label[sample_index], negative_label[sample_index]]
term_before_clipping_with_zero[sample_index] = distance_positive[sample_index] - distance_negative[sample_index] + margin
losses = torch.relu(term_before_clipping_with_zero)
return losses.mean()
class DistanceLossMultipleMargins(nn.Module):
def __init__(self, margin_matrix):
super(DistanceLossMultipleMargins, self).__init__()
self.margin_matrix = margin_matrix
self.mse_loss = torch.nn.MSELoss()
self.negative_tune_method = 'actual_distance' #--> actual_distance, greater_than_threshold --> NOTE: actual_distance works better for affective manifold
def calc_euclidean(self, x1, x2):
return (x1 - x2).norm(p=2, dim=1)
def forward(self, anchor_output: torch.Tensor, positive_output: torch.Tensor, negative_output: torch.Tensor,
anchor_label, negative_label) -> torch.Tensor:
loss_for_positives = self.mse_loss(anchor_output, positive_output)
distance_negative = self.calc_euclidean(anchor_output, negative_output)
batch_size = anchor_output.shape[0]
loss_for_negatives = torch.zeros(1,)
for sample_index in range(batch_size):
margin = self.margin_matrix[anchor_label[sample_index], negative_label[sample_index]]
if self.negative_tune_method == 'actual_distance':
loss_for_negatives += torch.linalg.norm(margin - distance_negative[sample_index]).pow(2)
elif self.negative_tune_method == 'greater_than_threshold':
loss_for_negatives += torch.maximum(margin - distance_negative[sample_index], torch.zeros(1,)).pow(2)
loss_for_negatives /= batch_size
losses = loss_for_positives + loss_for_negatives
return losses.mean()
class Network(nn.Module):
def __init__(self, emb_dim=128):
super(Network, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 32, 5),
nn.PReLU(),
nn.MaxPool2d(2, stride=2),
nn.Dropout(0.3),
nn.Conv2d(32, 64, 5),
nn.PReLU(),
nn.MaxPool2d(2, stride=2),
nn.Dropout(0.3)
)
self.fc = nn.Sequential(
nn.Linear(64*4*4, 512),
nn.PReLU(),
nn.Linear(512, emb_dim)
)
def forward(self, x):
x = self.conv(x)
x = x.view(-1, 64*4*4)
x = self.fc(x)
# x = nn.functional.normalize(x)
return x
def init_weights(m):
if isinstance(m, nn.Conv2d):
torch.nn.init.kaiming_normal_(m.weight)
def load_dataset():
train_df = pd.read_csv(config['path_dataset']+"train.csv")
test_df = pd.read_csv(config['path_dataset']+"test.csv")
train_ds = MNIST(train_df,
train=True,
transform=transforms.Compose([
transforms.ToTensor()
]))
train_loader = DataLoader(train_ds, batch_size=config['batch_size'], shuffle=True, num_workers=4)
test_ds = MNIST(test_df, train=False, transform=transforms.ToTensor())
test_loader = DataLoader(test_ds, batch_size=config['batch_size'], shuffle=False, num_workers=4)
return train_loader, test_loader
def main():
train_loader, test_loader = load_dataset()
model = Network(config['embedding_dims'])
model.apply(init_weights)
model = torch.jit.script(model).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
if config['method'] == 'triplet_single_margin':
criterion = torch.jit.script(TripletLoss())
elif config['method'] == 'triplet_multiple_margins':
margin_matrix = np.asarray(config['margin_matrix'])
criterion = torch.jit.script(TripletLossMultipleMargins(margin_matrix=torch.from_numpy(margin_matrix)))
elif config['method'] == 'distance_multiple_margins':
margin_matrix = np.asarray(config['margin_matrix'])
criterion = DistanceLossMultipleMargins(margin_matrix=torch.from_numpy(margin_matrix))
model.train()
for epoch in tqdm(range(config['epochs']), desc="Epochs"):
running_loss = []
for step, (anchor_img, positive_img, negative_img, anchor_label, negative_label) in enumerate(tqdm(train_loader, desc="Training", leave=False)):
anchor_img = anchor_img.to(device)
positive_img = positive_img.to(device)
negative_img = negative_img.to(device)
optimizer.zero_grad()
anchor_out = model(anchor_img)
positive_out = model(positive_img)
negative_out = model(negative_img)
if config['method'] == 'triplet_single_margin':
loss = criterion(anchor_out, positive_out, negative_out)
elif (config['method'] == 'triplet_multiple_margins') or (config['method'] == 'distance_multiple_margins'):
loss = criterion(anchor_out, positive_out, negative_out, anchor_label, negative_label)
loss.backward()
optimizer.step()
running_loss.append(loss.cpu().detach().numpy())
print("Epoch: {}/{} - Loss: {:.4f}".format(epoch+1, config['epochs'], np.mean(running_loss)))
# save the model:
if not os.path.exists(config['path_log']):
os.makedirs(config['path_log'])
torch.save({"model_state_dict": model.state_dict(),
"optimzier_state_dict": optimizer.state_dict()
}, config['path_log']+"trained_model.pth")
# get the embedding of training data:
train_results = []
labels = []
model.eval()
with torch.no_grad():
for img, _, _, label, _ in tqdm(train_loader):
train_results.append(model(img.to(device)).cpu().numpy())
labels.append(label)
train_results = np.concatenate(train_results)
labels = np.concatenate(labels)
# save the embedding of training data:
np.save(config['path_log']+"train_results.npy", train_results)
np.save(config['path_log']+"labels.npy", labels)
# plot the embedding of training data:
plt.figure(figsize=(15, 10), facecolor="azure")
for label_index, label in enumerate(np.unique(labels)):
tmp = train_results[labels==label]
plt.scatter(tmp[:, 0], tmp[:, 1], label=config['class_names'][label_index])
plt.legend()
plt.savefig(config['path_log']+"embedding.png")
plt.show()
if __name__ == "__main__":
main()