-
-
Notifications
You must be signed in to change notification settings - Fork 319
/
Copy pathrun-benchmark.jl
141 lines (110 loc) · 5 KB
/
run-benchmark.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#= TODOs
1) Use one GH-Action job in the end to merge all results and comment in one go (instead of merging with existing comment)
2) Improve analysis of benchmark resutls to account for the variance in the benchmarks.
3) Upload raw benchmark data as artifacts to e.g. create plots from It
=#
using Pkg
Pkg.activate(@__DIR__)
Pkg.instantiate()
pkg"registry up"
Pkg.update()
using JSON, AlgebraOfGraphics, CairoMakie, DataFrames, Bootstrap
using Statistics: median
Package = ARGS[1]
n_samples = length(ARGS) > 1 ? parse(Int, ARGS[2]) : 7
base_branch = length(ARGS) > 2 ? ARGS[3] : "master"
# Package = "CairoMakie"
# n_samples = 2
# base_branch = "breaking-release"
@info("Benchmarking $(Package) against $(base_branch) with $(n_samples) samples")
function run_benchmarks(projects; n=n_samples)
benchmark_file = joinpath(@__DIR__, "benchmark-ttfp.jl")
# go A, A, B, B, A, A, B, B, etc. because if A or B have some effect on their
# subsequent run, then we distribute those more evenly. If we used A, B, A, B then
# B would always influence A and A always B which might bias the results (something
# that can carry over separate processes like thermal throttling or so)
A, B = projects
As = Iterators.partition(fill(A, n), 2)
Bs = Iterators.partition(fill(B, n), 2)
for project in Iterators.flatten(Iterators.flatten(zip(As, Bs)))
println(basename(project))
run(`$(Base.julia_cmd()) --startup-file=no --project=$(project) $benchmark_file $Package`)
end
return
end
function make_project_folder(name)
result = "$name-benchmark.json"
isfile(result) && rm(result) # remove old benchmark resutls
project = joinpath(@__DIR__, "benchmark-projects", name)
# It seems, that between julia versions, the manifest must be deleted to not get problems
isdir(project) && rm(project; force=true, recursive=true)
mkpath(project)
return project
end
ENV["JULIA_PKG_PRECOMPILE_AUTO"] = 0
project1 = make_project_folder("current-pr")
Pkg.activate(project1)
if Package == "WGLMakie"
Pkg.add([(; name="Electron")])
end
pkgs = NamedTuple[(; path="./MakieCore"), (; path="."), (; path="./$Package")]
# cd("dev/Makie")
Pkg.develop(pkgs)
Pkg.add([(; name="JSON")])
@time Pkg.precompile()
project2 = make_project_folder(base_branch)
Pkg.activate(project2)
pkgs = [(; rev=base_branch, name="MakieCore"), (; rev=base_branch, name="Makie"), (; rev=base_branch, name="$Package"), (;name="JSON")]
Package == "WGLMakie" && push!(pkgs, (; name="Electron"))
Pkg.add(pkgs)
@time Pkg.precompile()
projects = [project1, project2]
projnames = map(basename, [project1, project2])
run_benchmarks(projects)
json_files = map(projnames) do pname
"$(pname)-benchmark.json"
end
colnames = ["using", "first create", "first display", "create", "display"]
df = reduce(vcat, map(json_files, projnames) do filename, pname
arrs = map(x -> map(identity, x), JSON.parsefile(filename))
df = DataFrame(colnames .=> arrs)
df.name .= pname
df
end)
##
fgrid = AlgebraOfGraphics.data(df) *
mapping(:name, colnames .=> (x -> x / 1e9) .=> "time (s)", color = :name, layout = dims(1) => renamer(colnames)) *
visual(RainClouds, orientation = :horizontal, markersize = 5, show_median = false, plot_boxplots = false) |>
draw(
scales(Color = (; legend = false)),
facet = (; linkxaxes = false),
axis = (; xticklabelrotation = pi/4, width = 200, height = 150),
figure = (; title = "$Package Benchmarks")
)
df_current_pr = df[df.name .== projnames[1], :]
df_base_branch = df[df.name .== projnames[2], :]
medians_df = map(names(df_current_pr, Not(:name))) do colname
col_base = df_base_branch[!, colname]
col_pr = df_current_pr[!, colname]
medians_base = bootstrap(median, col_base, Bootstrap.BasicSampling(1000))
medians_pr = bootstrap(median, col_pr, Bootstrap.BasicSampling(1000))
ratios = Bootstrap.straps(medians_pr)[1] ./ Bootstrap.straps(medians_base)[1]
colname => ratios
end |> DataFrame
specmedians = AlgebraOfGraphics.data(stack(medians_df)) *
mapping(:variable => presorted => "", :value => "Ratios of medians\n$(projnames[1]) / $(projnames[2])") * visual(Violin, show_median = true)
background_bands = AlgebraOfGraphics.pregrouped([0.75:0.05:1.20], [0.8:0.05:1.25]) *
AlgebraOfGraphics.visual(HSpan, color = range(-1, 1, length = 10), colormap = [:green, :white, :tomato], alpha = 0.5)
zeroline = AlgebraOfGraphics.pregrouped([1]) * AlgebraOfGraphics.visual(HLines, color = :gray60)
spec = background_bands + zeroline + specmedians
AlgebraOfGraphics.draw!(fgrid.figure[2, 3], spec, axis = (;
yaxisposition = :right,
xticklabelrotation = pi/4,
title = "Bootstrapped median ratios",
yautolimitmargin = (0, 0),
yticks = WilkinsonTicks(7, k_min = 5),
))
resize_to_layout!(fgrid.figure)
##
mkpath("benchmark_results")
save(joinpath("benchmark_results", "$Package.svg"), fgrid)