-
Notifications
You must be signed in to change notification settings - Fork 11
/
original.py
216 lines (190 loc) · 8.77 KB
/
original.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import tensorflow as tf
import numpy as np
import os
import pickle
import time
#from PIL import Image
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '
'for unit testing.')
flags.DEFINE_integer('max_steps', 1000, 'Number of steps to run trainer.')
flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
flags.DEFINE_float('dropout', 0.9, 'Keep probability for training dropout.')
flags.DEFINE_string('data_dir', '/root/ipythoncmd/cifar-100-python/data', 'Directory for storing data')
flags.DEFINE_string('summaries_dir', 'root/ipythoncmd/mnist_logs', 'Summaries directory')
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
def load_data(dataset_path):
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('/tmp/data/', one_hot=True)
return mnist
def weight_variable(shape):
initial=tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial=tf.constant(0.1,shape=shape)
return tf.Variable(initial)
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='VALID')
def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='VALID')
def variable_weight_loss(shape,stddev,w1):
var=tf.Variable(tf.truncated_normal(shape,stddev=stddev))
if w1 is not None:
weight_loss=tf.multiply(tf.nn.l2_loss(var),w1,name="weight_loss")
tf.add_to_collection("losses",weight_loss)
return var
def evaluate_pictures(n_epochs=20,batch_size=50,dataset='/root/ipythoncmd/quanti/cifar-10-batches-py'):
def loss(logits, labels):
labels = tf.cast(labels, tf.int64)
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits), name='cross_entropy')
tf.add_to_collection('losses', cross_entropy)
return tf.add_n(tf.get_collection('losses'), name='total_loss')
mnist = load_data(dataset)
train_set_x = mnist.train.images
train_set_y = mnist.train.labels
test_set_x = mnist.test.images
test_set_y = mnist.test.labels
#train_set_x, train_set_y = datasets[0]
#test_set_x, test_set_y = datasets[1]
# 计算各数据集的batch个数
n_train_batches = train_set_x.shape[0]
n_test_batches = test_set_x.shape[0]
n_train_batches = int(n_train_batches / batch_size)
n_test_batches = int(n_test_batches / batch_size)
print("... building the model")
x = tf.placeholder(tf.float32, shape=[None, 784])
y = tf.placeholder(tf.float32, shape=[None, 10])
keep_prob = tf.placeholder(tf.float32)
x_images = tf.reshape(x, [-1, 28, 28, 1])
print(x_images.name)
W_cov1 = weight_variable([5, 5, 1, 20])
print(W_cov1.name)
b_cov1 = bias_variable([20])
print(b_cov1.name)
h_cov1 = tf.nn.relu(conv2d(x_images, W_cov1) + b_cov1)
h_pool1 = max_pool_2x2(h_cov1)
W_cov2 = weight_variable([5, 5, 20, 50])
print(W_cov2.name)
b_cov2 = bias_variable([50])
print(b_cov2.name)
h_cov2 = tf.nn.relu(conv2d(h_pool1, W_cov2) + b_cov2)
h_pool2 = max_pool_2x2(h_cov2)
W_fc1 = weight_variable([4 * 4 * 50, 500])
print(W_fc1.name)
b_fc1 = bias_variable([500])
print(b_fc1.name)
h_pool2_flat = tf.reshape(h_pool2, [-1, 4 * 4 * 50])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([500, 10])
print(W_fc2.name)
b_fc2 = bias_variable([10])
print(b_fc2.name)
#y = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
y_conv = tf.nn.bias_add(tf.matmul(h_fc1_drop, W_fc2), b_fc2)
# x_image = tf.transpose(tf.reshape(x, [-1, 1, 28, 28]),perm=[0,2,3,1])
# w_conv1 = variable_weight_loss(shape=[1, 1, 1, 64],stddev=5e-2,w1=0.001)
# b_conv1 = bias_variable([64])
# h_pool1 = max_pool_2x2(tf.nn.relu(tf.nn.bias_add(conv2d(x_image, w_conv1), b_conv1)))
#
# w_conv2 = variable_weight_loss(shape=[5, 5, 64,128],stddev=5e-2,w1=0.001)
# b_conv2 = bias_variable([128])
# h_pool2 = mean_pool_2x2(tf.nn.relu(tf.nn.bias_add(conv2d(h_pool1, w_conv2) , b_conv2)))
#
# w_conv3 = variable_weight_loss(shape=[5, 5, 128, 256],stddev=5e-2,w1=0.001)
# b_conv3 = bias_variable([256])
# h_pool3 = mean_pool_2x2(tf.nn.relu(tf.nn.bias_add(conv2d(h_pool2, w_conv3) , b_conv3)))
#
# w_conv4 = variable_weight_loss(shape=[5, 5, 256, 300],stddev=5e-2,w1=0.001)
# b_conv4 = bias_variable([300])
# h_pool4 = mean_pool_2x2(tf.nn.relu(tf.nn.bias_add(conv2d(h_pool3, w_conv4) , b_conv4)))
#
# w_conv5 = variable_weight_loss(shape=[3, 3, 300, 400],stddev=5e-2,w1=0.001)
# b_conv5 = bias_variable([400])
# h_pool5 = mean_pool_2x2(tf.nn.relu(tf.nn.bias_add(conv2d(h_pool4, w_conv5) , b_conv5)))
#
# h_fc1_drop = tf.nn.dropout(h_pool5, keep_prob)
# w_fc1 = variable_weight_loss(shape=[1 * 1 * 400, 50],stddev=0.04,w1=0.004)
# b_fc1 = bias_variable([50])
# y_fc1 = tf.nn.bias_add(tf.matmul(tf.reshape(h_fc1_drop, [-1, 1 * 1 * 400]), w_fc1), b_fc1)
#
# h_fc2_drop = tf.nn.dropout(y_fc1, keep_prob)
# W_fc2 = variable_weight_loss(shape=[50,10],stddev=0.04,w1=0.004)
# b_fc2 = bias_variable([10])
# y_conv = tf.nn.bias_add(tf.matmul(h_fc2_drop, W_fc2) , b_fc2)
loss=loss(labels=y, logits=y_conv)
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32),name='accuracy')
tf.summary.scalar('accuracy', accuracy)
sess=tf.Session()
sess.run(tf.global_variables_initializer())
best_validation_acc = 0
epoch = 0
done_looping = False
print("... training")
print(x.name)
print(y.name)
print(keep_prob.name)
print(accuracy.name)
# print(w_conv1.name)
# print(b_conv1.name)
# print(w_conv2.name)
# print(b_conv2.name)
# print(w_conv3.name)
# print(b_conv3.name)
# print(w_conv4.name)
# print(b_conv4.name)
# print(w_conv5.name)
# print(b_conv5.name)
# print(w_fc1.name)
print(b_fc1.name)
print(W_fc2.name)
print(b_fc2.name)
print(tf.get_default_graph().get_collection(tf.GraphKeys.GLOBAL_VARIABLES))
summary_op=tf.summary.merge_all()
summary_writer=tf.summary.FileWriter(FLAGS.summaries_dir,graph_def=sess.graph_def)
while (epoch < n_epochs) and (not done_looping):
epoch = epoch + 1
for minibatch_index in range(n_train_batches):
iter = (epoch - 1) * n_train_batches + minibatch_index
_,acc=sess.run([train_step, accuracy],feed_dict={x: train_set_x[minibatch_index * batch_size: (minibatch_index + 1) * batch_size],
y: train_set_y[minibatch_index * batch_size: (minibatch_index + 1) * batch_size], keep_prob: 0.5})
print('epoch %i, step %d,minibatch %i / %i, train acc %f' % (epoch, iter, minibatch_index + 1, n_train_batches,acc))
if (iter + 1) % 100 == 0:
valid_acc=0
for i in range(n_test_batches):
acc=sess.run([accuracy],feed_dict={x: test_set_x[i*batch_size:(i+1)*batch_size], y: test_set_y[i*batch_size:(i+1)*batch_size], keep_prob:1})
valid_acc =valid_acc+ acc[0]
valid_acc=valid_acc/n_test_batches
print(' validation acc %g' %(valid_acc ))
if valid_acc>best_validation_acc:
best_validation_acc=valid_acc
output_graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, output_node_names=["accuracy"])
with tf.gfile.FastGFile('t100.pb', mode = 'wb') as f:
f.write(output_graph_def.SerializeToString())
print('Optimization complete.')
test_acc=0;
start_time=time.time()
valid_acc=0
print(start_time)
for i in range(n_test_batches):
valid_acc =valid_acc+ sess.run(accuracy,feed_dict={x: test_set_x[i*batch_size:(i+1)*batch_size], y: test_set_y[i*batch_size:(i+1)*batch_size], keep_prob:1})
end_time=time.time()
test_acc=valid_acc/n_test_batches
print("test accuracy %g" % test_acc)
print((end_time - start_time)*1000/60)
if __name__ == '__main__':
evaluate_pictures()