forked from Ekeany/XGBoost-From-Scratch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNaive-Gradient-Boosting.py
259 lines (210 loc) · 10.3 KB
/
Naive-Gradient-Boosting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import numpy as np
import pandas as pd
from math import e
class Node:
'''
This class defines a node which creates a tree structure by recursively calling itself
whilst checking a number of ending parameters such as depth and min_leaf. It uses an exact greedy method
to exhaustively scan every possible split point. The gain metric of choice is conservation of varience.
This is a Naive solution and does not comapre to Frieman's 2001 Gradient Boosting Machines
Input
------------------------------------------------------------------------------------------
X: Pandas dataframe
y: Pandas Series
idxs: indices of values used to keep track of splits points in tree
predictions: are the predictions of a gradient boosting algorthim thus far used to calculate the leaf values
min_leaf: minimum number of samples needed to be classified as a node
depth: sets the maximum depth allowed
classification: a flag that indicates if the problem is regression or binary classification
Output
---------------------------------------------------------------------------------------------
Regression tree that can either be used for classification or regression
'''
def __init__(self, x, y, idxs, classification, predictions, min_leaf=5, depth = 10):
self.x, self.y = x, y
self.idxs = idxs
self.depth = depth
self.min_leaf = min_leaf
self.row_count = len(idxs)
self.col_count = x.shape[1]
self.classification = classification
self.predictions = predictions
if classification:
self.val = self.compute_leaf_value(y[idxs], predictions[idxs])
else:
self.val = np.mean(y[idxs])
self.score = float('inf')
self.find_varsplit()
def find_varsplit(self):
'''
Scans through every column and calcuates the best split point.
The node is then split at this point and two new nodes are created.
Depth is only parameter to change as we have added a new layer to tre structure.
If no split is better than the score initalised at the begining then no splits further splits are made
'''
for c in range(self.col_count): self.find_better_split(c)
if self.is_leaf: return
x = self.split_col
lhs = np.nonzero(x <= self.split)[0]
rhs = np.nonzero(x > self.split)[0]
self.lhs = Node(self.x, self.y, self.idxs[lhs], self.classification, self.predictions, self.min_leaf, depth = self.depth-1)
self.rhs = Node(self.x, self.y, self.idxs[rhs], self.classification, self.predictions, self.min_leaf, depth = self.depth-1)
def find_better_split(self, var_idx):
'''
For a given feature calculates the gain at each split.
Globally updates the best score if a better split point is found
'''
x = self.x.values[self.idxs, var_idx]
for r in range(self.row_count):
lhs = x <= x[r]
rhs = x > x[r]
if rhs.sum() < self.min_leaf or lhs.sum() < self.min_leaf: continue
curr_score = self.find_score(lhs, rhs)
if curr_score < self.score:
self.var_idx = var_idx
self.score = curr_score
self.split = x[r]
def find_score(self, lhs, rhs):
'''
Calculates or metric for evaluating split use standard deviation chooses splits where standard
deviation is low as it means these points are similar and can be grouped together.
'''
y = self.y[self.idxs]
lhs_std = y[lhs].std()
rhs_std = y[rhs].std()
return lhs_std * lhs.sum() + rhs_std * rhs.sum()
def compute_leaf_value(self, leaf_values, predictions):
'''
if we are constructing a GBM classifier this is the optimal leaf node
value.
'''
p = self.sigmoid(predictions)
denominator = p*(1- p)
return(np.sum(leaf_values)/np.sum(denominator))
@staticmethod
def sigmoid(x):
return 1 / (1 + np.exp(-x))
@property
def split_col(self):
return self.x.values[self.idxs,self.var_idx]
@property
def is_leaf(self):
return self.score == float('inf') or self.depth <= 0
def predict(self, x):
return np.array([self.predict_row(xi) for xi in x])
def predict_row(self, xi):
if self.is_leaf: return self.val
node = self.lhs if xi[self.var_idx] <= self.split else self.rhs
return node.predict_row(xi)
class DecisionTreeRegressor:
'''
Wrapper class that provides a scikit learn interface to the recursive regression tree above
Input
------------------------------------------------------------------------------------------
X: Pandas dataframe
y: Pandas Series
idxs: indices of values used to keep track of splits points in tree
predictions: are the predictions of a gradient boosting algorthim thus far used to calculate the leaf values
min_leaf: minimum number of samples needed to be classified as a node
depth: sets the maximum depth allowed
classification: a flag that indicates if the problem is regression or binary classification
'''
def fit(self, X, y, classification ,min_leaf = 5, depth = 5, predictions = []):
self.dtree = Node(x = X, y = y, idxs = np.array(np.arange(len(y))), predictions = predictions, min_leaf = min_leaf, depth = depth, classification = classification)
return self
def predict(self, X):
return self.dtree.predict(X.values)
class GradientBoostingClassification:
'''
Applies the methododlgy of gradeint boosting for binary classification only.
Uses the Binary logistic loss function to calculate the negative derivate.
Input
------------------------------------------------------------------------------------------
X: Pandas dataframe
y: Pandas Series
min_leaf: minimum number of samples needed to be classified as a node
depth: sets the maximum depth allowed
Boosting_Rounds: number of boosting rounds or iterations
Output
---------------------------------------------------------------------------------------------
Gradient boosting machine that can be used for binary classification.
'''
def __init__(self):
self.estimators = []
@staticmethod
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def negativeDerivitiveLogloss(self, y, log_odds):
p = self.sigmoid(log_odds)
return(y - p)
@staticmethod
def log_odds(column):
'''
Calculates the initial log odds prediction of the taget variable
'''
if isinstance(column, pd.Series):
binary_yes = np.count_nonzero(column.values == 1)
binary_no = np.count_nonzero(column.values == 0)
elif isinstance(column, list):
column = np.array(column)
binary_yes = np.count_nonzero(column == 1)
binary_no = np.count_nonzero(column == 0)
else:
binary_yes = np.count_nonzero(column == 1)
binary_no = np.count_nonzero(column == 0)
value = np.log(binary_yes/binary_no)
return(np.full((len(column), 1), value).flatten())
def fit(self, X, y, depth = 5, min_leaf = 5, learning_rate = 0.1, boosting_rounds = 5):
# use the log odds value of the target variable as our inital prediction
self.learning_rate = learning_rate
self.base_pred = self.log_odds(y)
for booster in range(boosting_rounds):
# Calculate the initial Pseudo Residuals using Base Prediction.
pseudo_residuals = self.negativeDerivitiveLogloss(y, self.base_pred)
# Approximate the residuals
boosting_tree = DecisionTreeRegressor().fit(X = X, y = pseudo_residuals, depth = 5, min_leaf = 5, classification = True , predictions = self.base_pred)
self.base_pred += self.learning_rate * boosting_tree.predict(X)
# store predictors for later
self.estimators.append(boosting_tree)
def predict(self, X):
pred = np.zeros(X.shape[0])
for estimator in self.estimators:
pred += self.learning_rate * estimator.predict(X)
return self.log_odds(y) + pred
class GradientBoostingRegressor:
'''
Applies the methododlgy of gradeint boosting for regression.
Uses the mean squared loss function to calculate the negative derivate.
Input
------------------------------------------------------------------------------------------
X: Pandas dataframe
y: Pandas Series
min_leaf: minimum number of samples needed to be classified as a node
depth: sets the maximum depth allowed
Boosting_Rounds: number of boosting rounds or iterations
Output
---------------------------------------------------------------------------------------------
Gradient boosting machine that can be used for regression.
'''
def __init__(self):
self.estimators = []
@staticmethod
def negativeMeanSquaredErrorDerivitive(y, y_pred):
return(2*(y-y_pred))
def fit(self, X, y, depth = 5, min_leaf = 5, learning_rate = 0.1, boosting_rounds = 5):
# Start with the mean y value as our initial prediciton
self.learning_rate = learning_rate
self.base_pred = np.full((X.shape[0], 1), np.mean(y)).flatten()
for booster in range(boosting_rounds):
# Calculate the initial Pseudo Residuals using Base Prediction.
pseudo_residuals = self.negativeMeanSquaredErrorDerivitive(y, self.base_pred)
# Approximate the residuals
boosting_tree = DecisionTreeRegressor().fit(X = X, y = pseudo_residuals, depth = 5, min_leaf = 5, classification = False , predictions = None)
self.base_pred += self.learning_rate * boosting_tree.predict(X)
# store predictors for later
self.estimators.append(boosting_tree)
def predict(self, X):
pred = np.zeros(X.shape[0])
for estimator in self.estimators:
pred += self.learning_rate * estimator.predict(X)
return np.full((X.shape[0], 1), np.mean(y)).flatten() + pred