-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathengine.py
148 lines (122 loc) · 5.28 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
"""
Modified from RTD-Net (https://github.com/MCG-NJU/RTD-Action)
PointTAD Training and Inference functions.
"""
import json
import math
import sys
from typing import Iterable
import torch
from termcolor import colored
import util.misc as utils
from datasets.evaluate import Evaluator
def load_json(file):
with open(file) as json_file:
data = json.load(json_file)
return data
def train_one_epoch(model: torch.nn.Module,
criterion: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
args,
postprocessors=None):
model.train()
criterion.train()
metric_logger = utils.MetricLogger(delimiter=' ')
metric_logger.add_meter(
'lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter(
'class_error', utils.SmoothedValue(window_size=1,
fmt='{value:.2f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
max_norm = args.clip_max_norm
for vid_name_list, locations, x, targets, num_frames, base \
in metric_logger.log_every(data_loader, print_freq, header):
x = x.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
outputs = model(x)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys()
if k in weight_dict)
n_parameters = sum(p.numel() for p in model.parameters())
losses += 0 * n_parameters
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {
f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()
}
loss_dict_reduced_scaled = {
k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict
}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print('Loss is {}, stopping training'.format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
metric_logger.update(loss=loss_value,
**loss_dict_reduced_scaled,
**loss_dict_reduced_unscaled)
metric_logger.update(class_error=loss_dict_reduced['class_error'])
metric_logger.update(lr=optimizer.param_groups[0]['lr'])
metric_logger.synchronize_between_processes()
return {k: meter.global_avg
for k, meter in metric_logger.meters.items()}, loss_dict
@torch.no_grad()
def evaluate(model, criterion, postprocessors, data_loader, device, args):
print(colored('evaluate', 'red'))
model.eval()
criterion.eval()
metric_logger = utils.MetricLogger(delimiter=' ')
metric_logger.add_meter(
'class_error', utils.SmoothedValue(window_size=1,
fmt='{value:.2f}'))
header = 'Test:'
evaluator = Evaluator()
video_pool = list(load_json(args.annotation_path).keys())
video_pool.sort()
video_dict = {i: video_pool[i] for i in range(len(video_pool))}
for vid_name_list, locations, x, targets, num_frames, base in metric_logger.log_every(
data_loader, 10, header):
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
outputs = model(x)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {
k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict
}
loss_dict_reduced_unscaled = {
f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()
}
metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled,
**loss_dict_reduced_unscaled)
metric_logger.update(class_error=loss_dict_reduced['class_error'])
results, dense_results = postprocessors['results'](outputs, num_frames, base)
for target, output, dense_res, base_loc in zip(targets, results, dense_results, base):
vid = video_dict[target['video_id'].item()]
dense_gt = target['dense_gt']
if args.dense_result:
torch.save(dense_res, f'dense_results/{vid}_{base_loc}_dense')
evaluator.update(vid, output, base_loc)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
evaluator.synchronize_between_processes()
print('Averaged stats:', metric_logger)
return evaluator, loss_dict