-
Notifications
You must be signed in to change notification settings - Fork 4
/
inpainting.py
102 lines (85 loc) · 2.84 KB
/
inpainting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# *************************************************************************
# Copyright (2023) ML Group @ RUC
#
# Copyright (2023) SDE-Drag Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# *************************************************************************
import argparse
import os
import torch
from PIL import Image
from diffusers import (DPMSolverMultistepScheduler,
StableDiffusionInpaintPipeline)
from cycle_sde import set_seed
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--seed",
type=int,
default=1234,
help='random seed'
)
parser.add_argument(
"--img_path",
type=str,
default='assets/inpainting',
help="origin image and mask path"
)
parser.add_argument(
"--steps",
type=int,
default=50,
help="sampling steps"
)
parser.add_argument(
"--sde",
action='store_true',
help="use inpainting-sde",
)
parser.add_argument(
"--order",
type=int,
default=1,
help='solver order'
)
opt = parser.parse_args()
return opt
def main():
opt = get_args()
set_seed(opt.seed)
pipeline = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
safety_checker=None
)
pipeline.enable_model_cpu_offload()
if opt.sde:
algorithm = 'sde-dpmsolver++'
else:
algorithm = 'dpmsolver++'
num_inference_steps = opt.steps
scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
scheduler.config.algorithm_type = algorithm
scheduler.config.solver_order = opt.order
pipeline.scheduler = scheduler
init_image = Image.open(os.path.join(opt.img_path, 'origin.png')).resize((512, 512))
mask_image = Image.open(os.path.join(opt.img_path, 'mask.png')).resize((512, 512))
prompt = "Face of a cat, high resolution, sitting on a park bench"
image, _ = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, return_dict=False,
num_inference_steps=num_inference_steps)
path = 'output/inpainting'
os.makedirs(path, exist_ok=True)
image[0].save(os.path.join(path, f'{algorithm}-order={opt.order}.png'))
if __name__ == "__main__":
main()