-
Notifications
You must be signed in to change notification settings - Fork 11
/
mobilenet_luo.py
187 lines (164 loc) · 8.66 KB
/
mobilenet_luo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import tensorflow.contrib.slim as slim
import time
def depseparable_conv3v3(input_data,depthwise_filter, pointwise_filter,name):
# input_data = tf.Variable(np.random.rand(1, 9, 9, 3), dtype=np.float32)
# depthwise_filter = tf.Variable(np.random.rand(2, 2, 3, 4), dtype=np.float32)
# pointwise_filter = tf.Variable(np.random.rand(1, 1, 12, 20), dtype=np.float32)
y = tf.nn.separable_conv2d(input_data, depthwise_filter, pointwise_filter, strides=[1, 1, 1, 1], padding='SAME',name = name)
log_dir = 'F:'
modlefile = '201.pb'
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
# 计算参数的均值,并使用tf.summary.scaler记录
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
# 计算参数的标准差
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
# 使用tf.summary.scaler记录记录下标准差,最大值,最小值
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
# 用直方图记录参数的分布
tf.summary.histogram('histogram', var)
def load_data():
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('/tmp/data/', one_hot=True)
return mnist
def weight_variable(shape,name):
initial=tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial,name =name)
def bias_variable(shape,name):
initial=tf.constant(0.1,shape=shape)
return tf.Variable(initial,name=name)
def conv2d(x,W,name):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='VALID',name=name)
def conv2d_same(x,W,name):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME',name=name)
def depseparable_conv(input_data,depthwise_filter, pointwise_filter,name):
# input_data = tf.Variable(np.random.rand(1, 9, 9, 3), dtype=np.float32)
# depthwise_filter = tf.Variable(np.random.rand(2, 2, 3, 1), dtype=np.float32)
# pointwise_filter = tf.Variable(np.random.rand(1, 1, 3, 20), dtype=np.float32)
y = tf.nn.separable_conv2d(input_data, depthwise_filter, pointwise_filter, strides=[1, 1, 1, 1], padding='SAME',name = name+"_separa")
return y
def max_pool_2x2(x,name):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='VALID',name = name)
def max_pool_2x2_same(x,name):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,1,1,1],padding='SAME',name = name)
def variable_weight_loss(shape,stddev,w1):
var=tf.Variable(tf.truncated_normal(shape,stddev=stddev))
if w1 is not None:
weight_loss=tf.multiply(tf.nn.l2_loss(var),w1,name="weight_loss")
tf.add_to_collection("losses",weight_loss)
return var
def evaluate_pictures(n_epochs=50,batch_size=50):
def loss(logits, labels):
labels = tf.cast(labels, tf.int64) # 类型转换
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits), name='cross_entropy') # 内部执行了softmax。
tf.add_to_collection('losses', cross_entropy)
return tf.add_n(tf.get_collection('losses'), name='total_loss')
mnist = load_data()
train_set_x = mnist.train.images
train_set_y = mnist.train.labels
test_set_x = mnist.test.images
test_set_y = mnist.test.labels
# 计算各数据集的batch个数
n_train_batches = train_set_x.shape[0]
n_test_batches = test_set_x.shape[0]
n_train_batches = int(n_train_batches / batch_size)
n_test_batches = int(n_test_batches / batch_size)
print("... building the model")
# 搭建神经网络
x = tf.placeholder(tf.float32, shape=[None, 784], name = 'input_x')
y = tf.placeholder(tf.float32, shape=[None, 10], name = 'label_y')
keep_prob = tf.placeholder(tf.float32,name = 'keep_prob')
x_images = tf.reshape(x, [-1, 28, 28, 1], name = 'x_tensor')
tf.summary.image('input', x_images, 10)
with tf.name_scope("conv2"):
wd_cov2 = weight_variable([5, 5, 1, 1],name = 'wd_conv2')
wp_cov2 = weight_variable([1, 1, 1, 10],name = 'wp_conv2')
b_cov2 = bias_variable([10],name = 'b_conv2')
h_cov2 = tf.nn.relu(depseparable_conv(x_images, wd_cov2,wp_cov2, name = 'conv2') + b_cov2,name = 'relu_conv2')
h_pool2 = max_pool_2x2(h_cov2,name = 'maxpooling_conv2')
with tf.name_scope("conv3"):
wd_cov3 = weight_variable([5, 5, 10, 1],name = 'wd_conv3')
wp_cov3 = weight_variable([1, 1, 10, 27],name = 'wp_conv3')
b_cov3 = bias_variable([27],name = 'b_conv3')
h_cov3 = tf.nn.relu(depseparable_conv(h_pool2, wd_cov3,wp_cov3, name = 'conv3') + b_cov3,name = 'relu_conv3')
h_pool3 = max_pool_2x2(h_cov3,name = 'maxpooling_conv3')
with tf.name_scope("fc1"):
h_pool2_reshape = tf.reshape(h_pool3, [-1, 7*7*27], name='cnn_fc_convert')
w_fc1 = weight_variable([7*7*27,496],name = 'w_fc1')
b_fc1 = bias_variable([496],name = 'b_fc1')
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_reshape, w_fc1) + b_fc1,name= 'relu_fc1')
with tf.name_scope("dropout"):
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob,name= 'dropout')
with tf.name_scope("fc2"):
w_fc2 = weight_variable([496, 10],name = 'w_fc2')
b_fc2 = bias_variable([10],name = 'b_dc2')
y_conv = tf.nn.bias_add(tf.matmul(h_fc1_drop, w_fc2), b_fc2,name = 'y')
with tf.name_scope("loss"):
loss=loss(labels=y, logits=y_conv)
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss)
with tf.name_scope("accuracy"):
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32),name='accuracy')
tf.summary.scalar('accuracy', accuracy)
# 启动session
sess=tf.Session()
sess.run(tf.global_variables_initializer()) #初始化graph的参数
best_validation_acc = 0
epoch = 0
print("... training")
print(tf.get_default_graph().get_collection(tf.GraphKeys.GLOBAL_VARIABLES))
# summaries合并
merged = tf.summary.merge_all()
# 写到指定的磁盘路径中
train_writer = tf.summary.FileWriter('F:/sum/train_mo', sess.graph)
test_writer = tf.summary.FileWriter(log_dir + '/test')
while (epoch < n_epochs):
epoch = epoch + 1
for minibatch_index in range(n_train_batches):
iter = (epoch - 1) * n_train_batches + minibatch_index
summary,acc,_=sess.run([merged, accuracy,train_step],feed_dict={x: train_set_x[minibatch_index * batch_size: (minibatch_index + 1) * batch_size],
y: train_set_y[minibatch_index * batch_size: (minibatch_index + 1) * batch_size], keep_prob: 0.5})
print('epoch %i, step %d,minibatch %i / %i, train acc %f' % (epoch, iter, minibatch_index + 1, n_train_batches,acc))
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
train_writer.add_run_metadata(run_metadata, 'step%03d' % iter)
train_writer.add_summary(summary, iter)
# train_writer.add_summary(summary, iter)
if (iter + 1) % 100 == 0:
valid_acc=0
for i in range(n_test_batches):
acc=sess.run([accuracy],feed_dict={x: test_set_x[i*batch_size:(i+1)*batch_size], y: test_set_y[i*batch_size:(i+1)*batch_size], keep_prob:1})
valid_acc =valid_acc+ acc[0]
valid_acc=valid_acc/n_test_batches
print(' validation acc %g' %(valid_acc ))
if valid_acc>best_validation_acc:
best_validation_acc=valid_acc
output_graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, output_node_names=["accuracy/accuracy"])
with tf.gfile.FastGFile(modlefile, mode = 'wb') as f:
f.write(output_graph_def.SerializeToString())
train_writer.close()
print('Optimization complete.')
test_acc=0;
start_time=time.time()
valid_acc=0
print(start_time)
for i in range(n_test_batches):
valid_acc =valid_acc+ sess.run(accuracy,feed_dict={x: test_set_x[i*batch_size:(i+1)*batch_size], y: test_set_y[i*batch_size:(i+1)*batch_size], keep_prob:1})
end_time=time.time()
test_acc=valid_acc/n_test_batches
print("test accuracy %g" % test_acc)
print((end_time - start_time)*1000/60)
if __name__ == '__main__':
evaluate_pictures()