diff --git a/benchmarks/benchmarks/selections.py b/benchmarks/benchmarks/selections.py index b07fc7348f6..e1524ad378d 100644 --- a/benchmarks/benchmarks/selections.py +++ b/benchmarks/benchmarks/selections.py @@ -72,11 +72,9 @@ def time_geometric_selections(self, dynamic_selection, periodic_selection): - # set core flags for PBC accounting - MDAnalysis.core.flags['use_periodic_selections'] = periodic_selection[0] - MDAnalysis.core.flags['use_KDTree_routines'] = periodic_selection[1] - - if hasattr(MDAnalysis.Universe, 'select_atoms'): - self.u.select_atoms(selection_string, updating=dynamic_selection) - else: - self.u.selectAtoms(selection_string, updating=dynamic_selection) + # TODO: Do we need a kwarg similar to old `use_KDTree_routines` + # flag? We used to benchmark that. + self.u.select_atoms(selection_string, + updating=dynamic_selection, + periodic=periodic_selection[0], + ) diff --git a/package/AUTHORS b/package/AUTHORS index f9384f9c74e..611d09e1dac 100644 --- a/package/AUTHORS +++ b/package/AUTHORS @@ -222,6 +222,7 @@ Chronological list of authors - Shubham Kumar - Zaheer Timol - Geongi Moon + - Sumit Gupta - Heet Vekariya External code diff --git a/package/CHANGELOG b/package/CHANGELOG index 3f7bec1ebc5..7398f8bd4db 100644 --- a/package/CHANGELOG +++ b/package/CHANGELOG @@ -20,6 +20,7 @@ The rules for this file: * 2.7.0 Fixes + * Updated cimport for numpy to maintain cimport consistency (Issue #3908) * Fix `NoJump` unwrapping for jumps on the second frame in a trajectory (PR #4258, Issue #4257) * Deprecated np.float_ and np.NaN aliases have been replaced with diff --git a/package/MDAnalysis/analysis/encore/cutils.pyx b/package/MDAnalysis/analysis/encore/cutils.pyx index fd631fb423c..08a2ebc7944 100644 --- a/package/MDAnalysis/analysis/encore/cutils.pyx +++ b/package/MDAnalysis/analysis/encore/cutils.pyx @@ -32,19 +32,19 @@ Mixed Cython utils for ENCORE import numpy as np -cimport numpy as np +cimport numpy as cnp import cython from libc.math cimport sqrt -np.import_array() +cnp.import_array() @cython.boundscheck(False) @cython.wraparound(False) -def PureRMSD(np.ndarray[np.float64_t, ndim=2] coordsi, - np.ndarray[np.float64_t, ndim=2] coordsj, +def PureRMSD(cnp.ndarray[cnp.float64_t, ndim=2] coordsi, + cnp.ndarray[cnp.float64_t, ndim=2] coordsj, int atomsn, - np.ndarray[np.float64_t, ndim=1] masses, + cnp.ndarray[cnp.float64_t, ndim=1] masses, double summasses): cdef int k diff --git a/package/MDAnalysis/coordinates/timestep.pyx b/package/MDAnalysis/coordinates/timestep.pyx index 981cdb1089c..09304ec85ee 100644 --- a/package/MDAnalysis/coordinates/timestep.pyx +++ b/package/MDAnalysis/coordinates/timestep.pyx @@ -729,7 +729,7 @@ cdef class Timestep: """ if isinstance(atoms, numbers.Integral): return self._pos[atoms] - elif isinstance(atoms, (slice, np.ndarray)): + elif isinstance(atoms, (slice, cnp.ndarray)): return self._pos[atoms] else: raise TypeError diff --git a/package/MDAnalysis/lib/_augment.pyx b/package/MDAnalysis/lib/_augment.pyx index 03a2278497a..d8a976ccf1f 100644 --- a/package/MDAnalysis/lib/_augment.pyx +++ b/package/MDAnalysis/lib/_augment.pyx @@ -25,13 +25,13 @@ import cython import numpy as np from .mdamath import triclinic_vectors -cimport numpy as np +cimport numpy as cnp cimport MDAnalysis.lib._cutil from MDAnalysis.lib._cutil cimport _dot, _norm, _cross from libcpp.vector cimport vector -np.import_array() +cnp.import_array() __all__ = ['augment_coordinates', 'undo_augment'] @@ -301,7 +301,7 @@ def augment_coordinates(float[:, ::1] coordinates, float[:] box, float r): @cython.boundscheck(False) @cython.wraparound(False) -def undo_augment(np.intp_t[:] results, np.intp_t[:] translation, int nreal): +def undo_augment(cnp.intp_t[:] results, cnp.intp_t[:] translation, int nreal): """Translate augmented indices back to original indices. Parameters diff --git a/package/MDAnalysis/lib/_cutil.pyx b/package/MDAnalysis/lib/_cutil.pyx index 3a33de7fef2..549c29df5d7 100644 --- a/package/MDAnalysis/lib/_cutil.pyx +++ b/package/MDAnalysis/lib/_cutil.pyx @@ -24,7 +24,7 @@ import cython import numpy as np -cimport numpy as np +cimport numpy as cnp from libc.math cimport sqrt, fabs from MDAnalysis import NoDataError @@ -35,7 +35,7 @@ from libcpp.vector cimport vector from libcpp.utility cimport pair from cython.operator cimport dereference as deref -np.import_array() +cnp.import_array() __all__ = ['unique_int_1d', 'make_whole', 'find_fragments', '_sarrus_det_single', '_sarrus_det_multiple'] @@ -51,7 +51,7 @@ ctypedef cmap[int, intset] intmap @cython.boundscheck(False) # turn off bounds-checking for entire function @cython.wraparound(False) # turn off negative index wrapping for entire function -def unique_int_1d(np.intp_t[:] values): +def unique_int_1d(cnp.intp_t[:] values): """Find the unique elements of a 1D array of integers. This function is optimal on sorted arrays. @@ -73,7 +73,7 @@ def unique_int_1d(np.intp_t[:] values): cdef int i = 0 cdef int j = 0 cdef int n_values = values.shape[0] - cdef np.intp_t[:] result = np.empty(n_values, dtype=np.intp) + cdef cnp.intp_t[:] result = np.empty(n_values, dtype=np.intp) if n_values == 0: return np.array(result) @@ -93,7 +93,7 @@ def unique_int_1d(np.intp_t[:] values): @cython.boundscheck(False) -def _in2d(np.intp_t[:, :] arr1, np.intp_t[:, :] arr2): +def _in2d(cnp.intp_t[:, :] arr1, cnp.intp_t[:, :] arr2): """Similar to np.in1d except works on 2d arrays Parameters @@ -110,8 +110,8 @@ def _in2d(np.intp_t[:, :] arr1, np.intp_t[:, :] arr2): """ cdef object out cdef ssize_t i - cdef cset[pair[np.intp_t, np.intp_t]] hits - cdef pair[np.intp_t, np.intp_t] p + cdef cset[pair[cnp.intp_t, cnp.intp_t]] hits + cdef pair[cnp.intp_t, cnp.intp_t] p """ Construct a set from arr2 called hits @@ -130,13 +130,13 @@ def _in2d(np.intp_t[:, :] arr1, np.intp_t[:, :] arr2): raise ValueError("Both arrays must be (n, 2) arrays") for i in range(arr2.shape[0]): - p = pair[np.intp_t, np.intp_t](arr2[i, 0], arr2[i, 1]) + p = pair[cnp.intp_t, cnp.intp_t](arr2[i, 0], arr2[i, 1]) hits.insert(p) out = np.empty(arr1.shape[0], dtype=np.uint8) cdef unsigned char[::1] results = out for i in range(arr1.shape[0]): - p = pair[np.intp_t, np.intp_t](arr1[i, 0], arr1[i, 1]) + p = pair[cnp.intp_t, cnp.intp_t](arr1[i, 0], arr1[i, 1]) if hits.count(p): results[i] = True @@ -243,7 +243,7 @@ def make_whole(atomgroup, reference_atom=None, inplace=True): are returned as a numpy array. """ cdef intset refpoints, todo, done - cdef np.intp_t i, j, nloops, ref, atom, other, natoms + cdef cnp.intp_t i, j, nloops, ref, atom, other, natoms cdef cmap[int, int] ix_to_rel cdef intmap bonding cdef int[:, :] bonds @@ -334,7 +334,7 @@ def make_whole(atomgroup, reference_atom=None, inplace=True): newpos[ref, i] = oldpos[ref, i] nloops = 0 - while refpoints.size() < natoms and nloops < natoms: + while refpoints.size() < natoms and nloops < natoms: # count iterations to prevent infinite loop here nloops += 1 @@ -362,7 +362,7 @@ def make_whole(atomgroup, reference_atom=None, inplace=True): refpoints.insert(other) done.insert(atom) - if refpoints.size() < natoms: + if refpoints.size() < natoms: raise ValueError("AtomGroup was not contiguous from bonds, process failed") if inplace: atomgroup.positions = newpos @@ -411,9 +411,9 @@ cdef float _norm(float * a): @cython.boundscheck(False) @cython.wraparound(False) -cpdef np.float64_t _sarrus_det_single(np.float64_t[:, ::1] m): +cpdef cnp.float64_t _sarrus_det_single(cnp.float64_t[:, ::1] m): """Computes the determinant of a 3x3 matrix.""" - cdef np.float64_t det + cdef cnp.float64_t det det = m[0, 0] * m[1, 1] * m[2, 2] det -= m[0, 0] * m[1, 2] * m[2, 1] det += m[0, 1] * m[1, 2] * m[2, 0] @@ -425,11 +425,11 @@ cpdef np.float64_t _sarrus_det_single(np.float64_t[:, ::1] m): @cython.boundscheck(False) @cython.wraparound(False) -cpdef np.ndarray _sarrus_det_multiple(np.float64_t[:, :, ::1] m): +cpdef cnp.ndarray _sarrus_det_multiple(cnp.float64_t[:, :, ::1] m): """Computes all determinants of an array of 3x3 matrices.""" - cdef np.intp_t n - cdef np.intp_t i - cdef np.float64_t[:] det + cdef cnp.intp_t n + cdef cnp.intp_t i + cdef cnp.float64_t[:] det n = m.shape[0] det = np.empty(n, dtype=np.float64) for i in range(n): @@ -470,8 +470,8 @@ def find_fragments(atoms, bondlist): cdef intset todo, frag_todo, frag_done cdef vector[int] this_frag cdef int i, a, b - cdef np.int64_t[:] atoms_view - cdef np.int32_t[:, :] bonds_view + cdef cnp.int64_t[:] atoms_view + cdef cnp.int32_t[:, :] bonds_view atoms_view = np.asarray(atoms, dtype=np.int64) bonds_view = np.asarray(bondlist, dtype=np.int32) diff --git a/package/MDAnalysis/lib/formats/cython_util.pxd b/package/MDAnalysis/lib/formats/cython_util.pxd index 9478317f16e..0689346647d 100644 --- a/package/MDAnalysis/lib/formats/cython_util.pxd +++ b/package/MDAnalysis/lib/formats/cython_util.pxd @@ -20,6 +20,6 @@ # MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. # J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787 # -cimport numpy as np -np.import_array() -cdef np.ndarray ptr_to_ndarray(void* data_ptr, np.int64_t[:] dim, int data_type) +cimport numpy as cnp +cnp.import_array() +cdef cnp.ndarray ptr_to_ndarray(void* data_ptr, cnp.int64_t[:] dim, int data_type) diff --git a/package/MDAnalysis/lib/formats/cython_util.pyx b/package/MDAnalysis/lib/formats/cython_util.pyx index 04745643232..3c9b90d02e9 100644 --- a/package/MDAnalysis/lib/formats/cython_util.pyx +++ b/package/MDAnalysis/lib/formats/cython_util.pyx @@ -21,12 +21,12 @@ # J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787 # import numpy as np -cimport numpy as np +cimport numpy as cnp from libc.stdlib cimport free from cpython cimport PyObject, Py_INCREF -np.import_array() +cnp.import_array() cdef class ArrayWrapper: @@ -74,8 +74,8 @@ cdef class ArrayWrapper: def __array__(self): """ Here we use the __array__ method, that is called when numpy tries to get an array from the object.""" - ndarray = np.PyArray_SimpleNewFromData(self.ndim, - self.dim, + ndarray = cnp.PyArray_SimpleNewFromData(self.ndim, + self.dim, self.data_type, self.data_ptr) return ndarray @@ -87,7 +87,7 @@ cdef class ArrayWrapper: # free(self.dim) -cdef np.ndarray ptr_to_ndarray(void* data_ptr, np.int64_t[:] dim, int data_type): +cdef cnp.ndarray ptr_to_ndarray(void* data_ptr, cnp.int64_t[:] dim, int data_type): """convert a pointer to an arbitrary C-pointer to a ndarray. The ndarray is constructed so that the array it's holding will be freed when the array is destroyed. @@ -110,7 +110,7 @@ cdef np.ndarray ptr_to_ndarray(void* data_ptr, np.int64_t[:] dim, int data_type) array_wrapper = ArrayWrapper() array_wrapper.set_data( data_ptr, &dim[0], dim.size, data_type) - cdef np.ndarray ndarray = np.array(array_wrapper, copy=False) + cdef cnp.ndarray ndarray = np.array(array_wrapper, copy=False) # Assign our object to the 'base' of the ndarray object ndarray[:] = array_wrapper.__array__() # Increment the reference count, as the above assignement was done in diff --git a/package/MDAnalysis/lib/formats/libdcd.pxd b/package/MDAnalysis/lib/formats/libdcd.pxd index 5d387de4325..2af86cb4292 100644 --- a/package/MDAnalysis/lib/formats/libdcd.pxd +++ b/package/MDAnalysis/lib/formats/libdcd.pxd @@ -27,9 +27,9 @@ from libc.stdint cimport uintptr_t from libc.stdio cimport SEEK_SET, SEEK_CUR, SEEK_END import cython -cimport numpy as np +cimport numpy as cnp -np.import_array() +cnp.import_array() # Tell cython about the off_t type. It doesn't need to match exactly what is @@ -131,9 +131,9 @@ cdef class DCDFile: # buffer for reading coordinates - cdef np.ndarray _coordinate_buffer + cdef cnp.ndarray _coordinate_buffer # buffer for reading unitcell - cdef np.ndarray _unitcell_buffer + cdef cnp.ndarray _unitcell_buffer # fortran contiguious memoryviews of the buffers to pass to the C code cdef float[::1] xview diff --git a/package/MDAnalysis/lib/formats/libdcd.pyx b/package/MDAnalysis/lib/formats/libdcd.pyx index a4da678e3f5..2c77df11a41 100644 --- a/package/MDAnalysis/lib/formats/libdcd.pyx +++ b/package/MDAnalysis/lib/formats/libdcd.pyx @@ -71,12 +71,12 @@ import string import sys import cython -cimport numpy as np +cimport numpy as cnp from libc.stdio cimport SEEK_SET, SEEK_CUR, SEEK_END from libc.stdint cimport uintptr_t from libc.stdlib cimport free -np.import_array() +cnp.import_array() _whence_vals = {"FIO_SEEK_SET": SEEK_SET, "FIO_SEEK_CUR": SEEK_CUR, @@ -342,14 +342,14 @@ cdef class DCDFile: self.remarks = py_remarks cdef void _setup_buffers(self): - cdef np.npy_intp[2] dims + cdef cnp.npy_intp[2] dims dims[0] = self.natoms dims[1] = self.ndims # note use of fortran flag (1) - self._coordinate_buffer = np.PyArray_EMPTY(2, dims, np.NPY_FLOAT32, 1) - cdef np.npy_intp[1] unitcell_dims + self._coordinate_buffer = cnp.PyArray_EMPTY(2, dims, cnp.NPY_FLOAT32, 1) + cdef cnp.npy_intp[1] unitcell_dims unitcell_dims[0] = 6 - self._unitcell_buffer = np.PyArray_EMPTY(1, unitcell_dims, np.NPY_FLOAT64, 0) + self._unitcell_buffer = cnp.PyArray_EMPTY(1, unitcell_dims, cnp.NPY_FLOAT64, 0) # fortran contiguity self.xview = self._coordinate_buffer[:, 0] @@ -515,8 +515,8 @@ cdef class DCDFile: if not self.wrote_header: raise IOError("write header first before frames can be written") - cdef np.ndarray xyz_ = np.asarray(xyz, order='F', dtype=FLOAT) - cdef np.npy_intp[2] shape = np.PyArray_DIMS(xyz_) + cdef cnp.ndarray xyz_ = np.asarray(xyz, order='F', dtype=FLOAT) + cdef cnp.npy_intp[2] shape = cnp.PyArray_DIMS(xyz_) if (shape[0] != self.natoms) or (shape[1] != 3): raise ValueError("xyz shape is wrong should be (natoms, 3), got:".format(xyz.shape)) cdef double[::1] c_box = np.asarray(box, order='C', dtype=DOUBLE) @@ -638,15 +638,15 @@ cdef class DCDFile: cdef int n n = len(range(start, stop, step)) cdef int natoms - cdef np.ndarray[np.int64_t, ndim=1] c_indices + cdef cnp.ndarray[cnp.int64_t, ndim=1] c_indices if indices is None: - c_indices = np.PyArray_Arange(0, self.natoms, 1, np.NPY_INT64) + c_indices = cnp.PyArray_Arange(0, self.natoms, 1, cnp.NPY_INT64) natoms = self.natoms else: natoms = len(indices) c_indices = np.asarray(indices, dtype=np.int64) - cdef np.npy_intp[3] dims + cdef cnp.npy_intp[3] dims cdef int hash_order = -1 if order == 'fac': dims[0] = n @@ -681,17 +681,17 @@ cdef class DCDFile: else: raise ValueError("unkown order '{}'".format(order)) - cdef np.ndarray[float, ndim=3] xyz = np.PyArray_EMPTY(3, dims, np.NPY_FLOAT32, 0) - cdef np.npy_intp[2] unitcell_dims + cdef cnp.ndarray[float, ndim=3] xyz = cnp.PyArray_EMPTY(3, dims, cnp.NPY_FLOAT32, 0) + cdef cnp.npy_intp[2] unitcell_dims unitcell_dims[0] = n unitcell_dims[1] = 6 - cdef np.ndarray[double, ndim=2] box = np.PyArray_EMPTY(2, unitcell_dims, np.NPY_FLOAT64, 0) + cdef cnp.ndarray[double, ndim=2] box = cnp.PyArray_EMPTY(2, unitcell_dims, cnp.NPY_FLOAT64, 0) - cdef np.npy_intp[2] xyz_tmp_dims + cdef cnp.npy_intp[2] xyz_tmp_dims xyz_tmp_dims[0] = self.natoms xyz_tmp_dims[1] = self.ndims # note fortran flag (1) - cdef np.ndarray[float, ndim=2] xyz_tmp = np.PyArray_EMPTY(2, xyz_tmp_dims, np.NPY_FLOAT32, 1) + cdef cnp.ndarray[float, ndim=2] xyz_tmp = cnp.PyArray_EMPTY(2, xyz_tmp_dims, cnp.NPY_FLOAT32, 1) # memoryviews for slices into xyz_temp, note fortran contiguous cdef float[::1] x = xyz_tmp[:, 0] diff --git a/package/MDAnalysis/lib/formats/libmdaxdr.pxd b/package/MDAnalysis/lib/formats/libmdaxdr.pxd index 999ddd69334..1c7307e3cc9 100644 --- a/package/MDAnalysis/lib/formats/libmdaxdr.pxd +++ b/package/MDAnalysis/lib/formats/libmdaxdr.pxd @@ -22,9 +22,9 @@ # import numpy as np -cimport numpy as np +cimport numpy as cnp -np.import_array() +cnp.import_array() from libc.stdint cimport int64_t from libc.stdio cimport SEEK_SET, SEEK_CUR, SEEK_END @@ -92,9 +92,9 @@ cdef class _XDRFile: # the file mode cdef str mode # the simulation box - cdef np.ndarray box + cdef cnp.ndarray box # numpy array of offsets into the fle - cdef np.ndarray _offsets + cdef cnp.ndarray _offsets # whether we have the offsets cdef readonly int _has_offsets diff --git a/package/MDAnalysis/lib/formats/libmdaxdr.pyx b/package/MDAnalysis/lib/formats/libmdaxdr.pyx index 147b7be630c..b85e62de94d 100644 --- a/package/MDAnalysis/lib/formats/libmdaxdr.pyx +++ b/package/MDAnalysis/lib/formats/libmdaxdr.pyx @@ -63,7 +63,7 @@ own please see the source code in `lib/formats/libmdaxdr.pyx`_ for the time bein https://github.com/MDAnalysis/mdanalysis/blob/develop/package/MDAnalysis/lib/formats/libmdaxdr.pyx """ -cimport numpy as np +cimport numpy as cnp cimport cython from MDAnalysis.lib.formats.cython_util cimport ptr_to_ndarray from libc.stdint cimport int64_t @@ -96,7 +96,7 @@ import numpy as np from os.path import exists from collections import namedtuple -np.import_array() +cnp.import_array() ctypedef float DTYPE_T DTYPE = np.float32 @@ -369,7 +369,7 @@ cdef class _XDRFile: self._has_offsets = True return self._offsets - def set_offsets(self, np.ndarray offsets): + def set_offsets(self, cnp.ndarray offsets): """set frame offsets""" self._offsets = offsets self._has_offsets = True @@ -436,12 +436,12 @@ cdef class TRRFile(_XDRFile): # overestimation. This number is saved in est_nframes and we need to # tell the new numpy array about the whole allocated memory to avoid # memory leaks. - cdef np.npy_intp[1] dim + cdef cnp.npy_intp[1] dim dim[0] = 1 - cdef np.ndarray[np.int64_t, ndim=1] dims = np.PyArray_EMPTY(1, dim, np.NPY_INT64, 0) + cdef cnp.ndarray[cnp.int64_t, ndim=1] dims = cnp.PyArray_EMPTY(1, dim, cnp.NPY_INT64, 0) dims[0] = est_nframes # this handles freeing the allocated memory correctly. - cdef np.ndarray nd_offsets = ptr_to_ndarray( offsets, dims, np.NPY_INT64) + cdef cnp.ndarray nd_offsets = ptr_to_ndarray( offsets, dims, cnp.NPY_INT64) return nd_offsets[:n_frames] def read(self): @@ -475,18 +475,18 @@ cdef class TRRFile(_XDRFile): cdef float time = 0 cdef float lmbda = 0 - cdef np.npy_intp[2] dim + cdef cnp.npy_intp[2] dim dim[0] = self.n_atoms dim[1] = DIMS - cdef np.npy_intp[2] unitcell_dim + cdef cnp.npy_intp[2] unitcell_dim unitcell_dim[0] = DIMS unitcell_dim[1] = DIMS - cdef np.ndarray[np.float32_t, ndim=2] xyz = np.PyArray_EMPTY(2, dim, np.NPY_FLOAT32, 0) - cdef np.ndarray[np.float32_t, ndim=2] velocity = np.PyArray_EMPTY(2, dim, np.NPY_FLOAT32, 0) - cdef np.ndarray[np.float32_t, ndim=2] forces = np.PyArray_EMPTY(2, dim, np.NPY_FLOAT32, 0) - cdef np.ndarray[np.float32_t, ndim=2] box = np.PyArray_EMPTY(2, unitcell_dim, np.NPY_FLOAT32, 0) + cdef cnp.ndarray[cnp.float32_t, ndim=2] xyz = cnp.PyArray_EMPTY(2, dim, cnp.NPY_FLOAT32, 0) + cdef cnp.ndarray[cnp.float32_t, ndim=2] velocity = cnp.PyArray_EMPTY(2, dim, cnp.NPY_FLOAT32, 0) + cdef cnp.ndarray[cnp.float32_t, ndim=2] forces = cnp.PyArray_EMPTY(2, dim, cnp.NPY_FLOAT32, 0) + cdef cnp.ndarray[cnp.float32_t, ndim=2] box = cnp.PyArray_EMPTY(2, unitcell_dim, cnp.NPY_FLOAT32, 0) return_code = read_trr(self.xfp, self.n_atoms, &step, &time, &lmbda, box.data, @@ -516,9 +516,9 @@ cdef class TRRFile(_XDRFile): return TRRFrame(xyz, velocity, forces, box, step, time, lmbda, has_x, has_v, has_f) - def read_direct_xvf(self, np.float32_t[:, ::1] positions, - np.float32_t[:, ::1] velocities, - np.float32_t[:, ::1] forces,): + def read_direct_xvf(self, cnp.float32_t[:, ::1] positions, + cnp.float32_t[:, ::1] velocities, + cnp.float32_t[:, ::1] forces,): """ Read next frame in the TRR file with positions read directly into a pre-existing array. @@ -559,12 +559,12 @@ cdef class TRRFile(_XDRFile): cdef float time = 0 cdef float lmbda = 0 - cdef np.npy_intp[2] unitcell_dim + cdef cnp.npy_intp[2] unitcell_dim unitcell_dim[0] = DIMS unitcell_dim[1] = DIMS - cdef np.ndarray[np.float32_t, ndim=2] box = np.PyArray_EMPTY(2, unitcell_dim, np.NPY_FLOAT32, 0) + cdef cnp.ndarray[cnp.float32_t, ndim=2] box = cnp.PyArray_EMPTY(2, unitcell_dim, cnp.NPY_FLOAT32, 0) return_code = read_trr(self.xfp, self.n_atoms, &step, &time, &lmbda, box.data, @@ -632,9 +632,9 @@ cdef class TRRFile(_XDRFile): # defined here to get a pointer to their first element. This is the only # way I know to have a nice pythonic API to the function that can accept # array-like inputs or things like None. - cdef np.ndarray xyz_helper - cdef np.ndarray velocity_helper - cdef np.ndarray forces_helper + cdef cnp.ndarray xyz_helper + cdef cnp.ndarray velocity_helper + cdef cnp.ndarray forces_helper if xyz is not None: xyz = np.asarray(xyz) @@ -650,7 +650,7 @@ cdef class TRRFile(_XDRFile): forces_ptr = forces_helper.data box = np.asarray(box) - cdef np.ndarray box_helper = np.ascontiguousarray(box, dtype=DTYPE) + cdef cnp.ndarray box_helper = np.ascontiguousarray(box, dtype=DTYPE) cdef float* box_ptr = box_helper.data if self.current_frame == 0: @@ -739,12 +739,12 @@ cdef class XTCFile(_XDRFile): # overestimation. This number is saved in est_nframes and we need to # tell the new numpy array about the whole allocated memory to avoid # memory leaks. - cdef np.npy_intp[1] dim + cdef cnp.npy_intp[1] dim dim[0] = 1 - cdef np.ndarray[np.int64_t, ndim=1] dims = np.PyArray_EMPTY(1, dim, np.NPY_INT64, 0) + cdef cnp.ndarray[cnp.int64_t, ndim=1] dims = cnp.PyArray_EMPTY(1, dim, cnp.NPY_INT64, 0) dims[0] = est_nframes # this handles freeing the allocated memory correctly. - cdef np.ndarray nd_offsets = ptr_to_ndarray( offsets, dims, np.NPY_INT64) + cdef cnp.ndarray nd_offsets = ptr_to_ndarray( offsets, dims, cnp.NPY_INT64) return nd_offsets[:n_frames] def read(self): @@ -776,16 +776,16 @@ cdef class XTCFile(_XDRFile): cdef int step cdef float time, prec - cdef np.npy_intp[2] dim + cdef cnp.npy_intp[2] dim dim[0] = self.n_atoms dim[1] = DIMS - cdef np.npy_intp[2] unitcell_dim + cdef cnp.npy_intp[2] unitcell_dim unitcell_dim[0] = DIMS unitcell_dim[1] = DIMS - cdef np.ndarray[np.float32_t, ndim=2] xyz = np.PyArray_EMPTY(2, dim, np.NPY_FLOAT32, 0) - cdef np.ndarray[np.float32_t, ndim=2] box = np.PyArray_EMPTY(2, unitcell_dim, np.NPY_FLOAT32, 0) + cdef cnp.ndarray[cnp.float32_t, ndim=2] xyz = cnp.PyArray_EMPTY(2, dim, cnp.NPY_FLOAT32, 0) + cdef cnp.ndarray[cnp.float32_t, ndim=2] box = cnp.PyArray_EMPTY(2, unitcell_dim, cnp.NPY_FLOAT32, 0) return_code = read_xtc(self.xfp, self.n_atoms, &step, &time, box.data, @@ -801,7 +801,7 @@ cdef class XTCFile(_XDRFile): return XTCFrame(xyz, box, step, time, prec) - def read_direct_x(self, np.float32_t[:, ::1] positions): + def read_direct_x(self, cnp.float32_t[:, ::1] positions): """ Read next frame in the XTC file with positions read directly into a pre-existing array. @@ -839,11 +839,11 @@ cdef class XTCFile(_XDRFile): return_code = 1 cdef int step cdef float time, prec - cdef np.npy_intp[2] unitcell_dim + cdef cnp.npy_intp[2] unitcell_dim unitcell_dim[0] = DIMS unitcell_dim[1] = DIMS - cdef np.ndarray[np.float32_t, ndim=2] box = np.PyArray_EMPTY(2, unitcell_dim, np.NPY_FLOAT32, 0) + cdef cnp.ndarray[cnp.float32_t, ndim=2] box = cnp.PyArray_EMPTY(2, unitcell_dim, cnp.NPY_FLOAT32, 0) return_code = read_xtc(self.xfp, self.n_atoms, &step, @@ -896,8 +896,8 @@ cdef class XTCFile(_XDRFile): xyz = np.asarray(xyz, dtype=np.float32) box = np.asarray(box, dtype=np.float32) - cdef DTYPE_T[:, ::1] xyz_view = np.PyArray_GETCONTIGUOUS(xyz) - cdef DTYPE_T[:, ::1] box_view = np.PyArray_GETCONTIGUOUS(box) + cdef DTYPE_T[:, ::1] xyz_view = cnp.PyArray_GETCONTIGUOUS(xyz) + cdef DTYPE_T[:, ::1] box_view = cnp.PyArray_GETCONTIGUOUS(box) if self.current_frame == 0: self.n_atoms = xyz.shape[0] diff --git a/package/MDAnalysis/lib/qcprot.pyx b/package/MDAnalysis/lib/qcprot.pyx index 971488314d7..565e1491fa4 100644 --- a/package/MDAnalysis/lib/qcprot.pyx +++ b/package/MDAnalysis/lib/qcprot.pyx @@ -138,8 +138,8 @@ Users will typically use the :func:`CalcRMSDRotationalMatrix` function. """ import numpy as np -cimport numpy as np -np.import_array() +cimport numpy as cnp +cnp.import_array() cimport cython from ..due import due, BibTeX, Doi