From 57004c35577305e4a461d4b3d8b5311bee0d44a1 Mon Sep 17 00:00:00 2001 From: Jonathan Barnoud Date: Fri, 22 Jul 2016 17:49:31 +0200 Subject: [PATCH] Minor format changes in gbonc_autocorrel doc --- package/MDAnalysis/analysis/hbonds/hbond_autocorrel.py | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/package/MDAnalysis/analysis/hbonds/hbond_autocorrel.py b/package/MDAnalysis/analysis/hbonds/hbond_autocorrel.py index 463fb78dae9..31e4efabe1e 100644 --- a/package/MDAnalysis/analysis/hbonds/hbond_autocorrel.py +++ b/package/MDAnalysis/analysis/hbonds/hbond_autocorrel.py @@ -32,7 +32,8 @@ then the lifetime of these bonds is monitored over time. Multiple passes through the trajectory are used to build an average of the behaviour. - :math:`C_x(t) = \\left \\langle \\frac{h_{ij}(t_0) h_{ij}(t_0 + t)}{h_{ij}(t_0)^2} \\right\\rangle` +.. math:: + C_x(t) = \\left \\langle \\frac{h_{ij}(t_0) h_{ij}(t_0 + t)}{h_{ij}(t_0)^2} \\right\\rangle The subscript :math:`x` refers to the definition of lifetime being used, either continuous or intermittent. The continuous definition measures the time that @@ -41,7 +42,8 @@ be counted again. The relevent lifetime, :math:`\\tau_x`, can then be found via integration of this function - :math:`\\tau_x = \\int_0^\\infty C_x(t) dt` +.. math:: + \\tau_x = \\int_0^\\infty C_x(t) dt` For this, the observed behaviour is fitted to a multi exponential function, using 2 exponents for the continuous lifetime and 3 for the intermittent @@ -277,8 +279,8 @@ def _slice_traj(self, sample_time): def run(self, force=False): """Run all the required passes - Parameters: - ----------- + Parameters + ---------- force : bool, optional Will overwrite previous results if they exist """