-
Notifications
You must be signed in to change notification settings - Fork 663
/
__init__.py
752 lines (614 loc) · 33.4 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""\
Trajectory Readers and Writers --- :mod:`MDAnalysis.coordinates`
=================================================================
The coordinates submodule contains code to read, write and store coordinate
information, either single frames (e.g., the :mod:`~MDAnalysis.coordinates.GRO`
format) or trajectories (such as the :mod:`~MDAnalyis.coordinates.DCD` format);
see the :ref:`Supported coordinate formats` for all formats.
MDAnalysis calls the classes that read a coordinate trajectory and make the
data available *"Readers"*. Similarly, classes that write out coordinates are
called *"Writers"*. Readers and Writers provide a common interface to the
underlying coordinate data. This abstraction of coordinate access through an
object-oriented interface is one of the key capabilities of MDAnalysis.
.. _Readers:
Readers
-------
All Readers are based on a :class:`ProtoReader` class that defines a common
:ref:`Trajectory API` and allows other code to interface with all trajectory
formats in the same way, independent of the details of the trajectory format
itself.
The :class:`~MDAnalysis.core.universe.Universe` contains the API entry point
attribute :attr:`Universe.trajectory` that points to the actual
:class:`~MDAnalysis.coordinates.base.ProtoReader` object; all Readers are accessible
through this entry point in the same manner ("`duck typing`_").
There are three types of base Reader which act as starting points for each
specific format. These are:
:class:`~MDAnalysis.coordinates.base.ReaderBase`
A standard multi frame Reader which allows iteration over a single
file to provide multiple frames of data. This is used by formats
such as TRR and DCD.
:class:`~MDAnalysis.coordinates.base.SingleFrameReaderBase`
A simplified Reader which reads a file containing only a single
frame of information. This is used with formats such as GRO
and CRD
:class:`~MDAnalysis.coordinates.chain.ChainReader`
An advanced Reader designed to read a sequence of files, to
provide iteration over all the frames in each file seamlessly.
This Reader can also provide this functionality over a
sequence of files in different formats.
Normally, one does not explicitly need to select a reader. This is handled
automatically when creating a :class:`~MDAnalysis.core.universe.Universe` and
the appropriate reader for the file type is selected (typically by the file
extension but this choice can be overriden with the ``format`` argument to
:class:`~MDAnalysis.core.universe.Universe`).
If additional simulation data is available, it may be added to and read
alongside a trajectory using
:meth:`~MDAnalysis.coordinates.base.ProtoReader.add_auxiliary` as described in
the :ref:`Auxiliary API`.
.. _duck typing: http://c2.com/cgi/wiki?DuckTyping
.. _writing-trajectories:
Writers
-------
In order to **write coordinates**, a factory function is provided
(:func:`MDAnalysis.coordinates.core.writer`, which is also made available as
:func:`MDAnalysis.Writer`) that returns a *Writer* appropriate for the desired
file format (as indicated by the filename suffix). Furthermore, a trajectory
:class:`~MDAnalysis.coordinates.base.ProtoReader` can also have a method
:meth:`~MDAnalysis.coordinates.base.ProtoReader.Writer` that returns an appropriate
:class:`~MDAnalysis.coordinates.base.WriterBase` for the file format of the
trajectory.
In analogy to :func:`MDAnalysis.coordinates.core.writer`, there is also a
:func:`MDAnalysis.coordinates.core.reader` function available to return a
trajectory :class:`~MDAnalysis.coordinates.base.ProtoReader` instance although this
is often not needed because the :class:`~MDAnalysis.core.universe.Universe`
class can choose an appropriate reader automatically.
A typical approach is to generate a new trajectory from an old one, e.g., to
only keep the protein::
u = MDAnalysis.Universe(PDB, XTC)
protein = u.select_atoms("protein")
with MDAnalysis.Writer("protein.xtc", protein.n_atoms) as W:
for ts in u.trajectory:
W.write(protein)
Using the :func:`with` statement will automatically close the trajectory when
the last frame has been written.
Timesteps
---------
Both Readers and Writers use Timesteps as their working object. A
:class:`~MDAnalysis.coordinates.base.Timestep` represents all data for a given
frame in a trajectory. The data inside a
:class:`~MDAnalysis.coordinates.base.Timestep` is often accessed indirectly
through a :class:`~MDAnalysis.core.groups.AtomGroup` but it is also possible to
manipulate Timesteps directly.
The current :class:`~MDAnalysis.coordinates.base.Timestep` can be accessed
through the :attr:`~MDAnalysis.coordinates.base.ProtoReader.ts` attribute of
the trajectory attached to the active
:class:`~MDAnalysis.core.universe.Universe`::
ts = u.trajectory.ts
ts.positions # returns a numpy array of positions
Most individual formats have slightly different data available in each Timestep
due to differences in individual simulation packages, but all share in common a
broad set of basic data, detailed in `Timestep API`_
Supported coordinate formats
----------------------------
The table below lists the coordinate file formats understood by MDAnalysis. The
emphasis is on formats that are used in popular molecular dynamics codes. By
default, MDAnalysis figures out formats by looking at the extension. Thus, a
DCD file always has to end with ".dcd" to be recognized as such unless the
format is explicitly specified with the *format* keyword to
:class:`~MDAnalysis.core.universe.Universe` or
:meth:`~MDAnalysis.core.universe.Universe.load_new`. A number of files are
also recognized when they are compressed with :program:`gzip` or
:program:`bzip2` such as ".xyz.bz2".
.. _Supported coordinate formats:
.. table:: Table of supported coordinate formats
+---------------+-----------+-------+------------------------------------------------------+
|Name | extension | IO | remarks |
+===============+===========+=======+======================================================+
| CHARMM, | dcd | r/w | standard CHARMM binary trajectory; endianness is |
| NAMD | | | autodetected. Fixed atoms may not be handled |
| | | | correctly (requires testing). Module |
| | | | :mod:`MDAnalysis.coordinates.DCD` |
+---------------+-----------+-------+------------------------------------------------------+
| LAMMPS | dcd | r/w | CHARMM-style binary trajectory; endianness is |
| | | | autodetected. Units are appropriate for LAMMPS. |
| | | | Module :mod:`MDAnalysis.coordinates.LAMMPS` |
+---------------+-----------+-------+------------------------------------------------------+
| LAMMPS [#a]_ | data | r | Single frame of coordinates read from .data files |
+---------------+-----------+-------+------------------------------------------------------+
| LAMMPS [#a]_ | lammpsdump| r | Ascii trajectory in atom style |
+---------------+-----------+-------+------------------------------------------------------+
| Gromacs | xtc | r/w | Compressed (lossy) xtc trajectory format. Module |
| | | | :mod:`MDAnalysis.coordinates.XTC` |
+---------------+-----------+-------+------------------------------------------------------+
| Gromacs | trr | r/w | Full precision trr trajectory. Coordinates and |
| | | | velocities are processed. Module |
| | | | :mod:`MDAnalysis.coordinates.TRR` |
+---------------+-----------+-------+------------------------------------------------------+
| XYZ [#a]_ | xyz | r/w | Generic white-space separate XYZ format; can be |
| | | | compressed (gzip or bzip2). Module |
| | | | :mod:`MDAnalysis.coordinates.XYZ` |
+---------------+-----------+-------+------------------------------------------------------+
| TXYZ [#a]_ | txyz, | r | Tinker XYZ format. |
| | arc | | Module :mod:`MDAnalysis.coordinates.TXYZ` |
+---------------+-----------+-------+------------------------------------------------------+
| HOOMD [#a]_ | gsd | r | HOOMD GSD format (using :mod:`gsd.hoomd`). |
| | | | Module :mod:`MDAnalysis.coordinates.GSD` |
+---------------+-----------+-------+------------------------------------------------------+
| GAMESS | gms, | r | Generic semi-formatted GAMESS output log; can be |
| | log, | | compressed (gzip or bzip2). Module |
| | out | | :mod:`MDAnalysis.coordinates.GMS` |
+---------------+-----------+-------+------------------------------------------------------+
| AMBER | trj, | r | formatted (ASCII) trajectories; the presence of a |
| | mdcrd | | periodic box is autodetected (*experimental*). |
| | | | Module :mod:`MDAnalysis.coordinates.TRJ` |
+---------------+-----------+-------+------------------------------------------------------+
| AMBER | inpcrd, | r | formatted (ASCII) coordinate/restart file |
| | restrt | | Module :mod:`MDAnalysis.coordinates.INPCRD` |
+---------------+-----------+-------+------------------------------------------------------+
| AMBER | ncdf, nc | r/w | binary (NetCDF) trajectories are fully supported with|
| | | | optional `netcdf4-python`_ module (coordinates and |
| | | | velocities). Module :mod:`MDAnalysis.coordinates.TRJ`|
+---------------+-----------+-------+------------------------------------------------------+
| Brookhaven | pdb/ent | r/w | a relaxed PDB format (as used in MD simulations) |
| [#a]_ | | | is read by default; Multiple frames (MODEL) |
| | | | are supported but require the *multiframe* keyword. |
| | | | Module :mod:`MDAnalysis.coordinates.PDB` |
+---------------+-----------+-------+------------------------------------------------------+
| XPDB | pdb | r | Extended PDB format (can use 5-digit residue |
| | | | numbers). To use, specify the format "XPBD" |
| | | | explicitly: ``Universe(..., format="XPDB")``. |
| | | | Module :mod:`MDAnalysis.coordinates.PDB` |
+---------------+-----------+-------+------------------------------------------------------+
| PDBQT [#a]_ | pdbqt | r/w | file format used by AutoDock with atom types *t* |
| | | | and partial charges *q*. Module: |
| | | | :mod:`MDAnalysis.coordinates.PDBQT` |
+---------------+-----------+-------+------------------------------------------------------+
| PQR [#a]_ | pqr | r/w | PDB-like but whitespace-separated files with charge |
| | | | and radius information. Module |
| | | | :mod:`MDAnalysis.coordinates.PQR` |
+---------------+-----------+-------+------------------------------------------------------+
| GROMOS96 | gro | r/w | basic GROMOS96 format (velocities as well). Only |
| | | | the first frame present will be read. |
| [#a]_ | | | Module :mod:`MDAnalysis.coordinates.GRO` |
+---------------+-----------+-------+------------------------------------------------------+
| CHARMM | crd | r/w | "CARD" coordinate output from CHARMM; deals with |
| CARD [#a]_ | | | either standard or EXTended format. Module |
| | | | :mod:`MDAnalysis.coordinates.CRD` |
+---------------+-----------+-------+------------------------------------------------------+
| DESRES [#a]_ | dms | r | DESRES Molecular Structure file format reader. |
| | | | Module :mod:`MDAnalysis.coordinates.DMS` |
+---------------+-----------+-------+------------------------------------------------------+
| IBIsCO/YASP | trz | r/w | Binary IBIsCO or YASP trajectories Module |
| | | | :mod:`MDAnalysis.coordinates.TRZ` |
+---------------+-----------+-------+------------------------------------------------------+
| MOL2 | mol2 | r/w | Text-based Tripos molecular structure format |
| | | | :mod:`MDAnalysis.coordinates.MOL2` |
+---------------+-----------+-------+------------------------------------------------------+
| DL_Poly [#a]_ | config | r | DL_Poly ascii config file |
| | | | :mod:`MDAnalysis.coordinates.DLPOLY` |
+---------------+-----------+-------+------------------------------------------------------+
| DL_Poly [#a]_ | history | r | DL_Poly ascii history file |
| | | | :mod:`MDAnalysis.coordinates.DLPOLY` |
+---------------+-----------+-------+------------------------------------------------------+
| MMTF [#a]_ | mmtf | r | Macromolecular Transmission Format |
| | | | :mod:`MDAnalysis.coordinates.MMTF` |
+---------------+-----------+-------+------------------------------------------------------+
| NAMD | coor, | r/w | NAMD binary file format for coordinates |
| | namdbin | | :mod:`MDAnalysis.coordinates.NAMDBIN` |
+---------------+-----------+-------+------------------------------------------------------+
| FHIAIMS | in | r/w | FHI-AIMS file format for coordinates |
| | | | :mod:`MDAnalysis.coordinates.FHIAIMS` |
+---------------+-----------+-------+------------------------------------------------------+
| H5MD | h5md | r | H5MD_ file format for coordinates |
| | | | :mod:`MDAnalysis.coordinates.H5MD` |
+---------------+-----------+-------+------------------------------------------------------+
| `chemfiles`_ | CHEMFILES | r/w | interface to `chemfiles`_, see the `list of chemfiles|
| library | | | file formats`_ and |
| | | | :mod:`MDAnalysis.coordinates.chemfiles` |
+---------------+-----------+-------+------------------------------------------------------+
.. [#a] This format can also be used to provide basic *topology*
information (i.e. the list of atoms); it is possible to create a
full :mod:`~MDAnalysis.core.universe.Universe` by simply
providing a file of this format: ``u = Universe(filename)``
.. _`netcdf4-python`: https://github.com/Unidata/netcdf4-python
.. _`H5MD`: https://nongnu.org/h5md/index.html
.. _`chemfiles`: https://chemfiles.org/
.. _`list of chemfiles file formats`: https://chemfiles.org/chemfiles/latest/formats.html
.. _Trajectory API:
Trajectory API
--------------
The **Trajectory API** defines how classes have to be structured that allow
reading and writing of coordinate files. By following the API it is possible to
seamlessly enhance the I/O capabilities of MDAnalysis. The actual underlying
I/O code can be written in C or python or a mixture thereof.
Typically, each format resides in its own module, named by the format specifier
(and using upper case by convention).
Reader and Writer classes are derived from base classes in
:mod:`MDAnalysis.coordinates.base`.
Registry
~~~~~~~~
In various places, MDAnalysis tries to automatically select appropriate formats
(e.g. by looking at file extensions). In order to allow it to choose the
correct format, all I/O classes must subclass either
:class:`MDAnalysis.coordinates.base.ReaderBase`,
:class:`MDAnalysis.coordinates.base.SingleFrameReaderBase`,
or :class:`MDAnalysis.coordinates.base.WriterBase` and set the
:attr:`~MDAnalysis.coordinates.base.ProtoReader.format` attribute with a string
defining the expected suffix. To assign multiple suffixes to an I/O class, a
list of suffixes can be given.
In addition to this, a Reader may define a ``_format_hint`` staticmethod, which
returns a boolean of if it can process a given object. E.g. the
:class:`MDAnalysis.coordinates.memory.MemoryReader` identifies itself as
capable of reading numpy arrays. This functionality is used in
:func:`MDAnalysis.core._get_readers.get_reader_for` when figuring out how to
read an object (which was usually supplied to mda.Universe).
To define that a Writer can write multiple trajectory frames, set the
`multiframe` attribute to ``True``. The default is ``False``.
To define that a Writer *does not* support single frame writing the
`singleframe` attribute can be set to ``False``. This is ``True``
by default, ie we assume all Writers can also do a single frame.
.. _Timestep API:
Timestep class
~~~~~~~~~~~~~~
A Timestep instance holds data for the current frame. It is updated whenever a
new frame of the trajectory is read.
Timestep classes are derived from
:class:`MDAnalysis.coordinates.base.Timestep`, which is the primary
implementation example (and used directly for the DCDReader).
The discussion on this format is detailed in `Issue 250`_
.. _Issue 250: https://github.com/MDAnalysis/mdanalysis/issues/250
Methods
.......
``__init__(n_atoms, positions=True, velocities=False, forces=False)``
Define the number of atoms this Timestep will hold and whether or not
it will have velocity and force information
``__eq__``
Compares a Timestep with another
``__getitem__(atoms)``
position(s) of atoms; can be a slice or numpy array and then returns
coordinate array
``__len__()``
number of coordinates (atoms) in the frame
``__iter__()``
iterator over all coordinates
``copy()``
deep copy of the instance
``_init_unitcell``
hook that returns empty data structure for the unitcell representation
of this particular file format; called from within ``__init__()`` to
initialize :attr:`Timestep._unitcell`.
Attributes
..........
``n_atoms``
number of atoms in the frame
``frame``
current frame number (0-based)
``_frame``
The native frame number of the trajectory. This can differ from ``frame``
as that will always count sequentially from 0 on iteration, whilst
``_frame`` is taken directly from the trajectory.
``time``
The current system time in ps. This value is calculated either from a time
set as the Timestep attribute, or from `frame` * `dt`. Either method allows
allows an offset to be applied to the time.
``dt``
The change in system time between different frames. This can be set as an
attribute, but defaults to 1.0 ps.
``data``
A dictionary containing all miscellaneous information for the
current Timestep.
``positions``
A numpy array of all positions in this Timestep, otherwise raises a
:class:`~MDAnalysis.exceptions.NoDataError`
``velocities``
If present, returns a numpy array of velocities, otherwise raises a
:class:`~MDAnalysis.exceptions.NoDataError`
``forces``
If present, returns a numpy array of forces, otherwise raises a
:class:`~MDAnalysis.exceptions.NoDataError`
``has_positions``
Boolean of whether position data is available
``has_velocities``
Boolean of whether velocity data is available
``has_forces``
Boolean of whether force data is available
``dimensions``
system box dimensions (`x, y, z, alpha, beta, gamma`)
(typically implemented as a property because it needs to translate whatever is in the
underlying :class:`~MDAnalysis.coordinates.base.Timestep._unitcell` attribute. Also
comes with a setter that takes a MDAnalysis box so that one can do ::
Timestep.dimensions = [A, B, C, alpha, beta, gamma]
which then converts automatically to the underlying representation and stores it
in :attr:`Timestep._unitcell`.
``volume``
system box volume (derived as the determinant of the box vectors of ``dimensions``)
``aux``
namespace for the representative values of any added auxiliary data.
Private attributes
..................
These attributes are set directly by the underlying trajectory
readers. Normally the user should not have to directly access those,
but instead should use the attribute above.
``_pos``
raw coordinates, a :class:`numpy.float32` array; ``X = _pos[:,0], Y =
_pos[:,1], Z = _pos[:,2]``
``_velocities``
raw velocities, a :class:`numpy.float32` array containing velocities
(similar to ``_pos``)
``_forces``
forces, similar to velocities above.
``_unitcell``
native unit cell description; the format depends on the
underlying trajectory format. A user should use the
:class:`~MDAnalysis.coordinates.base.Timestep.dimensions`
attribute to access the data in a canonical format instead of
accessing :class:`Timestep._unitcell` directly.
The method :meth:`Timestep._init_unitcell` is a hook to initialize
this attribute.
Trajectory Reader class
~~~~~~~~~~~~~~~~~~~~~~~
Trajectory readers are derived from :class:`MDAnalysis.coordinates.base.ReaderBase`.
Typically, many methods and attributes are overriden.
Methods
.......
The :class:`MDAnalysis.coordinates.DCD.DCDReader` class is the primary
implementation example.
**Mandatory methods**
The following methods must be implemented in a Reader class.
``__init__(filename, **kwargs)``
open *filename*; other *kwargs* are processed as needed and the
Reader is free to ignore them. Typically, when MDAnalysis creates
a Reader from :class:`MDAnalysis.Universe` it supplies as much
information as possible in `kwargs`; at the moment the following
data are supplied:
- *n_atoms*: the number of atoms from the supplied topology. This is
not required for all readers and can be ignored if not
required.
``__iter__()``
allow iteration from beginning to end::
for ts in trajectory:
print(ts.frame)
``close()``
close the file and cease I/O
``next()``
advance to next time step or raise :exc:`IOError` when moving
past the last frame
``rewind()``
reposition to first frame
``__entry__()``
entry method of a `Context Manager`_ (returns self)
``__exit__()``
exit method of a `Context Manager`_, should call ``close()``.
.. _Context Manager: http://docs.python.org/2/reference/datamodel.html#context-managers
.. Note::
a ``__del__()`` method should also be present to ensure that the
trajectory is properly closed. However, certain types of Reader can ignore
this requirement. These include the :class:`SingleFrameReaderBase` (file reading
is done within a context manager and needs no closing by hand) and the :class:`ChainReader`
(it is a collection of Readers, each already with its own ``__del__`` method).
**Optional methods**
Not all trajectory formats support the following methods, either because the
data are not available or the methods have not been implemented. Code should
deal with missing methods gracefully.
``__len__()``
number of frames in trajectory
``__getitem__(arg)``
advance to time step `arg` = `frame` and return :class:`Timestep`; or if `arg` is a
slice, then return an iterable over that part of the trajectory.
The first functionality allows one to randomly access frames in the
trajectory::
universe.trajectory[314]
would load frame 314 into the current :class:`Timestep`.
Using slices allows iteration over parts of a trajectory ::
for ts in universe.trajectory[1000:2000]:
process_frame(ts) # do some analysis on ts
or skipping frames ::
for ts in universe.trajectory[1000::100]:
process_frame(ts) # do some analysis on ts
The last example starts reading the trajectory at frame 1000 and
reads every 100th frame until the end.
A sequence of indices or a mask of booleans can also be provided to index
a trajectory.
The performance of the ``__getitem__()`` method depends on the underlying
trajectory reader and if it can implement random access to frames. In many
cases this is not easily (or reliably) implementable and thus one is
restricted to sequential iteration.
If the Reader is not able to provide random access to frames then it
should raise :exc:`TypeError` on indexing. It is possible to partially
implement ``__getitem__`` (as done on
:class:`MDAnalysis.coordinates.base.ProtoReader.__getitem__` where slicing the
full trajectory is equivalent to
:class:`MDAnalysis.coordinates.base.ProtoReader.__iter__` (which is always
implemented) and other slices raise :exc:`TypeError`.
When indexed with a slice, a sequence of indices, or a mask of booleans,
the return value is an instance of :class:`FrameIteratorSliced` or
:class:`FrameIteratorIndices`.
``parse_n_atoms(filename, **kwargs)``
Provide the number of atoms in the trajectory file, allowing the Reader
to be used to provide an extremely minimal Topology.
Must be implemented as either a staticmethod or a classmethod.
``Writer(filename, **kwargs)``
returns a :class:`~MDAnalysis.coordinates.base.WriterBase` which is set up with
the same parameters as the trajectory that is being read (e.g. time step,
length etc), which facilitates copying and simple on-the-fly manipulation.
If no Writer is defined then a :exc:`NotImplementedError` is raised.
The *kwargs* can be used to customize the Writer as they are typically
passed through to the init method of the Writer, with sensible defaults
filled in; the actual keyword arguments depend on the Writer.
``timeseries(atomGroup, [start[,stop[,skip[,format]]]])``
returns a subset of coordinate data
Attributes
..........
``filename``
filename of the trajectory
``n_atoms``
number of atoms (coordinate sets) in a frame (constant)
``n_frames``
total number of frames (if known) -- ``None`` if not known
``ts``
the :class:`~base.Timestep` object; typically customized for each
trajectory format and derived from :class:`base.Timestep`.
``units``
dictionary with keys *time*, *length*, *speed*, *force* and the
appropriate unit (e.g. 'AKMA' and 'Angstrom' for Charmm dcds, 'ps' and
'nm' for Gromacs trajectories, ``None`` and 'Angstrom' for PDB).
Any field not used should be set to ``None``.
``format``
string that identifies the file format, e.g. "DCD", "PDB", "CRD", "XTC",
"TRR"; this is typically the file extension in upper case.
``dt``
time between frames in ps; a managed attribute (read only) that computes
on the fly ``skip_timestep * delta`` and converts to the MDAnalysis base
unit for time (pico seconds by default)
``totaltime``
total length of the trajectory = ``n_frames * dt``
``time``
time of the current time step, in MDAnalysis time units (ps)
``frame``
frame number of the current time step (0-based)
``aux_list``
list of the names of any added auxiliary data.
``_auxs``
dictionary of the :class:`~MDAnalysis.auxiliary.base.AuxReader`
instances for any added auxiliary data.
**Optional attributes**
``delta``
integrator time step (in native units); hence the "length"
of a trajctory frame is ``skip_timestep*delta`` time units
``compressed``
string that identifies the compression (e.g. "gz" or "bz2") or ``None``.
``fixed``
bool, saying if there are fixed atoms (e.g. dcds)
``periodic``
boolean saying if contains box information for periodic boundary conditions
unit cell information is stored in attribute `dimensions`
``skip_timestep``
number of integrator steps between frames + 1 (i.e.
the stride at which the MD simulation was sampled)
Trajectory Writer class
~~~~~~~~~~~~~~~~~~~~~~~
Trajectory writers are derived from
:class:`MDAnalysis.coordinates.base.WriterBase`. They are used to write
multiple frames to a trajectory file. Every time the
:meth:`~MDAnalysis.coordinates.base.WriterBase.write` method is called,
another frame is appended to the trajectory.
Typically, many methods and attributes are overriden.
Signature::
with TrajectoryWriter(filename, n_atoms, **kwargs) as w:
w.write(Universe) # write a whole universe
or::
w.write(AtomGroup) # write a selection of Atoms from Universe
Methods
.......
``__init__(filename,n_atoms[,start[,step[,delta[,remarks]]]])``
opens *filename* and writes header if required by format
``write(obj)``
write Timestep data in *obj*
``convert_dimensions_to_unitcell(timestep)``
take the dimensions from the timestep and convert to the native
unitcell representation of the format
``close()``
close file and finish I/O
``__del__()``
ensures that close() is called
Attributes
..........
``filename``
name of the trajectory file
``start, stop, step``
first and last frame number (0-based) and step
``units``
dictionary with keys *time*, *length*, *speed*, *force* and the
appropriate unit (e.g. 'AKMA' and 'Angstrom' for Charmm dcds, 'ps' and
'nm' for Gromacs trajectories, ``None`` and 'Angstrom' for PDB).
Any field not used should be set to ``None``.
``format``
string that identifies the file format, e.g. "DCD", "PDB", "CRD", "XTC",
"TRR"
**Optional**
``ts``
:class:`Timestep` instance
Single Frame Writer class
~~~~~~~~~~~~~~~~~~~~~~~~~
A single frame writer is a special case of a trajectory writer in that it
writes only a single coordinate frame to a file, for instance, a pdb or gro
file. Unlike trajectory formats, which only contains coordinates, *single
frame* formats contain much more information (e.g. atom and residue names and
numbers) and hence it is possible to write selections of atoms in a meaningful
way.
Signature::
W = FrameWriter(filename, **kwargs)
W.write(AtomGroup)
W.write(Universe)
The blanket *kwargs* is required so that one can pass the same kind of
arguments (filename and n_atoms) as for the Trajectory writers. In
this way, the simple :func:`~MDAnalysis.coordinates.core.writer`
factory function can be used for all writers.
Methods
.......
``__init__(filename, **kwargs)``
opens *filename* for writing; `kwargs` are typically ignored
``write(obj)``
writes the object *obj*, containing a
:class:`~MDAnalysis.core.groups.AtomGroup` group of atoms (typically
obtained from a selection) or :class:`~MDAnalysis.core.universe.Universe`
to the file and closes the file
.. Note::
Trajectory and Frame writers can be used in almost exactly the same
manner with the one difference that Frame writers cannot deal with
raw :class:`~MDAnalysis.coordinates.base.Timestep` objects.
"""
__all__ = ['reader', 'writer']
from . import base
from .core import reader, writer
from . import chain
from . import chemfiles
from . import CRD
from . import DCD
from . import DLPoly
from . import DMS
from . import GMS
from . import GRO
from . import INPCRD
from . import LAMMPS
from . import MOL2
from . import ParmEd
from . import PDB
from . import PDBQT
from . import PQR
from . import TRJ
from . import TRR
from . import H5MD
from . import TRZ
from . import XTC
from . import XYZ
from . import TXYZ
from . import memory
from . import MMTF
from . import GSD
from . import null
from . import NAMDBIN
from . import FHIAIMS
from . import RDKit