forked from Cadene/pretrained-models.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.travis.yml
106 lines (94 loc) · 3.7 KB
/
.travis.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
language: python
python:
- "3.6"
# - "2.7"
# cache:
# directories:
# - $HOME/.torch
stages:
# - lint_check
- test
# - docs
install:
- sudo apt-get update
- wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh;
- bash miniconda.sh -b -p $HOME/miniconda
- export PATH="$HOME/miniconda/bin:$PATH"
- hash -r
- conda config --set always_yes yes --set changeps1 no
- conda update -q conda
# Useful for debugging any issues with conda
- conda info -a
- conda create -q -n test-environment -c pytorch python=$TRAVIS_PYTHON_VERSION numpy mock pytorch-cpu
- if [[ $TRAVIS_PYTHON_VERSION == 2.7 ]]; then pip install enum34; fi
- source activate test-environment
- python setup.py install
- pip install --upgrade pytest #codecov pytest-cov
# Test contrib dependencies
# - pip install scikit-learn
# Examples dependencies
- pip install -r requirements.txt
#visdom torchvision tensorboardX
#- pip install gym
#- pip install tqdm
script:
- python -m pytest -s tests #--cov pretrainedmodels --cov-report term-missing
# Smoke tests for the examples
# Mnist
# 1) mnist.py
#- python examples/mnist/mnist.py --epochs=1
# 2) mnist_with_visdom.py
# - python -c "from visdom.server import download_scripts; download_scripts()" # download scripts : https://github.com/facebookresearch/visdom/blob/master/py/server.py#L929
# - python -m visdom.server &
# - sleep 10
# - python examples/mnist/mnist_with_visdom.py --epochs=1
# - kill %1
# # 3) mnist_with_tensorboardx.py
# - python examples/mnist/mnist_with_tensorboardx.py --epochs=1
# # dcgan.py
# - python examples/gan/dcgan.py --dataset fake --dataroot /tmp/fakedata --output-dir /tmp/outputs-dcgan --batch-size 2 --epochs 2 --workers 0
# # RL
# # 1) Actor-Critic
# - python examples/reinforcement_learning/actor_critic.py --max-episodes=2
# # 1) Reinforce
# - python examples/reinforcement_learning/reinforce.py --max-episodes=2
# #fast-neural-style
# #train
# - python examples/fast_neural_style/neural_style.py train --epochs 1 --cuda 0 --dataset test --dataroot . --image_size 32 --style_image examples/fast_neural_style/images/style_images/mosaic.jpg --style_size 32
after_success:
# Ignore codecov failures as the codecov server is not
# very reliable but we don't want travis to report a failure
# in the github UI just because the coverage report failed to
# be published.
- codecov || echo "codecov upload failed"
# jobs:
# include:
# - stage: lint_check
# python: "3.6"
# install: pip install flake8
# script: flake8
# after_success: # Nothing to do
# # GitHub Pages Deployment: https://docs.travis-ci.com/user/deployment/pages/
# - stage: docs
# python: "3.6"
# install:
# # Minimal install : ignite and dependencies just to build the docs
# - pip install -r docs/requirements.txt
# - pip install http://download.pytorch.org/whl/cpu/torch-0.4.1-cp35-cp35m-linux_x86_64.whl
# # Add contrib dependencies (otherwise doc is not built)
# - pip install scikit-learn scipy
# # `pip install .` vs `python setup.py install` : 1st works better to produce _module/ignite with source links
# - pip install .
# script:
# - cd docs && make html
# # Create .nojekyll file to serve correctly _static and friends
# - touch build/html/.nojekyll
# after_success: # Nothing to do
# deploy:
# provider: pages
# skip-cleanup: true
# github-token: $GITHUB_TOKEN # Set in the settings page of your repository, as a secure variable
# keep-history: false
# local_dir: docs/build/html
# on:
# branch: master