From c10b45fe9e1b22a42436c73a7ed64929f0f504ac Mon Sep 17 00:00:00 2001 From: Maxim Vafin Date: Mon, 18 Sep 2023 17:04:39 +0200 Subject: [PATCH] [PT FE] Fix issue with http error when using torch.hub (#19901) * [PT FE] Fix issue with http error when using torch.hub * Mark failing models as xfail * Remove incorrect model names --- .../models_hub_common/test_convert_model.py | 2 +- .../models_hub_common/utils.py | 2 +- .../torch_tests/test_torchvision_models.py | 21 ++-- .../torch_tests/torchvision_models | 97 +++++++++++++++++++ 4 files changed, 112 insertions(+), 10 deletions(-) create mode 100644 tests/model_hub_tests/torch_tests/torchvision_models diff --git a/tests/model_hub_tests/models_hub_common/test_convert_model.py b/tests/model_hub_tests/models_hub_common/test_convert_model.py index 145da6b61761f7..d35061595fc0cb 100644 --- a/tests/model_hub_tests/models_hub_common/test_convert_model.py +++ b/tests/model_hub_tests/models_hub_common/test_convert_model.py @@ -99,7 +99,7 @@ def _run(self, model_name, model_link, ie_device): fw_outputs = self.infer_fw_model(fw_model, inputs) print("Infer ov::Model") ov_outputs = self.infer_ov_model(ov_model, inputs, ie_device) - print("Compare TensorFlow and OpenVINO results") + print("Compare framework and OpenVINO results") self.compare_results(fw_outputs, ov_outputs) def run(self, model_name, model_link, ie_device): diff --git a/tests/model_hub_tests/models_hub_common/utils.py b/tests/model_hub_tests/models_hub_common/utils.py index b5699a80e62b43..076cd8e2f1e4c0 100644 --- a/tests/model_hub_tests/models_hub_common/utils.py +++ b/tests/model_hub_tests/models_hub_common/utils.py @@ -22,7 +22,7 @@ def get_models_list(file_name: str): model_name, model_link = model_info.split(',') elif len(model_info.split(',')) == 4: model_name, model_link, mark, reason = model_info.split(',') - assert mark == "skip", "Incorrect failure mark for model info {}".format(model_info) + assert mark in ["skip", "xfail"], "Incorrect failure mark for model info {}".format(model_info) models.append((model_name, model_link, mark, reason)) return models diff --git a/tests/model_hub_tests/torch_tests/test_torchvision_models.py b/tests/model_hub_tests/torch_tests/test_torchvision_models.py index a77af0ec07549e..a7722389e4132d 100644 --- a/tests/model_hub_tests/torch_tests/test_torchvision_models.py +++ b/tests/model_hub_tests/torch_tests/test_torchvision_models.py @@ -1,16 +1,18 @@ # Copyright (C) 2018-2023 Intel Corporation # SPDX-License-Identifier: Apache-2.0 +import os import pytest import torch import tempfile import torchvision.transforms.functional as F -from models_hub_common.test_convert_model import TestConvertModel from openvino import convert_model +from models_hub_common.test_convert_model import TestConvertModel +from models_hub_common.utils import get_models_list def get_all_models() -> list: - m_list = torch.hub.list("pytorch/vision") + m_list = torch.hub.list("pytorch/vision", skip_validation=True) m_list.remove("get_model_weights") m_list.remove("get_weight") return m_list @@ -36,7 +38,8 @@ def get_video(): def prepare_frames_for_raft(name, frames1, frames2): - w = torch.hub.load("pytorch/vision", "get_model_weights", name=name).DEFAULT + w = torch.hub.load("pytorch/vision", "get_model_weights", + name=name, skip_validation=True).DEFAULT img1_batch = torch.stack(frames1) img2_batch = torch.stack(frames2) img1_batch = F.resize(img1_batch, size=[520, 960], antialias=False) @@ -50,13 +53,14 @@ def prepare_frames_for_raft(name, frames1, frames2): class TestTorchHubConvertModel(TestConvertModel): - def setup_method(self): + def setup_class(self): self.cache_dir = tempfile.TemporaryDirectory() # set temp dir for torch cache torch.hub.set_dir(str(self.cache_dir.name)) def load_model(self, model_name, model_link): - m = torch.hub.load("pytorch/vision", model_name, weights='DEFAULT') + m = torch.hub.load("pytorch/vision", model_name, + weights='DEFAULT', skip_validation=True) m.eval() if model_name == "s3d" or any([m in model_name for m in ["swin3d", "r3d_18", "mc3_18", "r2plus1d_18"]]): self.example = (torch.randn([1, 3, 224, 224, 224]),) @@ -109,7 +113,8 @@ def teardown_method(self): def test_convert_model_precommit(self, model_name, ie_device): self.run(model_name, None, ie_device) - @pytest.mark.parametrize("model_name", get_all_models()) + @pytest.mark.parametrize("name", + [pytest.param(n, marks=pytest.mark.xfail) if m == "xfail" else n for n, _, m, r in get_models_list(os.path.join(os.path.dirname(__file__), "torchvision_models"))]) @pytest.mark.nightly - def test_convert_model_all_models(self, model_name, ie_device): - self.run(model_name, None, ie_device) + def test_convert_model_all_models(self, name, ie_device): + self.run(name, None, ie_device) diff --git a/tests/model_hub_tests/torch_tests/torchvision_models b/tests/model_hub_tests/torch_tests/torchvision_models new file mode 100644 index 00000000000000..a13a0f606c6708 --- /dev/null +++ b/tests/model_hub_tests/torch_tests/torchvision_models @@ -0,0 +1,97 @@ +alexnet,none +convnext_base,none +convnext_large,none +convnext_small,none +convnext_tiny,none +deeplabv3_mobilenet_v3_large,none +deeplabv3_resnet101,none +deeplabv3_resnet50,none +densenet121,none +densenet161,none +densenet169,none +densenet201,none +efficientnet_b0,none +efficientnet_b1,none +efficientnet_b2,none +efficientnet_b3,none +efficientnet_b4,none +efficientnet_b5,none +efficientnet_b6,none +efficientnet_b7,none +efficientnet_v2_l,none +efficientnet_v2_m,none +efficientnet_v2_s,none +fcn_resnet101,none +fcn_resnet50,none +googlenet,none +inception_v3,none +lraspp_mobilenet_v3_large,none +maxvit_t,none +mc3_18,none +mnasnet0_5,none +mnasnet0_75,none +mnasnet1_0,none +mnasnet1_3,none +mobilenet_v2,none +mobilenet_v3_large,none +mobilenet_v3_small,none +mvit_v1_b,none +mvit_v2_s,none +r2plus1d_18,none +r3d_18,none +raft_large,none +raft_small,none +regnet_x_16gf,none +regnet_x_1_6gf,none +regnet_x_32gf,none +regnet_x_3_2gf,none +regnet_x_400mf,none +regnet_x_800mf,none +regnet_x_8gf,none +regnet_y_128gf,none +regnet_y_16gf,none +regnet_y_1_6gf,none +regnet_y_32gf,none +regnet_y_3_2gf,none +regnet_y_400mf,none +regnet_y_800mf,none +regnet_y_8gf,none +resnet101,none +resnet152,none +resnet18,none +resnet34,none +resnet50,none +resnext101_32x8d,none +resnext101_64x4d,none +resnext50_32x4d,none +s3d,none +shufflenet_v2_x0_5,none +shufflenet_v2_x1_0,none +shufflenet_v2_x1_5,none +shufflenet_v2_x2_0,none +squeezenet1_0,none +squeezenet1_1,none +swin3d_b,none +swin3d_s,none +swin3d_t,none +swin_b,none +swin_s,none +swin_t,none +swin_v2_b,none +swin_v2_s,none +swin_v2_t,none +vgg11,none +vgg11_bn,none +vgg13,none +vgg13_bn,none +vgg16,none +vgg16_bn,none +vgg19,none +vgg19_bn,none +vit_b_16,none,xfail,Tracing fails +vit_b_32,none,xfail,Tracing fails +vit_h_14,none,xfail,Tracing fails +vit_l_16,none,xfail,Tracing fails +vit_l_32,none,xfail,Tracing fails +wide_resnet101_2,none +wide_resnet50_2,none