forked from luigifreda/pyslam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
frame.py
528 lines (460 loc) · 22.1 KB
/
frame.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import cv2
import numpy as np
#import g2o
from threading import RLock, Thread
from scipy.spatial import cKDTree
from parameters import Parameters
from camera_pose import CameraPose
from utils_geom import add_ones, poseRt, normalize
from utils import myjet, Printer
kDrawFeatureRadius = [r*5 for r in range(1,100)]
kDrawOctaveColor = np.linspace(0, 255, 12)
# Base object class for frame info management;
# it collects methods for managing:
# - camera intrinsics
# - camera pose
# - points projections
# - checking points visibility
class FrameBase(object):
_id = 0 # shared frame counter
_id_lock = RLock()
def __init__(self, camera, pose=None, id=None, timestamp=None):
self._lock_pose = RLock()
# frame camera info
self.camera = camera
# self._pose is a CameraPose() representing Tcw (pc = Tcw * pw)
if pose is None:
self._pose = CameraPose()
else:
self._pose = CameraPose(pose)
# frame id
if id is not None:
self.id = id
else:
with FrameBase._id_lock:
self.id = FrameBase._id
FrameBase._id += 1
# frame timestamp
self.timestamp = timestamp
def __hash__(self):
return self.id
def __eq__(self, rhs):
return (isinstance(rhs, FrameBase) and self.id == rhs.id)
def __lt__(self, rhs):
return self.id < rhs.id
def __le__(self, rhs):
return self.id <= rhs.id
@property
def width(self):
return self.camera.width
@property
def height(self):
return self.camera.height
@property
def isometry3d(self): # pose as g2o.Isometry3d
with self._lock_pose:
return self._pose.isometry3d
@property
def Tcw(self):
with self._lock_pose:
return self._pose.Tcw
@property
def Twc(self):
with self._lock_pose:
return self._pose.get_inverse_matrix()
@property
def Rcw(self):
with self._lock_pose:
return self._pose.Rcw
@property
def Rwc(self):
with self._lock_pose:
return self._pose.Rwc
@property
def tcw(self):
with self._lock_pose:
return self._pose.tcw
@property
def Ow(self):
with self._lock_pose:
return self._pose.Ow
@property
def pose(self):
with self._lock_pose:
return self._pose.Tcw
@property
def quaternion(self): # g2o.Quaternion(), quaternion_cw
with self._lock_pose:
return self._pose.quaternion
@property
def orientation(self): # g2o.Quaternion(), quaternion_cw
with self._lock_pose:
return self._pose.orientation
@property
def position(self): # 3D vector tcw (world origin w.r.t. camera frame)
with self._lock_pose:
return self._pose.position
# update pose from transformation matrix or g2o.Isometry3d
def update_pose(self, pose):
with self._lock_pose:
self._pose.set(pose)
# update pose from transformation matrix
def update_translation(self, tcw):
with self._lock_pose:
self._pose.set_translation(tcw)
# update pose from transformation matrix
def update_rotation_and_translation(self, Rcw, tcw):
with self._lock_pose:
self._pose.set_from_rotation_and_translation(Rcw, tcw)
# transform a world point into a camera point
def transform_point(self, pw):
with self._lock_pose:
return (self._pose.Rcw @ pw) + self._pose.tcw # p w.r.t. camera
# transform a world points into camera points [Nx3]
# out: points w.r.t. camera frame [Nx3]
def transform_points(self, points):
with self._lock_pose:
Rcw = self._pose.Rcw
tcw = self._pose.tcw.reshape((3,1))
return (Rcw @ points.T + tcw).T # get points w.r.t. camera frame [Nx3]
# project an [Nx3] array of map point vectors on this frame
# out: [Nx2] array of image points, [Nx1] array of map point depths
def project_points(self, points):
pcs = self.transform_points(points)
return self.camera.project(pcs)
# project a list of N MapPoint objects on this frame
# out: Nx2 image points, [Nx1] array of map point depths
def project_map_points(self, map_points):
points = np.array([p.pt for p in map_points])
return self.project_points(points)
# project a 3d point vector pw on this frame
# out: image point, depth
def project_point(self, pw):
pc = self.transform_point(pw) # p w.r.t. camera
return self.camera.project(pc)
# project a MapPoint object on this frame
# out: image point, depth
def project_map_point(self, map_point):
return self.project_point(map_point.pt)
def is_in_image(self, uv, z):
return self.camera.is_in_image(uv,z)
# input: [Nx2] array of uvs, [Nx1] of zs
# output: [Nx1] array of visibility flags
def are_in_image(self, uvs, zs):
return self.camera.are_in_image(uvs,zs)
# input: map_point
# output: visibility flag, projection uv, depth z
def is_visible(self, map_point):
#with self._lock_pose: (no need, project_map_point already locks the pose)
uv,z = self.project_map_point(map_point)
PO = map_point.pt-self.Ow
if not self.is_in_image(uv, z):
return False, uv, z
dist3D = np.linalg.norm(PO)
# point depth must be inside the scale pyramid of the image
if dist3D < map_point.min_distance or dist3D > map_point.max_distance:
return False, uv, z
# viewing angle must be less than 60 deg
if np.dot(PO,map_point.get_normal()) < Parameters.kViewingCosLimitForPoint * dist3D:
return False, uv, z
return True, uv, z
# input: a list of map points
# output: [Nx1] array of visibility flags, [Nx2] array of projections, [Nx1] array of depths, [Nx1] array of distances PO
# check a) points are in image b) good view angle c) good distance range
def are_visible(self, map_points):
points = []
point_normals = []
min_dists = []
max_dists = []
for i, p in enumerate(map_points):
points.append(p.pt)
point_normals.append(p.get_normal())
min_dists.append(p.min_distance)
max_dists.append(p.max_distance)
points = np.array(points)
point_normals = np.array(point_normals)
min_dists = np.array(min_dists)
max_dists = np.array(max_dists)
#with self._lock_pose: (no need, project_points already locks the pose)
uvs, zs = self.project_points(points)
POs = points - self.Ow
dists = np.linalg.norm(POs, axis=-1, keepdims=True)
POs /= dists
cos_view = np.sum(point_normals * POs, axis=1)
are_in_image = self.are_in_image(uvs, zs)
are_in_good_view_angle = cos_view > Parameters.kViewingCosLimitForPoint
dists = dists.reshape(-1,)
are_in_good_distance = (dists > min_dists) & (dists < max_dists)
out_flags = are_in_image & are_in_good_view_angle & are_in_good_distance
return out_flags, uvs, zs, dists
# A Frame mainly collects keypoints, descriptors and their corresponding 3D points
class Frame(FrameBase):
tracker = None # shared tracker
feature_manager = None
feature_matcher = None
descriptor_distance = None
descriptor_distances = None # norm for vectors
is_store_imgs = False
def __init__(self, img, camera, pose=None, id=None, timestamp=None, kps_data=None):
super().__init__(camera, pose, id, timestamp)
self._lock_features = RLock()
self.is_keyframe = False
# image keypoints information arrays (unpacked from array of cv::KeyPoint())
self.kps = None # keypoint coordinates [Nx2]
self.kpsu = None # [u]ndistorted keypoint coordinates [Nx2]
self.kpsn = None # [n]ormalized keypoint coordinates [Nx2] (Kinv * [kp,1])
self.octaves = None # keypoint octaves [Nx1]
self.sizes = None # keypoint sizes [Nx1]
self.angles = None # keypoint sizes [Nx1]
self.des = None # keypoint descriptors [NxD] where D is the descriptor length
# map points information arrays
self.points = None # map points => self.points[idx] (if is not None) is the map point matched with self.kps[idx]
self.outliers = None # outliers flags for map points (reset and set by pose_optimization())
self.kf_ref = None # reference keyframe
if img is not None:
#self.H, self.W = img.shape[0:2]
if Frame.is_store_imgs:
self.img = img.copy()
else:
self.img = None
if kps_data is None:
self.kps, self.des = Frame.tracker.detectAndCompute(img)
# convert from a list of keypoints to arrays of points, octaves, sizes
kps_data = np.array([ [x.pt[0], x.pt[1], x.octave, x.size, x.angle] for x in self.kps ], dtype=np.float32)
self.kps = kps_data[:,:2]
self.octaves = np.uint32(kps_data[:,2]) #print('octaves: ', self.octaves)
self.sizes = kps_data[:,3]
self.angles = kps_data[:,4]
else:
# FIXME: this must be updated according to the new serialization
#self.kpsu, self.des = des, np.array(list(range(len(des)))*32, np.uint8).reshape(32, len(des)).T
pass
self.kpsu = self.camera.undistort_points(self.kps) # convert to undistorted keypoint coordinates
self.kpsn = self.camera.unproject_points(self.kpsu)
self.points = np.array( [None]*len(self.kpsu) ) # init map points
self.outliers = np.full(self.kpsu.shape[0], False, dtype=bool)
@staticmethod
def set_tracker(tracker):
Frame.tracker = tracker
Frame.feature_manager = tracker.feature_manager
Frame.feature_matcher = tracker.matcher
Frame.descriptor_distance = tracker.descriptor_distance
Frame.descriptor_distances = tracker.descriptor_distances
Frame.oriented_features = tracker.feature_manager.oriented_features
Frame._id = 0
# KD tree of undistorted keypoints
@property
def kd(self):
if not hasattr(self, '_kd'):
self._kd = cKDTree(self.kpsu)
return self._kd
def delete(self):
with self._lock_pose:
with self._lock_features:
del self
def get_point_match(self, idx):
with self._lock_features:
return self.points[idx]
def set_point_match(self, p, idx):
with self._lock_features:
self.points[idx] = p
def remove_point_match(self, idx):
with self._lock_features:
self.points[idx] = None
def replace_point_match(self, p, idx):
self.points[idx] = p # replacing is not critical (it does not create a 'None jump')
def remove_point(self, p):
with self._lock_features:
try:
p_idxs = np.where(self.points == p)[0] # remove all instances
self.points[p_idxs] = None
except:
pass
def remove_frame_views(self, idxs):
with self._lock_features:
if len(idxs) == 0:
return
for idx,p in zip(idxs,self.points[idxs]):
if p is not None:
p.remove_frame_view(self,idx)
def reset_points(self):
with self._lock_features:
self.points = np.array([None]*len(self.kpsu))
self.outliers = np.full(self.kpsu.shape[0], False, dtype=bool)
def get_points(self):
with self._lock_features:
return self.points.copy()
def get_matched_points(self):
with self._lock_features:
matched_idxs = np.flatnonzero(self.points!=None)
matched_points = self.points[matched_idxs]
return matched_points #, matched_idxs
def get_unmatched_points_idxs(self):
with self._lock_features:
unmatched_idxs = np.flatnonzero(self.points==None)
return unmatched_idxs
def get_matched_inlier_points(self):
with self._lock_features:
matched_idxs = np.flatnonzero( (self.points!=None) & (self.outliers==False))
matched_points = self.points[matched_idxs]
return matched_points, matched_idxs
def get_matched_good_points(self):
with self._lock_features:
good_points = [p for p in self.points if p is not None and not p.is_bad]
return good_points
def num_tracked_points(self, minObs = 1):
with self._lock_features:
num_points = 0
for i,p in enumerate(self.points):
if p is not None and not p.is_bad:
if p.num_observations >= minObs:
num_points += 1
return num_points
def num_matched_inlier_map_points(self):
with self._lock_features:
num_matched_points = 0
for i,p in enumerate(self.points):
if p is not None and not self.outliers[i]:
if p.num_observations > 0:
num_matched_points += 1
return num_matched_points
# update found count for map points
def update_map_points_statistics(self):
with self._lock_features:
num_matched_points = 0
for i,p in enumerate(self.points):
if p is not None and not self.outliers[i]:
p.increase_found() # update point statistics
if p.num_observations > 0:
num_matched_points +=1
return num_matched_points
# reset outliers detected in last pose optimization
def clean_outlier_map_points(self):
with self._lock_features:
num_matched_points = 0
for i,p in enumerate(self.points):
if p is not None:
if self.outliers[i]:
p.remove_frame_view(self,i)
self.points[i] = None
self.outliers[i] = False
p.last_frame_id_seen = self.id
else:
if p.num_observations > 0:
num_matched_points +=1
return num_matched_points
# reset bad map points and update visibility count
def clean_bad_map_points(self):
with self._lock_features:
for i,p in enumerate(self.points):
if p is not None:
if p.is_bad:
p.remove_frame_view(self,i)
self.points[i] = None
self.outliers[i] = False
else:
p.last_frame_id_seen = self.id
p.increase_visible()
# update statistics for map points
def clean_vo_map_points(self):
with self._lock_features:
num_cleaned_points = 0
for i,p in enumerate(self.points):
if p is not None:
if p.num_observations < 1:
self.points[i] = None
self.outliers[i] = False
num_cleaned_points += 1
print('#cleaned vo points: ', num_cleaned_points)
# check for point replacements
def check_replaced_map_points(self):
with self._lock_features:
num_replaced_points = 0
for i,p in enumerate(self.points):
if p is not None:
replacement = p.get_replacement()
if replacement is not None:
replaced = p
self.points[i] = replacement
del replaced
num_replaced_points +=1
print('#replaced points: ', num_replaced_points)
def compute_points_median_depth(self, points3d = None):
with self._lock_pose:
Rcw2 = self._pose.Rcw[2,:3] # just 2-nd row
tcw2 = self._pose.tcw[2] # just 2-nd row
if points3d is None:
with self._lock_features:
points3d = np.array([p.pt for p in self.points if p is not None])
if len(points3d)>0:
z = np.dot(Rcw2, points3d[:,:3].T) + tcw2
z = sorted(z)
return z[ ( len(z)-1)//2 ]
else:
Printer.red('frame.compute_points_median_depth() with no points')
return -1
# draw tracked features on the image for selected keypoint indexes
def draw_feature_trails(self, img, kps_idxs, trail_max_length=9):
img = img.copy()
with self._lock_features:
uvs = np.rint(self.kps[kps_idxs]).astype(np.intp) # image keypoints coordinates # use distorted coordinates when drawing on distorted original image
# for each keypoint idx
for kp_idx in kps_idxs:
#u1, v1 = int(round(self.kps[kp_idx][0])), int(round(self.kps[kp_idx][1])) # use distorted coordinates when drawing on distorted original image
uv = tuple(uvs[kp_idx])
#radius = self.sizes[kp_idx] # actual size
radius = kDrawFeatureRadius[self.octaves[kp_idx]] # fake size for visualization
#color = myjet[self.octaves[i1]]*255
point = self.points[kp_idx]
if point is not None and not point.is_bad:
p_frame_views = point.frame_views()
# there's a corresponding 3D map point
if len(p_frame_views) > 2:
cv2.circle(img, uv, color=(0, 255, 0), radius=radius, thickness=1) # draw keypoint size as a circle
#cv2.circle(img, uv, color=color, radius=radius)
else:
cv2.circle(img, uv, color=(255, 0, 0), radius=radius, thickness=1) # draw keypoint size as a circle
# draw the trail (for each keypoint, its trail_max_length corresponding points in previous frames)
pts = []
lfid = None # last frame id
for f, idx in p_frame_views[-trail_max_length:][::-1]:
if lfid is not None and lfid-1 != f.id:
# stop when there is a jump in the ids of frame observations
break
pts.append(tuple(map(lambda x: int(round(x)), f.kps[idx])))
lfid = f.id
if len(pts) > 1:
cv2.polylines(img, np.array([pts], dtype=np.int32), False, myjet[len(pts)]*255, thickness=1, lineType=16)
else:
# no corresponding 3D point
cv2.circle(img, uv, color=(0, 0, 0), radius=2) #radius=radius)
return img
# draw tracked features on the image
def draw_all_feature_trails(self, img):
kps_idxs = range(len(self.kps))
return self.draw_feature_trails(img, kps_idxs)
# match frames f1 and f2
# out: a vector of match index pairs [idx1[i],idx2[i]] such that the keypoint f1.kps[idx1[i]] is matched with f2.kps[idx2[i]]
def match_frames(f1, f2, ratio_test=None):
idx1, idx2 = Frame.feature_matcher.match(f1.des, f2.des, ratio_test)
idx1 = np.asarray(idx1)
idx2 = np.asarray(idx2)
return idx1, idx2