-
Notifications
You must be signed in to change notification settings - Fork 0
/
calculation.py
416 lines (361 loc) · 17.6 KB
/
calculation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
from turtle import speed
import numpy as np
import speedCalc as tri
# limit the number of cpus used by high performance libraries
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import sys
sys.path.insert(0, './yolov5')
from datetime import timedelta, datetime
import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from yolov5.models.experimental import attempt_load
from yolov5.utils.downloads import attempt_download
from yolov5.models.common import DetectMultiBackend
from yolov5.utils.datasets import LoadImages, LoadStreams
from yolov5.utils.general import (LOGGER, check_img_size, non_max_suppression, scale_coords,
check_imshow, xyxy2xywh, increment_path)
from yolov5.utils.torch_utils import select_device, time_sync
from yolov5.utils.plots import Annotator, colors
from deep_sort.utils.parser import get_config
from deep_sort.deep_sort import DeepSort
import calibration
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # yolov5 deepsort root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
# Stereo vision setup parameters
frame_rate = 60 # Camera frame rate (maximum at 120 fps)
B = 10.5 # Distance between the cameras [cm]
focal = 1 # Camera lense's focal length [mm]
alpha = 70.42 # Camera field of view in the horisontal plane [degrees]
observer_speed = 30 #observer speed in km/h, constant
frame_interval = 30
def detect(opt):
out, source1, source2, yolo_model, deep_sort_model, show_vid, save_vid, save_txt, imgsz, evaluate, half, project, name, exist_ok = \
opt.output, '1', '2', opt.yolo_model, opt.deep_sort_model, opt.show_vid, opt.save_vid, \
opt.save_txt, opt.imgsz, opt.evaluate, opt.half, opt.project, opt.name, opt.exist_ok
webcam = source1 == '1'
# or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
webcam = source2 == '2'
# or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# initialize deepsort
cfg = get_config()
cfg.merge_from_file(opt.config_deepsort)
deepsort1 = DeepSort(deep_sort_model,
max_dist=cfg.DEEPSORT.MAX_DIST,
max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
use_cuda=True)
deepsort2 = DeepSort(deep_sort_model,
max_dist=cfg.DEEPSORT.MAX_DIST,
max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
use_cuda=True)
# Initialize
device = select_device(opt.device)
half &= device.type != 'cpu' # half precision only supported on CUDA
# The MOT16 evaluation runs multiple inference streams in parallel, each one writing to
# its own .txt file. Hence, in that case, the output folder is not restored
if not evaluate:
if os.path.exists(out):
pass
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
# Directories
save_dir = increment_path(Path(project) / name,
exist_ok=exist_ok) # increment run
save_dir.mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(yolo_model, device=device, dnn=opt.dnn)
stride, names, pt, jit, _ = model.stride, model.names, model.pt, model.jit, model.onnx
imgsz = check_img_size(imgsz, s=stride) # check image size
# Half
# half precision only supported by PyTorch on CUDA
half &= pt and device.type != 'cpu'
if pt:
model.model.half() if half else model.model.float()
# Set Dataloader
vid_path, vid_writer = None, None
# Check if environment supports image displays
if show_vid:
show_vid = check_imshow()
# Dataloader
if webcam:
show_vid = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(
[source1, source2], img_size=imgsz, stride=stride, auto=pt and not jit)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(source1, img_size=imgsz,
stride=stride, auto=pt and not jit)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# if webcam2:
# show_vid = check_imshow()
# cudnn.benchmark = True # set True to speed up constant image size inference
# dataset = LoadStreams([source1,source2], img_size=imgsz, stride=stride, auto=pt and not jit)
# bs = len(dataset) # batch_size
# else:
# dataset = LoadImages(source2, img_size=imgsz, stride=stride, auto=pt and not jit)
# bs = 1 # batch_size
# vid_path, vid_writer = [None] * bs, [None] * bs
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
# extract what is in between the last '/' and last '.'
txt_file_name = source1.split('/')[-1].split('.')[0]
txt_path = str(Path(save_dir)) + '/' + txt_file_name + '.txt'
if pt and device.type != 'cpu':
model(torch.zeros(
1, 3, *imgsz).to(device).type_as(next(model.model.parameters()))) # warmup
dt, seen = [0.0, 0.0, 0.0, 0.0], 0
center_points = {}
# {
# "frame_id_0": {
# "track_idx_0" : (0,1),
# "track_idx_1" : (0,1),
# },
# "frame_id_1": {
# "track_idx_0" : (0,1),
# "track_idx_1" : (0,1),
# },
# }
depths = {}
# {
# "track_idx_0" : float,
# "track_idx_1" : float,
# }
speed = {}
# {
# "track_idx_0" : float,
# "track_idx_1" : float,
# }
frames = {}
# {
# "frame_id_0" : frame1,
# "frame_id_1" : frame2,
# }
time_last_capture = datetime.now()
for frame_idx, (path, img, im0s, vid_cap, s) in enumerate(dataset):
fps = vid_cap.get(cv2.CAP_PROP_FPS) if vid_cap else 30
t1 = time_sync()
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
t2 = time_sync()
dt[0] += t2 - t1
# Inference
visualize = increment_path(
save_dir / Path(path).stem, mkdir=True) if opt.visualize else False
pred = model(img, augment=opt.augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# Apply NMS
pred = non_max_suppression(
pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms, max_det=opt.max_det)
dt[2] += time_sync() - t3
# Process detections
for i, det in enumerate(pred): # detections per image
frame_center_points = {}
seen += 1
if webcam: # batch_size >= 1
p, im0, _ = path[i], im0s[i].copy(), dataset.count
s = f'{i}: '
else:
p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)
# if webcam2: # batch_size >= 1
# p, im0, _ = path[i], im0s[i].copy(), dataset.count
# s += f'{i}: '
# else:
# p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)
frames[i] = np.asarray(im0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ...
s += '%gx%g ' % img.shape[2:] # print string
# normalization gain whwh
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]
annotator = Annotator(im0, line_width=2, pil=not ascii)
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(
img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
# add to string
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "
xywhs = xyxy2xywh(det[:, 0:4])
confs = det[:, 4]
clss = det[:, 5]
# pass detections to deepsort
t4 = time_sync()
outputs = deepsort1.update(
xywhs.cpu(), confs.cpu(), clss.cpu(), im0, i)
# if i == 0:
# outputs = deepsort1.update(
# xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
# else:
# outputs = deepsort2.update(
# xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
t5 = time_sync()
dt[3] += t5 - t4
t_time = 3
# draw boxes for visualization
if len(outputs) > 0:
for j, (output, conf) in enumerate(zip(outputs, confs)):
bboxes = output[0:4]
x, y, w, h = (output[0], output[1], output[2] - output[0], output[3] - output[1])
id = output[4]
cls = output[5]
time_now = datetime.now()
frame_center_points[id] = (x + int(w / 2), y + int(h / 2))
center_points[i] = frame_center_points
if (i == 1 and center_points.get(0) and center_points[0].get(id) and center_points[1].get(id)):
if time_now - time_last_capture >= timedelta(seconds=t_time):
if j == len(outputs) - 1:
time_last_capture = time_now
frame_right, frame_left = frames[0], frames[1]
frame_right, frame_left = calibration.undistortRectify(frame_right, frame_left)
current_depth = tri.find_depth(
center_points[0][id], center_points[1][id], frame_right, frame_left, B, focal, alpha)
print("TEST", center_points, depths, current_depth)
obs_dist = observer_speed * (1/3.6) * t_time
if depths.get(id):
# for i in range(len(sorted_value)):
prev_depth = depths[id]
if current_depth == prev_depth:
speed[id] = observer_speed
elif current_depth - prev_depth == obs_dist:
speed[id] = 0
else:
speed[id] = ((current_depth - prev_depth + obs_dist) / t_time) * 3.6
depths[id] = current_depth
c = int(cls) # integer class
if i == 1 and depths.get(id) and speed.get(id):
label = f'{id} {names[c]} {depths[id]:.2f} meters {speed[id]:.2f} km/h'
elif i == 1 and depths.get(id):
label = f'{id} {names[c]} {depths[id]:.2f} meters'
else:
label = f'{id} {names[c]}'
annotator.box_label(
bboxes, label, color=colors(c, True))
if save_txt:
# to MOT format
bbox_left = output[0]
bbox_top = output[1]
bbox_w = output[2] - output[0]
bbox_h = output[3] - output[1]
# Write MOT compliant results to file
with open(txt_path, 'a') as f:
f.write(('%g ' * 10 + '\n') % (frame_idx + 1, id, bbox_left, # MOT format
bbox_top, bbox_w, bbox_h, -1, -1, -1, -1))
LOGGER.info(
f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)')
else:
deepsort1.increment_ages()
# if i == 0:
# deepsort1.increment_ages()
# else:
# deepsort2.increment_ages()
LOGGER.info('No detections')
# Stream results
im = annotator.result()
if show_vid:
cv2.imshow(str(p), im)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_vid:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
vid_writer = cv2.VideoWriter(
save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms deep sort update \
per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_vid:
print('Results saved to %s' % save_path)
if platform == 'darwin': # MacOS
os.system('open ' + save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--yolo_model', nargs='+', type=str,
default='yolov5m.pt', help='model.pt path(s)')
parser.add_argument('--deep_sort_model', type=str, default='osnet_x0_25')
parser.add_argument('--source1', type=str, default='1',
help='source') # file/folder, 0 for webcam
parser.add_argument('--source2', type=str, default='2',
help='source') # file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='inference/output',
help='output folder') # output folder
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+',
type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float,
default=0.3, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float,
default=0.5, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v',
help='output video codec (verify ffmpeg support)')
parser.add_argument('--device', default='',
help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--show-vid', action='store_true',
help='display tracking video results')
parser.add_argument('--save-vid', action='store_true',
help='save video tracking results')
parser.add_argument('--save-txt', action='store_true',
help='save MOT compliant results to *.txt')
# class 0 is person, 1 is bycicle, 2 is car... 79 is oven
parser.add_argument('--classes', nargs='+', type=int,
help='filter by class: --class 0, or --class 16 17')
parser.add_argument('--agnostic-nms', action='store_true',
help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true',
help='augmented inference')
parser.add_argument('--evaluate', action='store_true',
help='augmented inference')
parser.add_argument("--config_deepsort", type=str,
default="deep_sort/configs/deep_sort.yaml")
parser.add_argument("--half", action="store_true",
help="use FP16 half-precision inference")
parser.add_argument('--visualize', action='store_true',
help='visualize features')
parser.add_argument('--max-det', type=int, default=1000,
help='maximum detection per image')
parser.add_argument('--dnn', action='store_true',
help='use OpenCV DNN for ONNX inference')
parser.add_argument('--project', default=ROOT /
'runs/track', help='save results to project/name')
parser.add_argument('--name', default='exp',
help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true',
help='existing project/name ok, do not increment')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
with torch.no_grad():
detect(opt)