forked from luigifreda/pyslam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
feature_manager.py
945 lines (873 loc) · 58.6 KB
/
feature_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import sys
import math
from enum import Enum
import numpy as np
import cv2
from collections import Counter
from parameters import Parameters
from feature_types import FeatureDetectorTypes, FeatureDescriptorTypes, FeatureInfo
from utils import Printer, import_from
from utils_features import unpackSiftOctaveKps, UnpackOctaveMethod, sat_num_features, kdt_nms, ssc_nms, octree_nms, grid_nms
from utils_geom import hamming_distance, hamming_distances, l2_distance, l2_distances
from feature_manager_adaptors import BlockAdaptor, PyramidAdaptor
from pyramid import Pyramid, PyramidType
from feature_root_sift import RootSIFTFeature2D
from feature_shitomasi import ShiTomasiDetector
# import and check
SuperPointFeature2D = import_from('feature_superpoint', 'SuperPointFeature2D')
TfeatFeature2D = import_from('feature_tfeat', 'TfeatFeature2D')
Orbslam2Feature2D = import_from('feature_orbslam2', 'Orbslam2Feature2D')
HardnetFeature2D = import_from('feature_hardnet', 'HardnetFeature2D')
GeodescFeature2D = import_from('feature_geodesc', 'GeodescFeature2D')
SosnetFeature2D = import_from('feature_sosnet', 'SosnetFeature2D')
if False:
L2NetKerasFeature2D = import_from('feature_l2net_keras', 'L2NetKerasFeature2D') # not used at present time
L2NetFeature2D = import_from('feature_l2net', 'L2NetFeature2D')
LogpolarFeature2D = import_from('feature_logpolar', 'LogpolarFeature2D')
D2NetFeature2D = import_from('feature_d2net', 'D2NetFeature2D')
DelfFeature2D = import_from('feature_delf', 'DelfFeature2D')
ContextDescFeature2D = import_from('feature_contextdesc', 'ContextDescFeature2D')
LfNetFeature2D = import_from('feature_lfnet', 'LfNetFeature2D')
R2d2Feature2D = import_from('feature_r2d2', 'R2d2Feature2D')
KeyNetDescFeature2D = import_from('feature_keynet', 'KeyNetDescFeature2D')
kVerbose = True
kNumFeatureDefault = Parameters.kNumFeatures
kNumLevelsDefault = 4
kScaleFactorDefault = 1.2
kNumLevelsInitSigma = 40
kSigmaLevel0 = Parameters.kSigmaLevel0
kDrawOriginalExtractedFeatures = False # for debugging
kFASTKeyPointSizeRescaleFactor = 4 # 7 is the standard keypoint size on layer 0 => actual size = 7*kFASTKeyPointSizeRescaleFactor
kAGASTKeyPointSizeRescaleFactor = 4 # 7 is the standard keypoint size on layer 0 => actual size = 7*kAGASTKeyPointSizeRescaleFactor
kShiTomasiKeyPointSizeRescaleFactor = 5 # 5 is the selected keypoint size on layer 0 (see below) => actual size = 5*kShiTomasiKeyPointSizeRescaleFactor
if not kVerbose:
def print(*args, **kwargs):
pass
class KeyPointFilterTypes(Enum):
NONE = 0
SAT = 1 # sat the number of features (keep the best N features: 'best' on the basis of the keypoint.response)
KDT_NMS = 2 # Non-Maxima Suppression based on kd-tree
SSC_NMS = 3 # Non-Maxima Suppression based on https://github.com/BAILOOL/ANMS-Codes
OCTREE_NMS = 4 # Distribute keypoints by using a octree (as a matter of fact, a quadtree): from ORBSLAM2
GRID_NMS = 5 # NMS by using a grid
def feature_manager_factory(num_features=kNumFeatureDefault,
num_levels = kNumLevelsDefault, # number of pyramid levels or octaves for detector and descriptor
scale_factor = kScaleFactorDefault, # detection scale factor (if it can be set, otherwise it is automatically computed)
detector_type = FeatureDetectorTypes.FAST,
descriptor_type = FeatureDescriptorTypes.ORB):
return FeatureManager(num_features, num_levels, scale_factor, detector_type, descriptor_type)
# Manager of both detector and descriptor
# This exposes an interface that is similar to OpenCV::Feature2D, i.e. detect(), compute() and detectAndCompute()
class FeatureManager(object):
def __init__(self, num_features=kNumFeatureDefault,
num_levels = kNumLevelsDefault, # number of pyramid levels or octaves for detector and descriptor
scale_factor = kScaleFactorDefault, # detection scale factor (if it can be set, otherwise it is automatically computed)
detector_type = FeatureDetectorTypes.FAST,
descriptor_type = FeatureDescriptorTypes.ORB):
self.detector_type = detector_type
self._feature_detector = None
self.descriptor_type = descriptor_type
self._feature_descriptor = None
# main feature manager properties
self.num_features = num_features
self.num_levels = num_levels
self.first_level = 0 # not always applicable = > 0: start pyramid from input image;
# -1: start pyramid from up-scaled image*scale_factor (as in SIFT)
self.scale_factor = scale_factor # scale factor bewteen two octaves
self.sigma_level0 = kSigmaLevel0 # sigma on first octave
self.layers_per_octave = 3 # for methods that uses octaves (SIFT, SURF, etc)
# feature norm options
self.norm_type = None # descriptor norm type
self.descriptor_distance = None # pointer to a function for computing the distance between two points
self.descriptor_distances = None # pointer to a function for computing the distances between two array of corresponding points
# block adaptor options
self.use_bock_adaptor = False
self.block_adaptor = None
# pyramid adaptor options: at present time pyramid adaptor has the priority and can combine a block adaptor withint itself
self.use_pyramid_adaptor = False
self.pyramid_adaptor = None
self.pyramid_type = PyramidType.RESIZE
self.pyramid_do_parallel = True
self.do_sat_features_per_level = False # if pyramid adaptor is active, one can require to compute a certain number of features per level (see PyramidAdaptor)
self.force_multiscale_detect_and_compute = False # automatically managed below depending on features
self.oriented_features = True # automatically managed below depending on selected features
self.do_keypoints_size_rescaling = False # automatically managed below depending on selected features
self.need_color_image = False # automatically managed below depending on selected features
self.keypoint_filter_type = KeyPointFilterTypes.SAT # default keypoint-filter type
self.need_nms = False # need or not non-maximum suppression of keypoints
self.keypoint_nms_filter_type = KeyPointFilterTypes.KDT_NMS # default keypoint-filter type if NMS is needed
# initialize sigmas for keypoint levels (used for SLAM)
self.init_sigma_levels()
# --------------------------------------------- #
# manage different opencv versions
# --------------------------------------------- #
print("using opencv ", cv2.__version__)
# check opencv version in order to use the right modules
if cv2.__version__.split('.')[0] == '3':
SIFT_create = import_from('cv2.xfeatures2d','SIFT_create')
SURF_create = import_from('cv2.xfeatures2d','SURF_create')
FREAK_create = import_from('cv2.xfeatures2d','FREAK_create')
ORB_create = import_from('cv2','ORB_create')
BRISK_create = import_from('cv2','BRISK_create')
KAZE_create = import_from('cv2','KAZE_create')
AKAZE_create = import_from('cv2','AKAZE_create')
BoostDesc_create = import_from('cv2','xfeatures2d_BoostDesc','create')
MSD_create = import_from('cv2','xfeatures2d_MSDDetector') # found but it does not work! (it does not find the .create() method)
#Affine_create = import_from('cv2','xfeatures2d_AffineFeature2D') # not found
DAISY_create = import_from('cv2','xfeatures2d_DAISY','create')
STAR_create = import_from('cv2','xfeatures2d_StarDetector','create')
HL_create = import_from('cv2','xfeatures2d_HarrisLaplaceFeatureDetector','create')
LATCH_create = import_from('cv2','xfeatures2d_LATCH','create')
LUCID_create = import_from('cv2','xfeatures2d_LUCID','create')
VGG_create = import_from('cv2','xfeatures2d_VGG','create')
else:
SIFT_create = import_from('cv2.xfeatures2d','SIFT_create')
SURF_create = import_from('cv2.xfeatures2d','SURF_create')
FREAK_create = import_from('cv2.xfeatures2d','FREAK_create')
ORB_create = import_from('cv2','ORB')
BRISK_create = import_from('cv2','BRISK')
KAZE_create = import_from('cv2','KAZE')
AKAZE_create = import_from('cv2','AKAZE')
BoostDesc_create = import_from('cv2','xfeatures2d_BoostDesc','create')
MSD_create = import_from('cv2','xfeatures2d_MSDDetector')
DAISY_create = import_from('cv2','xfeatures2d_DAISY','create')
STAR_create = import_from('cv2','xfeatures2d_StarDetector','create')
HL_create = import_from('cv2','xfeatures2d_HarrisLaplaceFeatureDetector','create')
LATCH_create = import_from('cv2','xfeatures2d_LATCH','create')
LUCID_create = import_from('cv2','xfeatures2d_LUCID','create')
VGG_create = import_from('cv2','xfeatures2d_VGG','create')
# pure detectors
self.FAST_create = import_from('cv2','FastFeatureDetector_create')
self.AGAST_create = import_from('cv2','AgastFeatureDetector_create')
self.GFTT_create = import_from('cv2','GFTTDetector_create')
self.MSER_create = import_from('cv2','MSER_create')
self.MSD_create = MSD_create
self.STAR_create = STAR_create
self.HL_create = HL_create
# detectors and descriptors
self.SIFT_create = SIFT_create
self.SURF_create = SURF_create
self.ORB_create = ORB_create
self.BRISK_create = BRISK_create
self.AKAZE_create = AKAZE_create
self.KAZE_create = KAZE_create
# pure descriptors
self.FREAK_create = FREAK_create # only descriptor
self.BoostDesc_create = BoostDesc_create
self.DAISY_create = DAISY_create
self.LATCH_create = LATCH_create
self.LUCID_create = LUCID_create
self.VGG_create = VGG_create
# --------------------------------------------- #
# check if we want descriptor == detector
# --------------------------------------------- #
self.is_detector_equal_to_descriptor = (self.detector_type.name == self.descriptor_type.name)
# N.B.: the following descriptors assume keypoint.octave extacly represents an octave with a scale_factor=2
# and not a generic level with scale_factor < 2
if self.descriptor_type in [
FeatureDescriptorTypes.SIFT, # [NOK] SIFT seems to assume the use of octaves (https://github.com/opencv/opencv_contrib/blob/master/modules/xfeatures2d/src/sift.cpp#L1128)
FeatureDescriptorTypes.ROOT_SIFT, # [NOK] same as SIFT
#FeatureDescriptorTypes.SURF, # [OK] SURF computes the descriptor by considering the keypoint.size (https://github.com/opencv/opencv_contrib/blob/master/modules/xfeatures2d/src/surf.cpp#L600)
FeatureDescriptorTypes.AKAZE, # [NOK] AKAZE does NOT seem to compute the right scale index for each keypoint.size (https://github.com/opencv/opencv/blob/master/modules/features2d/src/kaze/AKAZEFeatures.cpp#L1508)
FeatureDescriptorTypes.KAZE, # [NOK] similar to KAZE
#FeatureDescriptorTypes.FREAK, # [OK] FREAK computes the right scale index for each keypoint.size (https://github.com/opencv/opencv_contrib/blob/master/modules/xfeatures2d/src/freak.cpp#L468)
#FeatureDescriptorTypes.BRISK # [OK] BRISK computes the right scale index for each keypoint.size (https://github.com/opencv/opencv/blob/master/modules/features2d/src/brisk.cpp#L697)
#FeatureDescriptorTypes.BOOST_DESC # [OK] BOOST_DESC seems to properly rectify each keypoint patch size (https://github.com/opencv/opencv_contrib/blob/master/modules/xfeatures2d/src/boostdesc.cpp#L346)
]:
self.scale_factor = 2 # the above descriptors work on octave layers with a scale_factor=2!
Printer.orange('forcing scale factor=2 for detector', self.descriptor_type.name)
self.orb_params = dict(nfeatures=num_features,
scaleFactor=self.scale_factor,
nlevels=self.num_levels,
patchSize=31,
edgeThreshold = 10, #31, #19, #10, # margin from the frame border
fastThreshold = 20,
firstLevel = self.first_level,
WTA_K = 2,
scoreType=cv2.ORB_FAST_SCORE) #scoreType=cv2.ORB_HARRIS_SCORE, scoreType=cv2.ORB_FAST_SCORE
# --------------------------------------------- #
# init detector
# --------------------------------------------- #
if self.detector_type == FeatureDetectorTypes.SIFT or self.detector_type == FeatureDetectorTypes.ROOT_SIFT:
sift = self.SIFT_create(nOctaveLayers=self.layers_per_octave)
self.set_sift_parameters()
if self.detector_type == FeatureDetectorTypes.ROOT_SIFT:
self._feature_detector = RootSIFTFeature2D(sift)
else:
self._feature_detector = sift
#
#
elif self.detector_type == FeatureDetectorTypes.SURF:
self._feature_detector = self.SURF_create(nOctaves = self.num_levels, nOctaveLayers=self.layers_per_octave)
#self.intra_layer_factor = 1.2599 # num layers = nOctaves*nOctaveLayers scale=2^(1/nOctaveLayers) = 1.2599
self.scale_factor = 2 # force scale factor = 2 between octaves
#
#
elif self.detector_type == FeatureDetectorTypes.ORB:
self._feature_detector = self.ORB_create(**self.orb_params)
self.use_bock_adaptor = True # add a block adaptor?
self.need_nms = self.num_levels > 1 # ORB tends to generate overlapping keypoint on different levels <= KDT NMS seems to be very useful here!
#
#
elif self.detector_type == FeatureDetectorTypes.ORB2:
orb2_num_levels = self.num_levels
self._feature_detector = Orbslam2Feature2D(self.num_features, self.scale_factor, orb2_num_levels)
self.keypoint_filter_type = KeyPointFilterTypes.NONE # ORB2 cpp implementation already includes the algorithm OCTREE_NMS
#
#
elif self.detector_type == FeatureDetectorTypes.BRISK:
self._feature_detector = self.BRISK_create(octaves=self.num_levels)
#self.intra_layer_factor = 1.3 # from the BRISK opencv code this seems to be the used scale factor between intra-octave frames
#self.intra_layer_factor = math.sqrt(2) # approx, num layers = nOctaves*nOctaveLayers, from the BRISK paper there are octave ci and intra-octave di layers, t(ci)=2^i, t(di)=2^i * 1.5
self.scale_factor = 2 # force scale factor = 2 between octaves
#self.keypoint_filter_type = KeyPointFilterTypes.NONE
#
#
elif self.detector_type == FeatureDetectorTypes.KAZE:
self._feature_detector = self.KAZE_create(nOctaves=self.num_levels, threshold=0.0005) # default: threshold = 0.001f
self.scale_factor = 2 # force scale factor = 2 between octaves
#
#
elif self.detector_type == FeatureDetectorTypes.AKAZE:
self._feature_detector = self.AKAZE_create(nOctaves=self.num_levels, threshold=0.0005) # default: threshold = 0.001f
self.scale_factor = 2 # force scale factor = 2 between octaves
#
#
elif self.detector_type == FeatureDetectorTypes.SUPERPOINT:
self.oriented_features = False
self._feature_detector = SuperPointFeature2D()
if self.descriptor_type != FeatureDescriptorTypes.NONE:
self.use_pyramid_adaptor = self.num_levels > 1
self.need_nms = self.num_levels > 1
self.pyramid_type = PyramidType.GAUSS_PYRAMID
self.pyramid_do_parallel = False # N.B.: SUPERPOINT interface class is not thread-safe!
self.force_multiscale_detect_and_compute = True # force it since SUPERPOINT cannot compute descriptors separately from keypoints
#
#
elif self.detector_type == FeatureDetectorTypes.FAST:
self.oriented_features = False
self._feature_detector = self.FAST_create(threshold=20, nonmaxSuppression=True)
if self.descriptor_type != FeatureDescriptorTypes.NONE:
#self.use_bock_adaptor = True # override a block adaptor?
self.use_pyramid_adaptor = self.num_levels > 1 # override a pyramid adaptor?
#self.pyramid_type = PyramidType.GAUSS_PYRAMID
#self.first_level = 0
#self.do_sat_features_per_level = True
self.need_nms = self.num_levels > 1
self.keypoint_nms_filter_type = KeyPointFilterTypes.OCTREE_NMS
self.do_keypoints_size_rescaling = True
#
#
elif self.detector_type == FeatureDetectorTypes.SHI_TOMASI:
self.oriented_features = False
self._feature_detector = ShiTomasiDetector(self.num_features)
if self.descriptor_type != FeatureDescriptorTypes.NONE:
#self.use_bock_adaptor = False # override a block adaptor?
self.use_pyramid_adaptor = self.num_levels > 1
#self.pyramid_type = PyramidType.GAUSS_PYRAMID
#self.first_level = 0
self.need_nms = self.num_levels > 1
self.keypoint_nms_filter_type = KeyPointFilterTypes.OCTREE_NMS
self.do_keypoints_size_rescaling = True
#
#
elif self.detector_type == FeatureDetectorTypes.AGAST:
self.oriented_features = False
self._feature_detector = self.AGAST_create(threshold=10, nonmaxSuppression=True)
if self.descriptor_type != FeatureDescriptorTypes.NONE:
#self.use_bock_adaptor = True # override a block adaptor?
self.use_pyramid_adaptor = self.num_levels > 1 # override a pyramid adaptor?
#self.pyramid_type = PyramidType.GAUSS_PYRAMID
#self.first_level = 0
self.need_nms = self.num_levels > 1
self.keypoint_nms_filter_type = KeyPointFilterTypes.OCTREE_NMS
self.do_keypoints_size_rescaling = True
#
#
elif self.detector_type == FeatureDetectorTypes.GFTT:
self.oriented_features = False
self._feature_detector = self.GFTT_create(self.num_features, qualityLevel=0.01, minDistance=3, blockSize=5, useHarrisDetector=False, k=0.04)
if self.descriptor_type != FeatureDescriptorTypes.NONE:
#self.use_bock_adaptor = True # override a block adaptor?
self.use_pyramid_adaptor = self.num_levels > 1 # override a pyramid adaptor?
#self.pyramid_type = PyramidType.GAUSS_PYRAMID
#self.first_level = 0
self.need_nms = self.num_levels > 1
self.keypoint_nms_filter_type = KeyPointFilterTypes.OCTREE_NMS
self.do_keypoints_size_rescaling = True
#
#
elif self.detector_type == FeatureDetectorTypes.MSER:
self._feature_detector = self.MSER_create()
#self.use_bock_adaptor = True # override a block adaptor?
self.use_pyramid_adaptor = self.num_levels > 1 # override a pyramid adaptor?
self.pyramid_do_parallel = False # parallel computations generate segmentation fault (is MSER thread-safe?)
#self.pyramid_type = PyramidType.GAUSS_PYRAMID
#self.first_level = 0
self.need_nms = self.num_levels > 1
#self.keypoint_nms_filter_type = KeyPointFilterTypes.OCTREE_NMS
#
#
elif self.detector_type == FeatureDetectorTypes.MSD:
#detector = ShiTomasiDetector(self.num_features)
#self._feature_detector = self.MSD_create(detector)
self._feature_detector = self.MSD_create()
print('MSD detector info:',dir(self._feature_detector))
#self.use_bock_adaptor = True # override a block adaptor?
#self.use_pyramid_adaptor = self.num_levels > 1 # override a pyramid adaptor?
#self.pyramid_type = PyramidType.GAUSS_PYRAMID
#self.first_level = 0
#self.need_nms = self.num_levels > 1
#self.keypoint_nms_filter_type = KeyPointFilterTypes.OCTREE_NMS
#
#
elif self.detector_type == FeatureDetectorTypes.STAR:
self.oriented_features = False
self._feature_detector = self.STAR_create(maxSize=45,
responseThreshold=10, # =30
lineThresholdProjected=10,
lineThresholdBinarized=8,
suppressNonmaxSize=5)
if self.descriptor_type != FeatureDescriptorTypes.NONE:
#self.use_bock_adaptor = True # override a block adaptor?
self.use_pyramid_adaptor = self.num_levels > 1 # override a pyramid adaptor?
#self.pyramid_type = PyramidType.GAUSS_PYRAMID
#self.first_level = 0
#self.need_nms = self.num_levels > 1
#self.keypoint_nms_filter_type = KeyPointFilterTypes.OCTREE_NMS
#
#
elif self.detector_type == FeatureDetectorTypes.HL:
self.oriented_features = False
self._feature_detector = self.HL_create(numOctaves=self.num_levels,
corn_thresh=0.005, # = 0.01
DOG_thresh=0.01, # = 0.01
maxCorners=self.num_features,
num_layers=4) #
self.scale_factor = 2 # force scale factor = 2 between octaves
#
#
elif self.detector_type == FeatureDetectorTypes.D2NET:
self.need_color_image = True
self.num_levels = 1 # force unless you have 12GB of VRAM
multiscale=self.num_levels>1
self._feature_detector = D2NetFeature2D(multiscale=multiscale)
#self.keypoint_filter_type = KeyPointFilterTypes.NONE
#
#
elif self.detector_type == FeatureDetectorTypes.DELF:
self.need_color_image = True
#self.num_levels = 1 # force #scales are computed internally
self._feature_detector = DelfFeature2D(num_features=self.num_features,score_threshold=20)
self.scale_factor = self._feature_detector.scale_factor
#self.keypoint_filter_type = KeyPointFilterTypes.NONE
#
#
elif self.detector_type == FeatureDetectorTypes.CONTEXTDESC:
self.set_sift_parameters()
self.need_color_image = True
#self.num_levels = 1 # force # computed internally by SIFT method
self._feature_detector = ContextDescFeature2D(num_features=self.num_features)
#self.keypoint_filter_type = KeyPointFilterTypes.NONE
#
#
elif self.detector_type == FeatureDetectorTypes.LFNET:
self.need_color_image = True
#self.num_levels = 1 # force
self._feature_detector = LfNetFeature2D(num_features=self.num_features)
#self.keypoint_filter_type = KeyPointFilterTypes.NONE
#
#
elif self.detector_type == FeatureDetectorTypes.R2D2:
self.need_color_image = True
#self.num_levels = - # internally recomputed
self._feature_detector = R2d2Feature2D(num_features=self.num_features)
self.scale_factor = self._feature_detector.scale_f
self.keypoint_filter_type = KeyPointFilterTypes.NONE
#
#
elif self.detector_type == FeatureDetectorTypes.KEYNET:
#self.num_levels = - # internally recomputed
self._feature_detector = KeyNetDescFeature2D(num_features=self.num_features)
self.num_features = self._feature_detector.num_features
self.num_levels = self._feature_detector.num_levels
self.scale_factor = self._feature_detector.scale_factor
self.keypoint_filter_type = KeyPointFilterTypes.NONE
#
#
else:
raise ValueError("Unknown feature detector %s" % self.detector_type)
if self.need_nms:
self.keypoint_filter_type = self.keypoint_nms_filter_type
if self.use_bock_adaptor:
self.orb_params['edgeThreshold'] = 0
# --------------------------------------------- #
# init descriptor
# --------------------------------------------- #
if self.is_detector_equal_to_descriptor:
Printer.green('using same detector and descriptor object: ', self.detector_type.name)
self._feature_descriptor = self._feature_detector
else:
# detector and descriptors are different
self.num_levels_descriptor = self.num_levels
if self.use_pyramid_adaptor:
# NOT VALID ANYMORE -> if there is a pyramid adaptor, the descriptor does not need to rescale the images which are rescaled by the pyramid adaptor itself
#self.orb_params['nlevels'] = 1
#self.num_levels_descriptor = 1 #self.num_levels
pass
# actual descriptor initialization
if self.descriptor_type == FeatureDescriptorTypes.SIFT or self.descriptor_type == FeatureDescriptorTypes.ROOT_SIFT:
sift = self.SIFT_create(nOctaveLayers=3)
if self.descriptor_type == FeatureDescriptorTypes.ROOT_SIFT:
self._feature_descriptor = RootSIFTFeature2D(sift)
else:
self._feature_descriptor = sift
#
#
elif self.descriptor_type == FeatureDescriptorTypes.SURF:
self.oriented_features = True # SURF computes the keypoint orientation
self._feature_descriptor = self.SURF_create(nOctaves = self.num_levels_descriptor, nOctaveLayers=3)
#
#
elif self.descriptor_type == FeatureDescriptorTypes.ORB:
self._feature_descriptor = self.ORB_create(**self.orb_params)
#self.oriented_features = False # N.B: ORB descriptor does not compute orientation on its own
#
#
elif self.descriptor_type == FeatureDescriptorTypes.ORB2:
self._feature_descriptor = self.ORB_create(**self.orb_params)
#
#
elif self.descriptor_type == FeatureDescriptorTypes.BRISK:
self.oriented_features = True # BRISK computes the keypoint orientation
self._feature_descriptor = self.BRISK_create(octaves=self.num_levels_descriptor)
#
#
elif self.descriptor_type == FeatureDescriptorTypes.KAZE:
if not self.is_detector_equal_to_descriptor:
Printer.red('WARNING: KAZE descriptors can only be used with KAZE or AKAZE keypoints.') # https://kyamagu.github.io/mexopencv/matlab/AKAZE.html
self._feature_descriptor = self.KAZE_create(nOctaves=self.num_levels_descriptor)
#
#
elif self.descriptor_type == FeatureDescriptorTypes.AKAZE:
if not self.is_detector_equal_to_descriptor:
Printer.red('WARNING: AKAZE descriptors can only be used with KAZE or AKAZE keypoints.') # https://kyamagu.github.io/mexopencv/matlab/AKAZE.html
self._feature_descriptor = self.AKAZE_create(nOctaves=self.num_levels_descriptor)
#
#
elif self.descriptor_type == FeatureDescriptorTypes.FREAK:
self.oriented_features = True # FREAK computes the keypoint orientation
self._feature_descriptor = self.FREAK_create(nOctaves=self.num_levels_descriptor)
#
#
elif self.descriptor_type == FeatureDescriptorTypes.SUPERPOINT:
if self.detector_type != FeatureDetectorTypes.SUPERPOINT:
raise ValueError("You cannot use SUPERPOINT descriptor without SUPERPOINT detector!\nPlease, select SUPERPOINT as both descriptor and detector!")
self._feature_descriptor = self._feature_detector # reuse the same SuperPointDector object
#
#
elif self.descriptor_type == FeatureDescriptorTypes.TFEAT:
self._feature_descriptor = TfeatFeature2D()
#
#
elif self.descriptor_type == FeatureDescriptorTypes.BOOST_DESC:
self.do_keypoints_size_rescaling = False # below a proper keypoint size scale factor is set depending on the used detector
boost_des_keypoint_size_scale_factor = 1.5
# from https://docs.opencv.org/3.4.2/d1/dfd/classcv_1_1xfeatures2d_1_1BoostDesc.html#details
#scale_factor: adjust the sampling window of detected keypoints 6.25f is default and fits for KAZE, SURF
# detected keypoints window ratio 6.75f should be the scale for SIFT
# detected keypoints window ratio 5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK
# keypoints window ratio 0.75f should be the scale for ORB
# keypoints ratio 1.50f was the default in original implementation
if self.detector_type in [FeatureDetectorTypes.KAZE, FeatureDetectorTypes.SURF]:
boost_des_keypoint_size_scale_factor = 6.25
elif self.detector_type == FeatureDetectorTypes.SIFT:
boost_des_keypoint_size_scale_factor = 6.75
elif self.detector_type in [FeatureDetectorTypes.AKAZE, FeatureDetectorTypes.AGAST, FeatureDetectorTypes.FAST, FeatureDetectorTypes.BRISK]:
boost_des_keypoint_size_scale_factor = 5.0
elif self.detector_type == FeatureDetectorTypes.ORB:
boost_des_keypoint_size_scale_factor = 0.75
self._feature_descriptor = self.BoostDesc_create(scale_factor=boost_des_keypoint_size_scale_factor)
#
#
elif self.descriptor_type == FeatureDescriptorTypes.DAISY:
self._feature_descriptor = self.DAISY_create()
#
#
elif self.descriptor_type == FeatureDescriptorTypes.LATCH:
self._feature_descriptor = self.LATCH_create()
#
#
elif self.descriptor_type == FeatureDescriptorTypes.LUCID:
self._feature_descriptor = self.LUCID_create(lucid_kernel=1, # =1
blur_kernel=3 ) # =2
self.need_color_image = True
#
#
elif self.descriptor_type == FeatureDescriptorTypes.VGG:
self._feature_descriptor = self.VGG_create()
#
#
elif self.descriptor_type == FeatureDescriptorTypes.HARDNET:
self._feature_descriptor = HardnetFeature2D(do_cuda=True)
#
#
elif self.descriptor_type == FeatureDescriptorTypes.GEODESC:
self._feature_descriptor = GeodescFeature2D()
#
#
elif self.descriptor_type == FeatureDescriptorTypes.SOSNET:
self._feature_descriptor = SosnetFeature2D()
#
#
elif self.descriptor_type == FeatureDescriptorTypes.L2NET:
#self._feature_descriptor = L2NetKerasFeature2D() # keras-tf version
self._feature_descriptor = L2NetFeature2D()
#
#
elif self.descriptor_type == FeatureDescriptorTypes.LOGPOLAR:
self._feature_descriptor = LogpolarFeature2D()
#
#
elif self.descriptor_type == FeatureDescriptorTypes.D2NET:
self.need_color_image = True
if self.detector_type != FeatureDetectorTypes.D2NET:
raise ValueError("You cannot use D2NET descriptor without D2NET detector!\nPlease, select D2NET as both descriptor and detector!")
self._feature_descriptor = self._feature_detector # reuse detector object
#
#
elif self.descriptor_type == FeatureDescriptorTypes.DELF:
self.need_color_image = True
if self.detector_type != FeatureDetectorTypes.DELF:
raise ValueError("You cannot use DELF descriptor without DELF detector!\nPlease, select DELF as both descriptor and detector!")
self._feature_descriptor = self._feature_detector # reuse detector object
#
#
elif self.descriptor_type == FeatureDescriptorTypes.CONTEXTDESC:
self.need_color_image = True
if self.detector_type != FeatureDetectorTypes.CONTEXTDESC:
raise ValueError("You cannot use CONTEXTDESC descriptor without CONTEXTDESC detector!\nPlease, select CONTEXTDESC as both descriptor and detector!")
self._feature_descriptor = self._feature_detector # reuse detector object
#
#
elif self.descriptor_type == FeatureDescriptorTypes.LFNET:
self.need_color_image = True
if self.detector_type != FeatureDetectorTypes.LFNET:
raise ValueError("You cannot use LFNET descriptor without LFNET detector!\nPlease, select LFNET as both descriptor and detector!")
self._feature_descriptor = self._feature_detector # reuse detector object
#
#
elif self.descriptor_type == FeatureDescriptorTypes.R2D2:
self.oriented_features = False
self.need_color_image = True
if self.detector_type != FeatureDetectorTypes.R2D2:
raise ValueError("You cannot use R2D2 descriptor without R2D2 detector!\nPlease, select R2D2 as both descriptor and detector!")
self._feature_descriptor = self._feature_detector # reuse detector object
#
#
elif self.descriptor_type == FeatureDescriptorTypes.KEYNET:
self.oriented_features = False
if self.detector_type != FeatureDetectorTypes.KEYNET:
raise ValueError("You cannot use KEYNET internal descriptor without KEYNET detector!\nPlease, select KEYNET as both descriptor and detector!")
self._feature_descriptor = self._feature_detector # reuse detector object
#
#
elif self.descriptor_type == FeatureDescriptorTypes.NONE:
self._feature_descriptor = None
else:
raise ValueError("Unknown feature descriptor %s" % self.descriptor_type)
# --------------------------------------------- #
# init from FeatureInfo
# --------------------------------------------- #
# get and set norm type
try:
self.norm_type = FeatureInfo.norm_type[self.descriptor_type]
except:
Printer.red('You did not set the norm type for: ', self.descriptor_type.name)
raise ValueError("Unmanaged norm type for feature descriptor %s" % self.descriptor_type.name)
# set descriptor distance functions
if self.norm_type == cv2.NORM_HAMMING:
self.descriptor_distance = hamming_distance
self.descriptor_distances = hamming_distances
if self.norm_type == cv2.NORM_L2:
self.descriptor_distance = l2_distance
self.descriptor_distances = l2_distances
# get and set reference max descriptor distance
try:
Parameters.kMaxDescriptorDistance = FeatureInfo.max_descriptor_distance[self.descriptor_type]
except:
Printer.red('You did not set the reference max descriptor distance for: ', self.descriptor_type.name)
raise ValueError("Unmanaged max descriptor distance for feature descriptor %s" % self.descriptor_type.name)
Parameters.kMaxDescriptorDistanceSearchEpipolar = Parameters.kMaxDescriptorDistance
# --------------------------------------------- #
# other required initializations
# --------------------------------------------- #
if not self.oriented_features:
Printer.orange('WARNING: using NON-ORIENTED features: ', self.detector_type.name,'-',self.descriptor_type.name, ' (i.e. kp.angle=0)')
if self.is_detector_equal_to_descriptor and \
( self.detector_type == FeatureDetectorTypes.SIFT or
self.detector_type == FeatureDetectorTypes.ROOT_SIFT or
self.detector_type == FeatureDetectorTypes.CONTEXTDESC ):
self.init_sigma_levels_sift()
else:
self.init_sigma_levels()
if self.use_bock_adaptor:
self.block_adaptor = BlockAdaptor(self._feature_detector, self._feature_descriptor)
if self.use_pyramid_adaptor:
self.pyramid_params = dict(detector=self._feature_detector,
descriptor=self._feature_descriptor,
num_features = self.num_features,
num_levels=self.num_levels,
scale_factor=self.scale_factor,
sigma0=self.sigma_level0,
first_level=self.first_level,
pyramid_type=self.pyramid_type,
use_block_adaptor=self.use_bock_adaptor,
do_parallel = self.pyramid_do_parallel,
do_sat_features_per_level = self.do_sat_features_per_level)
self.pyramid_adaptor = PyramidAdaptor(**self.pyramid_params)
def set_sift_parameters(self):
# N.B.: The number of SIFT octaves is automatically computed from the image resolution,
# here we can set the number of layers in each octave.
# from https://docs.opencv.org/3.4/d5/d3c/classcv_1_1xfeatures2d_1_1SIFT.html
#self.intra_layer_factor = 1.2599 # num layers = nOctaves*nOctaveLayers scale=2^(1/nOctaveLayers) = 1.2599
self.scale_factor = 2 # force scale factor = 2 between octaves
self.sigma_level0 = 1.6 # https://github.com/opencv/opencv/blob/173442bb2ecd527f1884d96d7327bff293f0c65a/modules/nonfree/src/sift.cpp#L118
# from https://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html
self.first_level = -1 # https://github.com/opencv/opencv/blob/173442bb2ecd527f1884d96d7327bff293f0c65a/modules/nonfree/src/sift.cpp#L731
# initialize scale factors, sigmas for each octave level;
# these are used for managing image pyramids and weighting (information matrix) reprojection error terms in the optimization
def init_sigma_levels(self):
print('num_levels: ', self.num_levels)
num_levels = max(kNumLevelsInitSigma, self.num_levels)
self.inv_scale_factor = 1./self.scale_factor
self.scale_factors = np.zeros(num_levels)
self.level_sigmas2 = np.zeros(num_levels)
self.level_sigmas = np.zeros(num_levels)
self.inv_scale_factors = np.zeros(num_levels)
self.inv_level_sigmas2 = np.zeros(num_levels)
self.log_scale_factor = math.log(self.scale_factor)
self.scale_factors[0] = 1.0
self.level_sigmas2[0] = self.sigma_level0*self.sigma_level0
self.level_sigmas[0] = math.sqrt(self.level_sigmas2[0])
for i in range(1,num_levels):
self.scale_factors[i] = self.scale_factors[i-1]*self.scale_factor
self.level_sigmas2[i] = self.scale_factors[i]*self.scale_factors[i]*self.level_sigmas2[0]
self.level_sigmas[i] = math.sqrt(self.level_sigmas2[i])
for i in range(num_levels):
self.inv_scale_factors[i] = 1.0/self.scale_factors[i]
self.inv_level_sigmas2[i] = 1.0/self.level_sigmas2[i]
#print('self.scale_factor: ', self.scale_factor)
#print('self.scale_factors: ', self.scale_factors)
#print('self.level_sigmas: ', self.level_sigmas)
#print('self.inv_scale_factors: ', self.inv_scale_factors)
# initialize scale factors, sigmas for each octave level;
# these are used for managing image pyramids and weighting (information matrix) reprojection error terms in the optimization;
# this method can be used only when the following mapping is adopted for SIFT:
# keypoint.octave = (unpacked_octave+1)*3+unpacked_layer where S=3 is the number of levels per octave
def init_sigma_levels_sift(self):
print('initializing SIFT sigma levels')
print('num_levels: ', self.num_levels)
self.num_levels = 3*self.num_levels + 3 # we map: level=keypoint.octave = (unpacked_octave+1)*3+unpacked_layer where S=3 is the number of scales per octave
num_levels = max(kNumLevelsInitSigma, self.num_levels)
#print('num_levels: ', num_levels)
# N.B: if we adopt the mapping: keypoint.octave = (unpacked_octave+1)*3+unpacked_layer
# then we can consider a new virtual scale_factor = 2^(1/3) (used between two contiguous layers of the same octave)
print('original scale factor: ', self.scale_factor)
self.scale_factor = math.pow(2,1./3)
self.inv_scale_factor = 1./self.scale_factor
self.scale_factors = np.zeros(num_levels)
self.level_sigmas2 = np.zeros(num_levels)
self.level_sigmas = np.zeros(num_levels)
self.inv_scale_factors = np.zeros(num_levels)
self.inv_level_sigmas2 = np.zeros(num_levels)
self.log_scale_factor = math.log(self.scale_factor)
self.sigma_level0 = 1.6 # https://github.com/opencv/opencv/blob/173442bb2ecd527f1884d96d7327bff293f0c65a/modules/nonfree/src/sift.cpp#L118
# from https://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html
sigma_level02 = self.sigma_level0*self.sigma_level0
# N.B.: these are used only when recursive filtering is applied: see https://www.vlfeat.org/api/sift.html#sift-tech-ss
#sift_init_sigma = 0.5
#sift_init_sigma2 = 0.25
# see also https://www.vlfeat.org/api/sift.html
self.scale_factors[0] = 1.0
self.level_sigmas2[0] = sigma_level02 # -4*sift_init_sigma2 N.B.: this is an absolute sigma,
# not a delta_sigma used for incrementally filtering contiguos layers => we must not subtract (4*sift_init_sigma2)
# https://github.com/opencv/opencv/blob/173442bb2ecd527f1884d96d7327bff293f0c65a/modules/nonfree/src/sift.cpp#L197
self.level_sigmas[0] = math.sqrt(self.level_sigmas2[0])
for i in range(1,num_levels):
self.scale_factors[i] = self.scale_factors[i-1]*self.scale_factor
self.level_sigmas2[i] = self.scale_factors[i]*self.scale_factors[i]*sigma_level02 # https://github.com/opencv/opencv/blob/173442bb2ecd527f1884d96d7327bff293f0c65a/modules/nonfree/src/sift.cpp#L224
self.level_sigmas[i] = math.sqrt(self.level_sigmas2[i])
for i in range(num_levels):
self.inv_scale_factors[i] = 1.0/self.scale_factors[i]
self.inv_level_sigmas2[i] = 1.0/self.level_sigmas2[i]
#print('self.scale_factor: ', self.scale_factor)
#print('self.scale_factors: ', self.scale_factors)
#print('self.level_sigmas: ', self.level_sigmas)
#print('self.inv_scale_factors: ', self.inv_scale_factors)
# filter matches by using
# Non-Maxima Suppression (NMS) based on kd-trees
# or SSC NMS (https://github.com/BAILOOL/ANMS-Codes)
# or SAT (get features with best responses)
# or OCTREE_NMS (implemented in ORBSLAM2, distribution of features in a quad-tree)
def filter_keypoints(self, type, frame, kps, des=None):
filter_name = type.name
if type == KeyPointFilterTypes.NONE:
pass
elif type == KeyPointFilterTypes.KDT_NMS:
kps, des = kdt_nms(kps, des, self.num_features)
elif type == KeyPointFilterTypes.SSC_NMS:
kps, des = ssc_nms(kps, des, frame.shape[1], frame.shape[0], self.num_features)
elif type == KeyPointFilterTypes.OCTREE_NMS:
if des is not None:
raise ValueError('at the present time, you cannot use OCTREE_NMS with descriptors')
kps = octree_nms(frame, kps, self.num_features)
elif type == KeyPointFilterTypes.GRID_NMS:
kps, des, _ = grid_nms(kps, des, frame.shape[0], frame.shape[1], self.num_features, dist_thresh=4)
elif type == KeyPointFilterTypes.SAT:
if len(kps) > self.num_features:
kps, des = sat_num_features(kps, des, self.num_features)
else:
raise ValueError("Unknown match-filter type")
return kps, des, filter_name
def rescale_keypoint_size(self, kps):
# if keypoints are FAST, etc. then rescale their small sizes
# in order to let descriptors compute an encoded representation with a decent patch size
scale = 1
doit = False
if self.detector_type == FeatureDetectorTypes.FAST:
scale = kFASTKeyPointSizeRescaleFactor
doit = True
elif self.detector_type == FeatureDetectorTypes.AGAST:
scale = kAGASTKeyPointSizeRescaleFactor
doit = True
elif self.detector_type == FeatureDetectorTypes.SHI_TOMASI or self.detector_type == FeatureDetectorTypes.GFTT:
scale = kShiTomasiKeyPointSizeRescaleFactor
doit = True
if doit:
for kp in kps:
kp.size *= scale
# detect keypoints without computing their descriptors
# out: kps (array of cv2.KeyPoint)
def detect(self, frame, mask=None, filter=True):
if not self.need_color_image and frame.ndim>2: # check if we have to convert to gray image
frame = cv2.cvtColor(frame,cv2.COLOR_RGB2GRAY)
if self.use_pyramid_adaptor:
# detection with pyramid adaptor (it can optionally include a block adaptor per level)
kps = self.pyramid_adaptor.detect(frame, mask)
elif self.use_bock_adaptor:
# detection with block adaptor
kps = self.block_adaptor.detect(frame, mask)
else:
# standard detection
kps = self._feature_detector.detect(frame, mask)
# filter keypoints
filter_name = 'NONE'
if filter:
kps, _, filter_name = self.filter_keypoints(self.keypoint_filter_type, frame, kps)
# if keypoints are FAST, etc. give them a decent size in order to properly compute the descriptors
if self.do_keypoints_size_rescaling:
self.rescale_keypoint_size(kps)
if kDrawOriginalExtractedFeatures: # draw the original features
imgDraw = cv2.drawKeypoints(frame, kps, None, color=(0,255,0), flags=0)
cv2.imshow('detected keypoints',imgDraw)
if kVerbose:
print('detector:',self.detector_type.name,', #features:', len(kps),', [kp-filter:',filter_name,']')
return kps
# compute the descriptors once given the keypoints
def compute(self, frame, kps, filter = True):
if not self.need_color_image and frame.ndim>2: # check if we have to convert to gray image
frame = cv2.cvtColor(frame,cv2.COLOR_RGB2GRAY)
kps, des = self._feature_descriptor.compute(frame, kps) # then, compute descriptors
# filter keypoints
filter_name = 'NONE'
if filter:
kps, des, filter_name = self.filter_keypoints(self.keypoint_filter_type, frame, kps, des)
if kVerbose:
print('descriptor:',self.descriptor_type.name,', #features:', len(kps),', [kp-filter:',filter_name,']')
return kps, des
# detect keypoints and their descriptors
# out: kps, des
def detectAndCompute(self, frame, mask=None, filter = True):
if not self.need_color_image and frame.ndim>2: # check if we have to convert to gray image
frame = cv2.cvtColor(frame,cv2.COLOR_RGB2GRAY)
if self.use_pyramid_adaptor:
# detectAndCompute with pyramid adaptor (it can optionally include a block adaptor per level)
if self.force_multiscale_detect_and_compute:
# force detectAndCompute on each level instead of first {detect() on each level} and then {compute() on resulting detected keypoints one time}
kps, des = self.pyramid_adaptor.detectAndCompute(frame, mask)
#
else:
kps = self.detect(frame, mask, filter=True) # first, detect by using adaptor on the different pyramid levels
kps, des = self.compute(frame, kps, filter=False) # then, separately compute the descriptors on detected keypoints (one time)
filter = False # disable keypoint filtering since we already applied it for detection
elif self.use_bock_adaptor:
# detectAndCompute with block adaptor (force detect/compute on each block)
#
#kps, des = self.block_adaptor.detectAndCompute(frame, mask)
#
kps = self.detect(frame, mask, filter=True) # first, detect by using adaptor
kps, des = self.compute(frame, kps, filter=False) # then, separately compute the descriptors
filter = False # disable keypoint filtering since we already applied it for detection
else:
# standard detectAndCompute
if self.is_detector_equal_to_descriptor:
# detector = descriptor => call them together with detectAndCompute() method
kps, des = self._feature_detector.detectAndCompute(frame, mask)
if kVerbose:
print('detector:', self.detector_type.name,', #features:',len(kps))
print('descriptor:', self.descriptor_type.name,', #features:',len(kps))
else:
# detector and descriptor are different => call them separately
# 1. first, detect keypoint locations
kps = self.detect(frame, mask, filter=False)
# 2. then, compute descriptors
kps, des = self._feature_descriptor.compute(frame, kps)
if kVerbose:
#print('detector: ', self.detector_type.name, ', #features: ', len(kps))
print('descriptor: ', self.descriptor_type.name, ', #features: ', len(kps))
# filter keypoints
filter_name = 'NONE'
if filter:
kps, des, filter_name = self.filter_keypoints(self.keypoint_filter_type, frame, kps, des)
if self.detector_type == FeatureDetectorTypes.SIFT or \
self.detector_type == FeatureDetectorTypes.ROOT_SIFT or \
self.detector_type == FeatureDetectorTypes.CONTEXTDESC :
unpackSiftOctaveKps(kps, method=UnpackOctaveMethod.INTRAL_LAYERS)
if kVerbose:
print('detector:',self.detector_type.name,', descriptor:', self.descriptor_type.name,', #features:', len(kps),' (#ref:', self.num_features, '), [kp-filter:',filter_name,']')
self.debug_print(kps)
return kps, des
def debug_print(self, kps):
if False:
# raw print of all keypoints
for k in kps:
print("response: ", k.response, "\t, size: ", k.size, "\t, octave: ", k.octave, "\t, angle: ", k.angle)
if False:
# generate a rough histogram for keypoint sizes
kps_sizes = [kp.size for kp in kps]
kps_sizes_histogram = np.histogram(kps_sizes, bins=10)
print('size-histogram: \n', list(zip(kps_sizes_histogram[1],kps_sizes_histogram[0])))
if False:
# count points for each octave => generate an octave histogram
kps_octaves = [k.octave for k in kps]
kps_octaves = Counter(kps_octaves)
print('levels-histogram: ', kps_octaves.most_common(12))