diff --git "a/Imers\303\243o_Dados_Alura_Aula_02.ipynb" "b/Imers\303\243o_Dados_Alura_Aula_02.ipynb" new file mode 100644 index 0000000..8053c56 --- /dev/null +++ "b/Imers\303\243o_Dados_Alura_Aula_02.ipynb" @@ -0,0 +1,8950 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "Imersão Dados - Alura - Aula_02.ipynb", + "provenance": [], + "collapsed_sections": [ + "UIsjjtsF74vf", + "KbXSuyvbqdTE" + ], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "87yE0HvTNY6u" + }, + "source": [ + "#Aula 02" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xFXfW7vFvfK-" + }, + "source": [ + "Olá!\n", + "\n", + "Seja bem vindo e bem vinda a aula 02!\n", + "\n", + "Na aula 01, nós começamos a explorar um conjunto de dados relacionados à industria farmacêutica. Para isso nós utilizamos uma biblioteca muito conhecida no mundo de DataScience: o Pandas.\n", + "\n", + "Nós utilizamos o Pandas para abrir o dataset, que estava no formato CSV, e para gerar um dataframe, uma tabela, para então começarmos a analisar e entender o que significava cada coluna. Com a ajuda da Vanessa, especialista na área, identificamos que temos colunas que nos remetem a dados que estão sob tratamento(droga) e com controle. Além disso, temos também diversas colunas que remetem aos genes.\n", + "\n", + "Começamos nossa análise olhando para cada coluna de forma separada e também geramos gráficos, para auxiliar nossa análise.\n", + "\n", + "E você? Como se saiu na resolução dos desafios?\n", + "\n", + "Agora, vamos mergulhar juntos na aula 02!" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 419 + }, + "id": "Ha42O_qGWtzN", + "outputId": "14764cd1-d31c-4746-f061-8d2181f60420" + }, + "source": [ + "import pandas as pd\n", + "\n", + "url_dados = 'https://github.com/alura-cursos/imersaodados3/blob/main/dados/dados_experimentos.zip?raw=true'\n", + "\n", + "dados = pd.read_csv(url_dados, compression = 'zip')\n", + "dados" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idtratamentotempodosedrogag-0g-1g-2g-3g-4g-5g-6g-7g-8g-9g-10g-11g-12g-13g-14g-15g-16g-17g-18g-19g-20g-21g-22g-23g-24g-25g-26g-27g-28g-29g-30g-31g-32g-33g-34...c-60c-61c-62c-63c-64c-65c-66c-67c-68c-69c-70c-71c-72c-73c-74c-75c-76c-77c-78c-79c-80c-81c-82c-83c-84c-85c-86c-87c-88c-89c-90c-91c-92c-93c-94c-95c-96c-97c-98c-99
0id_000644bb2com_droga24D1b68db1d531.06200.5577-0.2479-0.6208-0.1944-1.0120-1.0220-0.03260.5548-0.09211.18300.15300.5574-0.40150.1789-0.6528-0.79690.63420.1778-0.3694-0.5688-1.1360-1.18800.69400.43930.26640.19070.1628-0.28530.58190.2934-0.5584-0.0916-0.3010-0.1537...0.48050.49650.36800.84270.10420.14030.17581.2570-0.59791.2250-0.05530.73510.58100.95900.24270.04950.41410.84320.6162-0.73181.21200.6362-0.44270.12881.48400.17990.5367-0.1111-1.01200.66850.28620.25840.80760.5523-0.19120.6584-0.39810.21390.38010.4176
1id_000779bfccom_droga72D1df89a8e5a0.07430.40870.29910.06041.01900.52070.23410.3372-0.40470.8507-1.1520-0.4201-0.09580.45900.08030.22500.52930.2839-0.34940.28830.9449-0.1646-0.2657-0.33720.3135-0.43160.47730.2075-0.4216-0.1161-0.0499-0.26270.9959-0.24830.2655...0.40830.03190.39050.70990.29120.4151-0.2840-0.3104-0.63730.2887-0.07650.25390.44430.59320.20310.76390.5499-0.3322-0.09770.4329-0.27820.78270.59340.34020.14990.44200.93660.8193-0.42360.3192-0.42650.75430.47080.02300.29570.48990.15220.12410.60770.7371
2id_000a6266acom_droga48D118bb41b2c0.62800.58171.5540-0.0764-0.03231.23900.17150.21550.00651.2300-0.4797-0.5631-0.0366-1.83000.6057-0.32780.6042-0.3075-0.1147-0.0570-0.0799-0.8181-1.53200.23070.49010.4780-1.39704.6240-0.04371.2870-1.85300.60690.42900.17830.0018...-0.5477-0.7576-0.04440.1894-0.0014-2.3640-0.46820.1210-0.5177-0.06040.1682-0.44360.49630.13630.33350.9760-0.0427-0.12350.09590.0690-0.9416-0.7548-0.1109-0.62720.30190.11720.1093-0.31130.3019-0.0873-0.7250-0.62970.61030.0223-1.3240-0.3174-0.6417-0.2187-1.40800.6931
3id_0015fd391com_droga48D18c7f86626-0.5138-0.2491-0.26560.52884.0620-0.8095-1.95900.1792-0.1321-1.0600-0.8269-0.3584-0.8511-0.5844-2.56900.8183-0.0532-0.85540.1160-2.35202.1200-1.1580-0.7191-0.8004-1.4670-0.0107-0.89950.2406-0.2479-1.0890-0.75750.0881-2.73700.87450.5787...-2.1220-0.3752-2.3820-3.7350-2.9740-1.4930-1.6600-3.16600.2816-0.2990-1.1870-0.5044-1.7750-1.6120-0.9215-1.0810-3.0520-3.4470-2.7740-1.8460-0.5568-3.3960-2.9510-1.1550-3.2620-1.5390-2.4600-0.9417-1.55500.2431-2.0990-0.6441-5.6300-1.3780-0.8632-1.2880-1.6210-0.8784-0.3876-0.8154
4id_001626bd3com_droga72D27cbed3131-0.3254-0.40090.97000.69191.4180-0.8244-0.2800-0.1498-0.87890.8630-0.2219-0.5121-0.95771.17500.20420.19700.1244-1.7090-0.3543-0.5160-0.3330-0.26850.76490.20571.37200.68350.8056-0.3754-1.20900.2965-0.07120.63890.6674-0.07831.1740...-0.22740.32150.1535-0.4640-0.59430.39730.15000.51780.51590.60910.1813-0.42490.78320.65290.56480.48170.05870.53030.6376-0.3966-1.4950-0.9625-0.05410.62730.45630.06980.81340.19240.6054-0.18240.00420.00480.66701.06900.5523-0.30310.10940.2885-0.37860.7125
......................................................................................................................................................................................................................................................
23809id_fffb1ceedcom_droga24D2df1d0a5a10.1394-0.0636-0.1112-0.5080-0.47130.72010.57730.3055-0.47260.12690.25310.1730-0.4532-1.07900.2474-0.45500.35880.1600-0.7362-0.11030.8550-0.41390.55410.2310-0.5573-0.4397-0.9260-0.2424-0.66860.23260.64560.0136-0.5141-0.63200.7166...0.08070.4024-0.08950.44200.9641-0.1846-0.00140.3154-0.2071-0.6158-0.29770.09920.68380.52590.78820.3119-0.76970.2203-1.07100.59790.0848-0.25550.62931.16600.33290.27540.4108-0.1252-0.23400.22670.19690.0262-0.81210.34340.5372-0.32460.06310.91710.52580.4680
23810id_fffb70c0ccom_droga24D2ecf3b6b74-1.32600.3478-0.37430.9905-0.71780.6621-0.2252-0.55650.51120.6727-0.18512.8650-0.2140-0.61530.83620.5584-0.25890.12920.01480.0949-0.2182-0.92350.0749-1.5910-0.8359-0.92170.30130.17160.08800.18420.18350.5436-0.0533-0.04910.9543...0.14101.2640-0.86630.8129-0.1514-0.4652-0.7390-1.32700.99251.0570-0.3355-0.25550.82190.6995-0.29420.2408-0.7781-0.0929-0.03290.0781-1.4440-0.09210.3188-1.10800.4895-0.21441.09600.33350.4444-1.11300.42860.44260.0423-0.3195-0.8086-0.9798-0.2084-0.1224-0.27150.3689
23811id_fffc1c3f4com_controle48D2cacb2b8600.39420.37560.3109-0.73890.5505-0.0159-0.25410.1745-0.03400.4865-0.18540.07160.1729-0.04340.1542-0.2192-0.0302-0.42180.4057-0.53720.1521-0.26510.2310-0.81010.49430.6905-0.3720-1.41100.45161.2300-0.1949-1.3280-0.4276-0.0040-0.3086...0.68450.71270.72940.4718-0.20200.27830.49340.41440.54491.4690-0.61420.60680.34340.9880-0.0468-0.1882-0.0087-0.03560.57180.49710.10570.21110.69920.07080.61690.22480.59940.26890.03051.23200.54090.37550.73430.28070.41160.64220.22560.75920.66560.3808
23812id_fffcb9e7ccom_droga24D18b87a7a830.66600.23240.43920.20440.8531-0.03430.03230.04630.4299-0.79850.57420.14212.27000.20460.5363-1.73300.14500.60970.20240.9865-0.78050.96080.34402.76500.49250.66980.2374-0.33720.8771-2.6560-0.2000-0.20430.6797-0.0248-0.0927...0.3360-0.61360.50110.92610.44190.02950.42200.4677-0.11840.45240.41350.1356-0.58010.04111.02401.0340-0.0270-0.41940.7403-0.6793-0.14230.73070.7946-0.06500.90380.23240.96761.09400.42900.5187-0.11050.4258-0.20120.15061.52300.71010.17320.7015-0.62900.0740
23813id_ffffdd77bcom_droga72D1972f41291-0.85981.0240-0.13610.7952-0.3611-3.6750-1.24200.91463.07901.24601.94601.43702.97802.2370-0.68180.6870-1.10600.0182-0.9247-0.0738-0.1919-0.7722-1.4050-1.0050-1.1170-0.5293-1.1720-0.28850.1599-0.42500.3591-0.1420-0.9530-0.2005-1.8340...-6.9170-1.8640-2.5090-4.7130-1.7250-3.8650-3.0800-4.1530-1.2030-1.1690-4.1460-1.2670-1.1300-2.43900.1591-2.2490-2.5860-1.9520-2.1810-4.6690-3.9450-2.9560-2.7930-2.1560-2.4100-1.8190-3.3480-0.1414-2.6430-2.5810-3.3890-1.7450-6.6300-4.0950-7.3860-1.4160-3.5770-0.4775-2.1500-4.2520
\n", + "

23814 rows × 877 columns

\n", + "
" + ], + "text/plain": [ + " id tratamento tempo dose ... c-96 c-97 c-98 c-99\n", + "0 id_000644bb2 com_droga 24 D1 ... -0.3981 0.2139 0.3801 0.4176\n", + "1 id_000779bfc com_droga 72 D1 ... 0.1522 0.1241 0.6077 0.7371\n", + "2 id_000a6266a com_droga 48 D1 ... -0.6417 -0.2187 -1.4080 0.6931\n", + "3 id_0015fd391 com_droga 48 D1 ... -1.6210 -0.8784 -0.3876 -0.8154\n", + "4 id_001626bd3 com_droga 72 D2 ... 0.1094 0.2885 -0.3786 0.7125\n", + "... ... ... ... ... ... ... ... ... ...\n", + "23809 id_fffb1ceed com_droga 24 D2 ... 0.0631 0.9171 0.5258 0.4680\n", + "23810 id_fffb70c0c com_droga 24 D2 ... -0.2084 -0.1224 -0.2715 0.3689\n", + "23811 id_fffc1c3f4 com_controle 48 D2 ... 0.2256 0.7592 0.6656 0.3808\n", + "23812 id_fffcb9e7c com_droga 24 D1 ... 0.1732 0.7015 -0.6290 0.0740\n", + "23813 id_ffffdd77b com_droga 72 D1 ... -3.5770 -0.4775 -2.1500 -4.2520\n", + "\n", + "[23814 rows x 877 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 419 + }, + "id": "hB3O-zZW9ZYw", + "outputId": "a60b5289-cc5d-4d29-cb8e-ab99ceb9a476" + }, + "source": [ + "dados" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idtratamentotempodosedrogag-0g-1g-2g-3g-4g-5g-6g-7g-8g-9g-10g-11g-12g-13g-14g-15g-16g-17g-18g-19g-20g-21g-22g-23g-24g-25g-26g-27g-28g-29g-30g-31g-32g-33g-34...c-60c-61c-62c-63c-64c-65c-66c-67c-68c-69c-70c-71c-72c-73c-74c-75c-76c-77c-78c-79c-80c-81c-82c-83c-84c-85c-86c-87c-88c-89c-90c-91c-92c-93c-94c-95c-96c-97c-98c-99
0id_000644bb2com_droga24D1b68db1d531.06200.5577-0.2479-0.6208-0.1944-1.0120-1.0220-0.03260.5548-0.09211.18300.15300.5574-0.40150.1789-0.6528-0.79690.63420.1778-0.3694-0.5688-1.1360-1.18800.69400.43930.26640.19070.1628-0.28530.58190.2934-0.5584-0.0916-0.3010-0.1537...0.48050.49650.36800.84270.10420.14030.17581.2570-0.59791.2250-0.05530.73510.58100.95900.24270.04950.41410.84320.6162-0.73181.21200.6362-0.44270.12881.48400.17990.5367-0.1111-1.01200.66850.28620.25840.80760.5523-0.19120.6584-0.39810.21390.38010.4176
1id_000779bfccom_droga72D1df89a8e5a0.07430.40870.29910.06041.01900.52070.23410.3372-0.40470.8507-1.1520-0.4201-0.09580.45900.08030.22500.52930.2839-0.34940.28830.9449-0.1646-0.2657-0.33720.3135-0.43160.47730.2075-0.4216-0.1161-0.0499-0.26270.9959-0.24830.2655...0.40830.03190.39050.70990.29120.4151-0.2840-0.3104-0.63730.2887-0.07650.25390.44430.59320.20310.76390.5499-0.3322-0.09770.4329-0.27820.78270.59340.34020.14990.44200.93660.8193-0.42360.3192-0.42650.75430.47080.02300.29570.48990.15220.12410.60770.7371
2id_000a6266acom_droga48D118bb41b2c0.62800.58171.5540-0.0764-0.03231.23900.17150.21550.00651.2300-0.4797-0.5631-0.0366-1.83000.6057-0.32780.6042-0.3075-0.1147-0.0570-0.0799-0.8181-1.53200.23070.49010.4780-1.39704.6240-0.04371.2870-1.85300.60690.42900.17830.0018...-0.5477-0.7576-0.04440.1894-0.0014-2.3640-0.46820.1210-0.5177-0.06040.1682-0.44360.49630.13630.33350.9760-0.0427-0.12350.09590.0690-0.9416-0.7548-0.1109-0.62720.30190.11720.1093-0.31130.3019-0.0873-0.7250-0.62970.61030.0223-1.3240-0.3174-0.6417-0.2187-1.40800.6931
3id_0015fd391com_droga48D18c7f86626-0.5138-0.2491-0.26560.52884.0620-0.8095-1.95900.1792-0.1321-1.0600-0.8269-0.3584-0.8511-0.5844-2.56900.8183-0.0532-0.85540.1160-2.35202.1200-1.1580-0.7191-0.8004-1.4670-0.0107-0.89950.2406-0.2479-1.0890-0.75750.0881-2.73700.87450.5787...-2.1220-0.3752-2.3820-3.7350-2.9740-1.4930-1.6600-3.16600.2816-0.2990-1.1870-0.5044-1.7750-1.6120-0.9215-1.0810-3.0520-3.4470-2.7740-1.8460-0.5568-3.3960-2.9510-1.1550-3.2620-1.5390-2.4600-0.9417-1.55500.2431-2.0990-0.6441-5.6300-1.3780-0.8632-1.2880-1.6210-0.8784-0.3876-0.8154
4id_001626bd3com_droga72D27cbed3131-0.3254-0.40090.97000.69191.4180-0.8244-0.2800-0.1498-0.87890.8630-0.2219-0.5121-0.95771.17500.20420.19700.1244-1.7090-0.3543-0.5160-0.3330-0.26850.76490.20571.37200.68350.8056-0.3754-1.20900.2965-0.07120.63890.6674-0.07831.1740...-0.22740.32150.1535-0.4640-0.59430.39730.15000.51780.51590.60910.1813-0.42490.78320.65290.56480.48170.05870.53030.6376-0.3966-1.4950-0.9625-0.05410.62730.45630.06980.81340.19240.6054-0.18240.00420.00480.66701.06900.5523-0.30310.10940.2885-0.37860.7125
......................................................................................................................................................................................................................................................
23809id_fffb1ceedcom_droga24D2df1d0a5a10.1394-0.0636-0.1112-0.5080-0.47130.72010.57730.3055-0.47260.12690.25310.1730-0.4532-1.07900.2474-0.45500.35880.1600-0.7362-0.11030.8550-0.41390.55410.2310-0.5573-0.4397-0.9260-0.2424-0.66860.23260.64560.0136-0.5141-0.63200.7166...0.08070.4024-0.08950.44200.9641-0.1846-0.00140.3154-0.2071-0.6158-0.29770.09920.68380.52590.78820.3119-0.76970.2203-1.07100.59790.0848-0.25550.62931.16600.33290.27540.4108-0.1252-0.23400.22670.19690.0262-0.81210.34340.5372-0.32460.06310.91710.52580.4680
23810id_fffb70c0ccom_droga24D2ecf3b6b74-1.32600.3478-0.37430.9905-0.71780.6621-0.2252-0.55650.51120.6727-0.18512.8650-0.2140-0.61530.83620.5584-0.25890.12920.01480.0949-0.2182-0.92350.0749-1.5910-0.8359-0.92170.30130.17160.08800.18420.18350.5436-0.0533-0.04910.9543...0.14101.2640-0.86630.8129-0.1514-0.4652-0.7390-1.32700.99251.0570-0.3355-0.25550.82190.6995-0.29420.2408-0.7781-0.0929-0.03290.0781-1.4440-0.09210.3188-1.10800.4895-0.21441.09600.33350.4444-1.11300.42860.44260.0423-0.3195-0.8086-0.9798-0.2084-0.1224-0.27150.3689
23811id_fffc1c3f4com_controle48D2cacb2b8600.39420.37560.3109-0.73890.5505-0.0159-0.25410.1745-0.03400.4865-0.18540.07160.1729-0.04340.1542-0.2192-0.0302-0.42180.4057-0.53720.1521-0.26510.2310-0.81010.49430.6905-0.3720-1.41100.45161.2300-0.1949-1.3280-0.4276-0.0040-0.3086...0.68450.71270.72940.4718-0.20200.27830.49340.41440.54491.4690-0.61420.60680.34340.9880-0.0468-0.1882-0.0087-0.03560.57180.49710.10570.21110.69920.07080.61690.22480.59940.26890.03051.23200.54090.37550.73430.28070.41160.64220.22560.75920.66560.3808
23812id_fffcb9e7ccom_droga24D18b87a7a830.66600.23240.43920.20440.8531-0.03430.03230.04630.4299-0.79850.57420.14212.27000.20460.5363-1.73300.14500.60970.20240.9865-0.78050.96080.34402.76500.49250.66980.2374-0.33720.8771-2.6560-0.2000-0.20430.6797-0.0248-0.0927...0.3360-0.61360.50110.92610.44190.02950.42200.4677-0.11840.45240.41350.1356-0.58010.04111.02401.0340-0.0270-0.41940.7403-0.6793-0.14230.73070.7946-0.06500.90380.23240.96761.09400.42900.5187-0.11050.4258-0.20120.15061.52300.71010.17320.7015-0.62900.0740
23813id_ffffdd77bcom_droga72D1972f41291-0.85981.0240-0.13610.7952-0.3611-3.6750-1.24200.91463.07901.24601.94601.43702.97802.2370-0.68180.6870-1.10600.0182-0.9247-0.0738-0.1919-0.7722-1.4050-1.0050-1.1170-0.5293-1.1720-0.28850.1599-0.42500.3591-0.1420-0.9530-0.2005-1.8340...-6.9170-1.8640-2.5090-4.7130-1.7250-3.8650-3.0800-4.1530-1.2030-1.1690-4.1460-1.2670-1.1300-2.43900.1591-2.2490-2.5860-1.9520-2.1810-4.6690-3.9450-2.9560-2.7930-2.1560-2.4100-1.8190-3.3480-0.1414-2.6430-2.5810-3.3890-1.7450-6.6300-4.0950-7.3860-1.4160-3.5770-0.4775-2.1500-4.2520
\n", + "

23814 rows × 877 columns

\n", + "
" + ], + "text/plain": [ + " id tratamento tempo dose ... c-96 c-97 c-98 c-99\n", + "0 id_000644bb2 com_droga 24 D1 ... -0.3981 0.2139 0.3801 0.4176\n", + "1 id_000779bfc com_droga 72 D1 ... 0.1522 0.1241 0.6077 0.7371\n", + "2 id_000a6266a com_droga 48 D1 ... -0.6417 -0.2187 -1.4080 0.6931\n", + "3 id_0015fd391 com_droga 48 D1 ... -1.6210 -0.8784 -0.3876 -0.8154\n", + "4 id_001626bd3 com_droga 72 D2 ... 0.1094 0.2885 -0.3786 0.7125\n", + "... ... ... ... ... ... ... ... ... ...\n", + "23809 id_fffb1ceed com_droga 24 D2 ... 0.0631 0.9171 0.5258 0.4680\n", + "23810 id_fffb70c0c com_droga 24 D2 ... -0.2084 -0.1224 -0.2715 0.3689\n", + "23811 id_fffc1c3f4 com_controle 48 D2 ... 0.2256 0.7592 0.6656 0.3808\n", + "23812 id_fffcb9e7c com_droga 24 D1 ... 0.1732 0.7015 -0.6290 0.0740\n", + "23813 id_ffffdd77b com_droga 72 D1 ... -3.5770 -0.4775 -2.1500 -4.2520\n", + "\n", + "[23814 rows x 877 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 2 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zGB4Kq8JvmZ5" + }, + "source": [ + "A base de dados que usamos até o momento tem uma variável chamada ```composto```mas entendemos, com a ajuda da Vanessa, que essa não é a melhor nomenclatura para representa-la. \n", + "Por isso, vamos usar a função ```map``` da biblioteca Pandas para renomear essa coluna.\n", + "É importante destacar que passamos o parâmetro ```inplace = True```, esse parâmetro faz com que os dados sejam modificados no local e o dataframe será atualizado. \n", + "Caso esse parâmetro não seja declarado, o default é ```inplace = False``` e o retorno será uma cópia do objeto e caso você queira, precisa salva-lo com um outro nome." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "CFse2h0Vcrp4" + }, + "source": [ + "mapa = {'droga': 'composto'}\n", + "dados.rename(columns=mapa, inplace=True)" + ], + "execution_count": 3, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lq5EDpC4w_rS" + }, + "source": [ + "Aqui, estamos usando a função ```head``` para apresentar as 5 primeiras linhas da base de dados e assim, podemos conferir se a renomeação aconteceu da maneira que estavámos esperando." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 243 + }, + "id": "VX73K_tLcoQg", + "outputId": "1081b0e7-21a3-4d7f-e0b3-5c0ea0744798" + }, + "source": [ + "dados.head()" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idtratamentotempodosecompostog-0g-1g-2g-3g-4g-5g-6g-7g-8g-9g-10g-11g-12g-13g-14g-15g-16g-17g-18g-19g-20g-21g-22g-23g-24g-25g-26g-27g-28g-29g-30g-31g-32g-33g-34...c-60c-61c-62c-63c-64c-65c-66c-67c-68c-69c-70c-71c-72c-73c-74c-75c-76c-77c-78c-79c-80c-81c-82c-83c-84c-85c-86c-87c-88c-89c-90c-91c-92c-93c-94c-95c-96c-97c-98c-99
0id_000644bb2com_droga24D1b68db1d531.06200.5577-0.2479-0.6208-0.1944-1.0120-1.0220-0.03260.5548-0.09211.18300.15300.5574-0.40150.1789-0.6528-0.79690.63420.1778-0.3694-0.5688-1.1360-1.18800.69400.43930.26640.19070.1628-0.28530.58190.2934-0.5584-0.0916-0.3010-0.1537...0.48050.49650.36800.84270.10420.14030.17581.2570-0.59791.2250-0.05530.73510.58100.95900.24270.04950.41410.84320.6162-0.73181.21200.6362-0.44270.12881.48400.17990.5367-0.1111-1.01200.66850.28620.25840.80760.5523-0.19120.6584-0.39810.21390.38010.4176
1id_000779bfccom_droga72D1df89a8e5a0.07430.40870.29910.06041.01900.52070.23410.3372-0.40470.8507-1.1520-0.4201-0.09580.45900.08030.22500.52930.2839-0.34940.28830.9449-0.1646-0.2657-0.33720.3135-0.43160.47730.2075-0.4216-0.1161-0.0499-0.26270.9959-0.24830.2655...0.40830.03190.39050.70990.29120.4151-0.2840-0.3104-0.63730.2887-0.07650.25390.44430.59320.20310.76390.5499-0.3322-0.09770.4329-0.27820.78270.59340.34020.14990.44200.93660.8193-0.42360.3192-0.42650.75430.47080.02300.29570.48990.15220.12410.60770.7371
2id_000a6266acom_droga48D118bb41b2c0.62800.58171.5540-0.0764-0.03231.23900.17150.21550.00651.2300-0.4797-0.5631-0.0366-1.83000.6057-0.32780.6042-0.3075-0.1147-0.0570-0.0799-0.8181-1.53200.23070.49010.4780-1.39704.6240-0.04371.2870-1.85300.60690.42900.17830.0018...-0.5477-0.7576-0.04440.1894-0.0014-2.3640-0.46820.1210-0.5177-0.06040.1682-0.44360.49630.13630.33350.9760-0.0427-0.12350.09590.0690-0.9416-0.7548-0.1109-0.62720.30190.11720.1093-0.31130.3019-0.0873-0.7250-0.62970.61030.0223-1.3240-0.3174-0.6417-0.2187-1.40800.6931
3id_0015fd391com_droga48D18c7f86626-0.5138-0.2491-0.26560.52884.0620-0.8095-1.95900.1792-0.1321-1.0600-0.8269-0.3584-0.8511-0.5844-2.56900.8183-0.0532-0.85540.1160-2.35202.1200-1.1580-0.7191-0.8004-1.4670-0.0107-0.89950.2406-0.2479-1.0890-0.75750.0881-2.73700.87450.5787...-2.1220-0.3752-2.3820-3.7350-2.9740-1.4930-1.6600-3.16600.2816-0.2990-1.1870-0.5044-1.7750-1.6120-0.9215-1.0810-3.0520-3.4470-2.7740-1.8460-0.5568-3.3960-2.9510-1.1550-3.2620-1.5390-2.4600-0.9417-1.55500.2431-2.0990-0.6441-5.6300-1.3780-0.8632-1.2880-1.6210-0.8784-0.3876-0.8154
4id_001626bd3com_droga72D27cbed3131-0.3254-0.40090.97000.69191.4180-0.8244-0.2800-0.1498-0.87890.8630-0.2219-0.5121-0.95771.17500.20420.19700.1244-1.7090-0.3543-0.5160-0.3330-0.26850.76490.20571.37200.68350.8056-0.3754-1.20900.2965-0.07120.63890.6674-0.07831.1740...-0.22740.32150.1535-0.4640-0.59430.39730.15000.51780.51590.60910.1813-0.42490.78320.65290.56480.48170.05870.53030.6376-0.3966-1.4950-0.9625-0.05410.62730.45630.06980.81340.19240.6054-0.18240.00420.00480.66701.06900.5523-0.30310.10940.2885-0.37860.7125
\n", + "

5 rows × 877 columns

\n", + "
" + ], + "text/plain": [ + " id tratamento tempo dose ... c-96 c-97 c-98 c-99\n", + "0 id_000644bb2 com_droga 24 D1 ... -0.3981 0.2139 0.3801 0.4176\n", + "1 id_000779bfc com_droga 72 D1 ... 0.1522 0.1241 0.6077 0.7371\n", + "2 id_000a6266a com_droga 48 D1 ... -0.6417 -0.2187 -1.4080 0.6931\n", + "3 id_0015fd391 com_droga 48 D1 ... -1.6210 -0.8784 -0.3876 -0.8154\n", + "4 id_001626bd3 com_droga 72 D2 ... 0.1094 0.2885 -0.3786 0.7125\n", + "\n", + "[5 rows x 877 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 4 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i7mgnrykiMNb" + }, + "source": [ + "Queremos melhorar a visualização do nosso histograma de compostos e, como existem mais de 3.000 variações na nossa base de dados, decidimos elencar os 5 compostos que mais aparecem.\n", + "Para isso, vamos usar a função ```value_counts``` (função presente na biblioteca Pandas e que conta a ocorrência dos diferentes valores) e, como queremos saber somente os 5 elementos mais frequentes, também declaramos o ```index[0:5]```. Essa parte final, faz com que o ```value_counts```se atenha à contagem dos maiores valores e apresente como resultado apenas o index do intervalo [0, 5[, ou seja, o nome dos 5 maiores valores. " + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "D5hK5mcVej_G" + }, + "source": [ + "cod_compostos = dados['composto'].value_counts().index[0:5]" + ], + "execution_count": 5, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hrOGPnbP4cE_" + }, + "source": [ + "Na célula acima, declaramos a variável ```cod_compostos``` e definimos a função que está atrelada à ela. \n", + "E agora, executamos a nossa nova variável para verificar o resultado." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LgrRw3eSfLYu", + "outputId": "73d9d558-2ab6-4f58-8700-89b663a708be" + }, + "source": [ + "cod_compostos" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['cacb2b860', '87d714366', '9f80f3f77', '8b87a7a83', '5628cb3ee'], dtype='object')" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1JANbNGx4wQO" + }, + "source": [ + "Exitem algumas maneiras de filtrar uma base de dados e optamos em usar a função ```query``` do Pandas e, somente a título de curiosidade, essa função é bastante análoga ao SQL (linguagem de programação para bancos de dados).\n", + "A estrutura dela é bastante simplificada, precisamos apenas definir o dataframe, chamar a função e passar como parâmetro a condição que deve ser \n", + "filtrada no nosso conjunto de dados.\n", + "\n", + "Nesta parte do projeto, queremos realizar um filtro em nossos dados, selecionando apenas as linhas nas quais o composto esteja dentro da nossa lista ```cod_composto``` (lista que representa os 5 compostos mais testados no experimento) e vamos utilizar o método ```query``` para resolver este problema. \n", + "\n", + "Como parâmetro da função, passamos uma string contendo a lógica para realização da seleção dos dados. O que queremos é o seguinte: o ```query```precisa retornar para nós todas as linhas contendo os 5 compostos mais utilizados. Logo, a string necessária para isso é: ```composto in @cod_compostos```. \n", + "\n", + "Usamos ```composto``` porque essa é a coluna a ser verificada no dataframe e ```cod_compostos``` por ser a lista com os top 5 compostos, o detalhe aqui é que o ```@``` é necessário para informar o ```query``` que ```cod_composto``` é uma variável que já foi definida fora da função." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 419 + }, + "id": "_GlSwTMGfpFs", + "outputId": "9c502a32-7341-4969-fc7e-4ac31600ac06" + }, + "source": [ + "dados.query('composto in @cod_compostos')" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idtratamentotempodosecompostog-0g-1g-2g-3g-4g-5g-6g-7g-8g-9g-10g-11g-12g-13g-14g-15g-16g-17g-18g-19g-20g-21g-22g-23g-24g-25g-26g-27g-28g-29g-30g-31g-32g-33g-34...c-60c-61c-62c-63c-64c-65c-66c-67c-68c-69c-70c-71c-72c-73c-74c-75c-76c-77c-78c-79c-80c-81c-82c-83c-84c-85c-86c-87c-88c-89c-90c-91c-92c-93c-94c-95c-96c-97c-98c-99
7id_0020d0484com_droga48D18b87a7a830.27110.5133-0.13272.59500.69800.5846-0.2633-2.14900.48811.4750-0.0488-0.05610.16410.1749-0.3464-0.18110.56851.29701.0510-0.95850.7911-0.29912.7420-0.5979-1.02400.72680.1590-1.97301.1340-2.57200.20680.9992-0.19580.22621.0140...-0.2623-0.5500-0.05300.2077-0.08250.21560.81421.09901.08600.4011-0.13420.4653-0.11040.39351.2370-0.50720.03510.5084-0.12480.43510.13890.67260.60700.3431-0.41160.11940.34200.13310.85410.62820.3230-0.41400.25320.05130.86001.42500.66330.4562-0.96220.0260
16id_002fb9c19com_droga48D187d7143668.73800.19142.4380-0.29303.20101.49105.3920-1.0420-8.4860-2.5790-6.74703.6150-1.45100.6909-0.7623-2.9400-9.2850-6.7110-0.41951.1600-1.31801.3660-1.4020-2.62200.7204-2.5930-4.0630-0.8282-3.50000.9206-5.14509.8040-2.6840-2.4390-0.1427...-10.0000-9.5910-10.0000-10.0000-8.5110-10.0000-10.0000-10.0000-10.0000-8.8870-10.0000-10.0000-10.0000-10.0000-4.9020-9.9840-5.5520-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.7960-8.1770-9.8990-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-6.7840
25id_0054388eccom_controle48D1cacb2b860-0.6696-0.2718-1.2230-0.6226-0.72200.15880.77850.7062-0.79511.37700.2856-0.83310.38791.3290-0.47460.0857-0.2745-0.10930.26030.7386-0.6665-1.6520-0.92620.00001.6310-0.29330.2043-2.20700.1383-0.49660.6922-0.40770.2303-0.0456-0.7447...0.6976-0.01780.37680.4318-0.10510.3933-0.31890.4128-0.2116-1.04100.77980.15791.72501.44900.9117-0.0754-0.83960.76401.20801.18900.21140.63350.3265-0.10560.54780.74771.23400.5035-0.65910.30230.61710.64050.54290.35621.32900.55730.88370.55340.89761.0050
38id_0079af0fbcom_controle24D1cacb2b860-0.1636-1.8230-0.52110.3054-1.12800.60410.3856-0.1670-0.54000.2721-0.24790.0761-0.40542.9760-0.76790.69950.07520.59430.42660.00001.0410-0.11310.6593-0.68900.5115-0.2512-0.8775-1.38100.1419-0.03630.25592.52900.28531.4690-0.3626...-0.34200.2815-0.7493-0.27010.12050.23960.3506-0.92330.2490-0.08240.48411.1940-1.1650-0.48531.1080-0.59790.74380.2050-0.2761-0.17480.3385-0.3500-0.0309-0.0409-0.07350.2732-1.21000.00890.03170.4721-0.3880-0.6828-0.6594-0.20430.3571-0.13190.21870.07370.6498-1.4820
40id_007bfbb91com_controle24D2cacb2b860-1.3200-1.7340-0.07411.5440-1.8290-0.09510.3829-1.8700-0.03242.7670-0.0438-0.01470.12760.2968-0.0704-0.37672.57900.4069-0.3868-0.27821.8180-2.9390-0.1150-0.8009-1.44400.5412-0.0804-0.44442.92302.8270-0.34371.6570-1.92000.34421.7160...0.40090.76490.27890.44650.94920.63851.5510-0.12200.66880.43960.69470.97611.24301.4770-0.00811.00401.4420-0.34820.32971.20700.05240.53460.76430.40670.38170.45660.77360.53160.27900.97350.74121.03400.73931.10200.37860.2636-0.57510.33620.85430.9180
......................................................................................................................................................................................................................................................
23793id_ffd26f361com_controle48D2cacb2b8600.60080.2781-0.3319-0.87820.92810.75350.59711.6350-0.31460.4984-1.18900.3772-0.81960.1083-2.03500.41350.7586-0.4024-0.04490.33350.23580.7919-0.87750.42321.8460-2.09400.1438-0.66040.72430.0338-0.0182-0.20220.88270.3147-0.9263...0.19341.2240-0.11780.1459-0.12420.3106-0.79590.56810.36630.4874-0.05480.18101.34701.6210-0.82600.33770.32640.92410.30121.2980-0.27890.7019-0.35280.73831.03000.65271.6750-0.50460.29420.29501.24700.9569-0.2065-0.49180.78630.05040.88130.7757-0.52720.7082
23802id_fff3976bdcom_droga24D187d7143663.28902.12700.97702.04902.3170-0.5355-0.6357-6.9060-4.4830-2.8400-5.33100.6547-2.20803.60300.6380-2.1280-3.1680-4.2180-0.31700.2140-1.7660-1.9700-1.4820-1.3710-0.2628-0.5276-2.4160-0.4638-3.8630-0.8880-1.98502.0530-1.4700-3.32201.8800...-9.9170-4.0200-6.7560-9.9170-4.1240-8.5110-5.7500-8.4760-6.9470-4.7650-9.7690-5.7900-9.9170-5.7450-2.3570-9.1190-4.5980-8.7760-7.7980-4.1620-6.1510-5.7400-6.8700-9.1000-3.3360-6.6420-2.2750-3.4720-6.2670-6.3980-8.6300-8.1490-6.2900-8.0970-8.7330-2.3780-8.4480-4.4550-5.7930-3.7000
23805id_fff6df1c5com_droga48D25628cb3ee1.7380-1.2900-0.4533-1.1640-0.4841-0.2392-0.1774-1.3980-0.40590.15530.1083-0.8020-0.5039-0.7167-0.5016-0.9369-0.5864-0.10090.89870.3389-1.3460-0.5087-0.0892-0.65590.0864-0.62510.2471-0.4523-0.03891.03400.0796-0.2560-0.7851-0.1687-1.2890...0.28660.3854-0.49860.28830.58430.0907-0.93030.19810.65150.28770.4389-0.38590.5203-1.10702.38700.1820-0.6434-0.9722-0.4200-0.56931.07001.1110-0.5117-1.21300.37690.52961.04000.05871.0150-0.76690.28650.5974-0.27270.11881.0770-1.02500.15160.4503-0.6312-0.8302
23811id_fffc1c3f4com_controle48D2cacb2b8600.39420.37560.3109-0.73890.5505-0.0159-0.25410.1745-0.03400.4865-0.18540.07160.1729-0.04340.1542-0.2192-0.0302-0.42180.4057-0.53720.1521-0.26510.2310-0.81010.49430.6905-0.3720-1.41100.45161.2300-0.1949-1.3280-0.4276-0.0040-0.3086...0.68450.71270.72940.4718-0.20200.27830.49340.41440.54491.4690-0.61420.60680.34340.9880-0.0468-0.1882-0.0087-0.03560.57180.49710.10570.21110.69920.07080.61690.22480.59940.26890.03051.23200.54090.37550.73430.28070.41160.64220.22560.75920.66560.3808
23812id_fffcb9e7ccom_droga24D18b87a7a830.66600.23240.43920.20440.8531-0.03430.03230.04630.4299-0.79850.57420.14212.27000.20460.5363-1.73300.14500.60970.20240.9865-0.78050.96080.34402.76500.49250.66980.2374-0.33720.8771-2.6560-0.2000-0.20430.6797-0.0248-0.0927...0.3360-0.61360.50110.92610.44190.02950.42200.4677-0.11840.45240.41350.1356-0.58010.04111.02401.0340-0.0270-0.41940.7403-0.6793-0.14230.73070.7946-0.06500.90380.23240.96761.09400.42900.5187-0.11050.4258-0.20120.15061.52300.71010.17320.7015-0.62900.0740
\n", + "

3235 rows × 877 columns

\n", + "
" + ], + "text/plain": [ + " id tratamento tempo dose ... c-96 c-97 c-98 c-99\n", + "7 id_0020d0484 com_droga 48 D1 ... 0.6633 0.4562 -0.9622 0.0260\n", + "16 id_002fb9c19 com_droga 48 D1 ... -9.9840 -9.9840 -9.9840 -6.7840\n", + "25 id_0054388ec com_controle 48 D1 ... 0.8837 0.5534 0.8976 1.0050\n", + "38 id_0079af0fb com_controle 24 D1 ... 0.2187 0.0737 0.6498 -1.4820\n", + "40 id_007bfbb91 com_controle 24 D2 ... -0.5751 0.3362 0.8543 0.9180\n", + "... ... ... ... ... ... ... ... ... ...\n", + "23793 id_ffd26f361 com_controle 48 D2 ... 0.8813 0.7757 -0.5272 0.7082\n", + "23802 id_fff3976bd com_droga 24 D1 ... -8.4480 -4.4550 -5.7930 -3.7000\n", + "23805 id_fff6df1c5 com_droga 48 D2 ... 0.1516 0.4503 -0.6312 -0.8302\n", + "23811 id_fffc1c3f4 com_controle 48 D2 ... 0.2256 0.7592 0.6656 0.3808\n", + "23812 id_fffcb9e7c com_droga 24 D1 ... 0.1732 0.7015 -0.6290 0.0740\n", + "\n", + "[3235 rows x 877 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 7 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "p9FQo1EuFF8M" + }, + "source": [ + "Agora que vimos que a nossa filtragem funcionou e que temos como retorno uma base de dados com 3.235 linhas, podemos usar a função ```query```como parâmetro para o ```countplot```, o nosso gráfico de barras.\n", + "O ```countplot``` é um gráfico pré-programado da biblioteca ```Seaborn```e, por isso, precisaremos fazer a importação padrão da mesma (```import seaborn as sns```). Adicionalmente, aqui no Google Colaboratory, para que possamos enxergar o gráfico com os padrões de configuração da biblioteca, precisamos rodar ```sns.set()```.\n", + "Além disso, para refinar a apresentação do gráfico, podemos utilizar algumas funcionalidades da biblioteca ```Matplotlib``` (fazendo, primeiramente, sua importação - ```import matplotlib.pyplt as plt```).\n", + "Também estamos definindo o tamanho do gráfico através da função ```figure``` e seu parâmetro ```figsize=(x, y))``` e o título através do ```set_title('Título')```.\n", + "Como comentado na aula, usualmente, armazenamos o nosso gráfico em uma variável ```ax``` e então, definimos as demais configurações (por exemplo, ```ax.set_title('Título')```.\n", + "E, finalmente, para visualizar o gráfico de barras, usamos o ```plt.show()```." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 518 + }, + "id": "IePUr98kdgED", + "outputId": "c238d326-41d3-46f8-b33f-ac65320aff00" + }, + "source": [ + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "sns.set()\n", + "plt.figure(figsize=(10, 8))\n", + "ax = sns.countplot(x = 'composto', data=dados.query('composto in @cod_compostos'))\n", + "ax.set_title('Top 5 compostos')\n", + "plt.show()" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnIAAAH1CAYAAABycxNoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3RU1f3//1cGmHAnJARMghWlhUYoBQlQkEAJUCFysSAlRVBRWrVAuRQQpRINBCQgKopgP/ABXeUj31akIchNRARKVZCbEa0WBYSEBBIuCSEJmdm/P7I4P1NyA0MmOzwfa7FWztnn8j6zM8Nr9j6T8TPGGAEAAMA6Ll8XAAAAgOtDkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUjV9XQAAdOjQwfn50qVLcrvdqlGjhiTpueee06BBg37wOaZPn67169erVq1azrq9e/c656kupk+frmbNmmnSpEm+LgVAJSDIAfC5/fv3Oz9HRUVp9uzZ6tatW4Wf59FHHyXgAKhWmFoFUGXl5+crPj5e3bt3V/fu3RUfH6/8/HxJ0scff6wePXpo6dKl6tKli6KiorRu3boKO/ff/vY39e/fXx06dFB0dLQ+//xzSdKRI0c0atQoRURE6N5779X777/v7DN9+nQ9++yzGjNmjDp06KCYmBidPn1a8fHx6tSpk/r166fDhw8720dFRen1119XdHS0OnXqpKeeekp5eXlFaujbt686d+6sxx9/XGlpaZIkY4zmzJmjrl276q677tLAgQP11Vdf6f/9v/+npKQkLV++XB06dNDjjz9eZs0ffvihoqOj1aFDB0VGRmr58uUV9hgCqAQGAKqQXr16mX/+85/GGGNeeuklM2zYMHPmzBmTkZFhhg8fbl588UVjjDEfffSRCQ8PN3PmzDF5eXnm448/Nj//+c/NkSNHij3uk08+aTp16mQ6depkfv3rX5tNmzaVWMOGDRtM9+7dzcGDB43X6zVHjx41J06cMPn5+aZPnz5myZIlJi8vz+zevdu0b9/eOeeTTz5pOnfubD777DOTm5trRo0aZXr16mXWrl1rCgoKzMKFC83IkSOLXOu9995rUlJSzNmzZ83w4cPNwoULjTHG7N6923Tu3NkkJyebvLw8ExcXZ0aMGGGMMWbHjh3m17/+tTl//rzxer3mP//5j0lLS3NquHIMY0yZNd99991mz549xhhjzp07Z5KTk6+90wD4DCNyAKqspKQkjR07VkFBQQoMDNTYsWOvGnWbMGGC3G63OnfurJ49e2rjxo3FHmvUqFHavHmzdu/erQkTJmj69On69NNPi9327bff1pgxY9SuXTv5+fnptttuU1hYmA4ePKicnBz9/ve/l9vtVteuXdWrVy+9++67zr59+/ZV27Zt5e/vr759+8rf31/33XefatSooejoaH3xxRdFzvXAAw8oJCREAQEBeuKJJ5xjJSUlaejQoWrTpo3cbrcmT56sAwcO6MSJE6pZs6YuXryob775RsYYtWzZUk2bNi32WsqquWbNmvrPf/6j7OxsNWrUSG3atClf5wCoEghyAKqs9PR0hYaGOsuhoaFKT093lhs2bKi6deuW2P59bdq0UePGjVWzZk317NlTAwcO1HvvvVfstqmpqfrRj35UbD233HKLXK7//6UzNDTUmfKUpKCgIOfn2rVrq0mTJkWWc3JyihwzJCSk2PrT09MVFhbmtNWrV08BAQFKS0tT165d9cADDyguLk5du3bVM888o+zs7GKvpayaFy1apA8//FC9evXSyJEji9yvCKDqI8gBqLKaNm2qlJQUZzk1NbXIyNOFCxeKBKP/bi+Nn5+fjDHFtoWEhOj48ePF1nPq1Cl5vd4i52zWrFm5zlmc1NRU5+eUlBSn/qZNm+rkyZNOW05Ojs6dO+ec68EHH9Q777yjDRs26OjRo1q2bJlzXddSc7t27bRkyRLt3r1bffr00cSJE6/7WgBUPoIcgCrr3nvv1ZIlS5SZmanMzEwtXrxYAwcOLLLNK6+8ovz8fO3du1fbt29Xv379ij3Wpk2bdPHiRXm9Xu3atUvr1q1TVFRUsdvef//9+t///V8lJyfLGKNjx47p5MmTateunWrXrq1ly5bp8uXL+vjjj7Vt2zZFR0df9zX+3//9n06dOqVz585p6dKlzrEGDBigd955R1988YXy8/O1cOFCtWvXTs2bN9ehQ4d08OBBXb58WXXq1JHb7XZG3IKCgnTixAnn+KXVnJ+fr3Xr1ikrK0u1atVSvXr1iozcAaj6+PMjAKqsP/zhD7p48aLzd+T69eunP/zhD057kyZN1LBhQ0VGRqpOnTp69tln1bJly2KP9eabb2rGjBkyxqh58+aaPXu2unTpUuy2/fv317lz5/SnP/3JmeJMSEhQWFiYli5dqueee06vv/66mjVrpoSEhBLPWR4DBgzQI488ovT0dPXu3VtPPPGEJKlbt26aMGGCxo8frwsXLqhDhw568cUXJUkXL17UnDlzdOLECbndbnXv3l2PPvqopMIQOmHCBEVERKhz58567bXXSqw5Pz9fiYmJmjVrljwej26//XbNnz//uq8FQOXzMyXNLQBAFfbxxx9r6tSp2rFjh69LuW438m/mAbg5MIYOAABgKYIcAACApZhaBQAAsBQjcgAAAJYiyAEAAFjqpv7zI2fPXpTXy8wyAACoulwuPzVuXK/Ytps6yHm9hiAHAACsxdQqAACApQhyAAAAliLIAQAAWIogBwAAYCmCHAAAgKUIcgAAAJYiyAEAAFiKIAcAAGApghwAAIClCHIAAACWIsgBAABYiiAHAABgKYIcAACApQhyAAAAliLIAQAAWIogBwAAYCmCHAAAgKUIcgAAAJaq6esCAKAkDRv5y9/t9nUZ1Vpefr4unM/zdRkArhNBDkCV5e926+EVE3xdRrW2cvTLkghygK2YWgUAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxFkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsFTNyjrRvHnztHnzZp08eVJJSUlq1aqVTpw4obFjxzrbZGVlKTs7W5988okkKSoqSm63W/7+/pKkKVOmKDIyUpJ04MABzZw5U3l5eQoLC9P8+fMVFBRUWZcDAADgc5UW5Hr37q0HH3xQDzzwgLOuefPmSkxMdJbj4+Pl8XiK7Ldo0SK1atWqyDqv16upU6dq7ty5ioiI0GuvvaYFCxZo7ty5N/YiAAAAqpBKm1qNiIhQSEhIie35+flKSkrS0KFDyzxWcnKy/P39FRERIUmKiYnRpk2bKqxWAAAAG1TaiFxZtm3bpmbNmqlNmzZF1k+ZMkXGGHXs2FGTJ09Ww4YNlZqaqtDQUGebwMBAeb1enTt3TgEBAeU+Z1BQ/QqrHwBsFRzcwNclALhOVSbIrVmz5qrRuFWrVikkJET5+fmKj49XXFycFixYUGHnzMjIltdrKux4ACoWAaNynD6d5esSAJTC5fIrcfCpSnxqNS0tTXv27NHAgQOLrL8yFet2uzVixAjt27fPWZ+SkuJsl5mZKZfLdU2jcQAAALarEkFu7dq16tmzpxo3buysy8nJUVZW4btEY4w2bNig8PBwSVLbtm2Vm5urvXv3SpJWr16tfv36VX7hAAAAPlRpU6uzZ8/Wli1bdObMGY0ePVoBAQF69913JRUGuRkzZhTZPiMjQ+PHj5fH45HX61XLli0VGxsrSXK5XEpISFBsbGyRPz8CAABwM/Ezxty0N4lxjxxQtQUHN9DDKyb4uoxqbeXol7lHDqjiqvw9cgAAALh2BDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxFkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxFkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxFkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEtVWpCbN2+eoqKi1Lp1a3311VfO+qioKPXr10+DBw/W4MGDtXPnTqftwIEDGjRokO655x498sgjysjIKFcbAADAzaDSglzv3r21atUqhYWFXdW2aNEiJSYmKjExUZGRkZIkr9erqVOnaubMmdq8ebMiIiK0YMGCMtsAAABuFpUW5CIiIhQSElLu7ZOTk+Xv76+IiAhJUkxMjDZt2lRmGwAAwM2ipq8LkKQpU6bIGKOOHTtq8uTJatiwoVJTUxUaGupsExgYKK/Xq3PnzpXaFhAQUO7zBgXVr9DrAAAbBQc38HUJAK6Tz4PcqlWrFBISovz8fMXHxysuLq7SpkkzMrLl9ZpKOReAa0fAqBynT2f5ugQApXC5/EocfPL5p1avTLe63W6NGDFC+/btc9anpKQ422VmZsrlcikgIKDUNgAAgJuFT4NcTk6OsrIK3wkaY7RhwwaFh4dLktq2bavc3Fzt3btXkrR69Wr169evzDYAAICbRaVNrc6ePVtbtmzRmTNnNHr0aAUEBGjp0qUaP368PB6PvF6vWrZsqdjYWEmSy+VSQkKCYmNjlZeXp7CwMM2fP7/MNgAAgJuFnzHmpr1JjHvkgKotOLiBHl4xwddlVGsrR7/MPXJAFVel75EDAADA9SHIAQAAWIogBwAAYCmCHAAAgKUIcgAAAJYiyAEAAFiKIAcAAGApghwAAIClCHIAAACWIsgBAABYiiAHAABgKYIcAACApQhyAAAAliLIAQAAWIogBwAAYCmCHAAAgKUIcgAAAJYiyAEAAFiKIAcAAGApghwAAIClCHIAAACWIsgBAABYiiAHAABgKYIcAACApQhyAAAAliLIAQAAWIogBwAAYCmCHAAAgKUIcgAAAJYiyAEAAFiKIAcAAGApghwAAIClCHIAAACWIsgBAABYiiAHAABgKYIcAACApQhyAAAAliLIAQAAWIogBwAAYCmCHAAAgKUIcgAAAJYiyAEAAFiKIAcAAGApghwAAIClCHIAAACWIsgBAABYiiAHAABgqZqVdaJ58+Zp8+bNOnnypJKSktSqVSudPXtW06ZN0/Hjx+V2u3XbbbcpLi5OgYGBkqTWrVurVatWcrkK82ZCQoJat24tSdq2bZsSEhLk8XjUpk0bzZ07V3Xq1KmsywEAAPC5ShuR6927t1atWqWwsDBnnZ+fn8aMGaPNmzcrKSlJt956qxYsWFBkv9WrVysxMVGJiYlOiLt48aKeeeYZLV26VO+9957q1aun5cuXV9alAAAAVAmVFuQiIiIUEhJSZF1AQIC6dOniLLdv314pKSllHmvHjh1q27atWrRoIUmKiYnRxo0bK7ReAACAqq7SplbL4vV69dZbbykqKqrI+lGjRsnj8ahHjx4aP3683G63UlNTFRoa6mwTGhqq1NTUaz5nUFD9H1w3ANguOLiBr0sAcJ2qTJCbNWuW6tatq5EjRzrrtm/frpCQEGVnZ2vq1KlavHixJk2aVGHnzMjIltdrKux4ACoWAaNynD6d5esSAJTC5fIrcfCpSnxqdd68eTp27Jheeukl54MNkpyp2Pr162vYsGHat2+fs/77U7ApKSlXTdsCAABUdz4PcgsXLlRycrIWL14st9vtrD9//rxyc3MlSQUFBdq8ebPCw8MlSZGRkfrss8909OhRSYUfiOjfv3+l1w4AAOBLlTa1Onv2bG3ZskVnzpzR6NGjFRAQoJdeekmvv/66WrRooZiYGElS8+bNtXjxYn3zzTeaOXOm/Pz8VFBQoA4dOmjChAmSCkfo4uLi9Nhjj8nr9So8PFwzZsyorEsBAACoEvyMMTftTWLcIwdUbcHBDfTwigm+LqNaWzn6Ze6RA6q4Kn+PHAAAAK4dQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxFkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxFkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxFkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsVe4gt3z58mLXr1ixosKKAQAAQPmVO8gtXry42PVLliypsGIAAABQfjXL2uBf//qXJMnr9eqjjz6SMcZpO3HihOrVq3fjqgMAAECJygxyM2bMkCTl5eXp6aefdtb7+fkpODhYf/7zn29cdQAAAChRmUFu27ZtkqRp06YpISHhhhcEAACA8ikzyF3x/RDn9XqLtLlcfPgVAACgspU7gX3++ecaPny42rdvrzZt2qhNmza688471aZNmzL3nTdvnqKiotS6dWt99dVXzvpvv/1Ww4cP1z333KPhw4fr6NGjP7gNAADgZlHuIDd9+nR16dJFa9as0datW7V161a9//772rp1a5n79u7dW6tWrVJYWFiR9bGxsRoxYoQ2b96sESNGaObMmT+4DQAA4GZR7iB38uRJTZo0SS1btlRYWFiRf2WJiIhQSEhIkXUZGRk6fPiwBgwYIEkaMGCADh8+rMzMzOtuAwAAuJmU+x65vn37ateuXYqMjKyQE6empqpZs2aqUaOGJKlGjRpq2rSpUlNTZYy5rrbAwMBrqiEoqH6FXAsA2Cw4uIGvSwBwncod5PLy8jRu3Dh17NhRTZo0KdJm66dZMzKy5fWasjcE4BMEjMpx+nSWr0sAUAqXy6/EwadyB7kf//jH+vGPf1xhRYWEhCgtLU0ej0c1atSQx+NRenq6QkJCZIy5rjYAAICbSbmD3Lhx4yr0xEFBQQoPD9f69es1ePBgrV+/XuHh4c706PW2AQAA3Cz8zPe/c6sUV76qqzhdu3Ytdd/Zs2dry5YtOnPmjBo3bqyAgAC9++67OnLkiKZPn64LFy6oYcOGmjdvnu644w5Juu62a8HUKlC1BQc30MMrJvi6jGpt5eiXmVoFqrjSplbLHeSioqKKLJ89e1aXL19Ws2bN9P777//wKn2AIAdUbQS5G48gB1R9FXKP3JWv6rrC4/FoyZIlqlev3g+rDgAAANflur9bq0aNGnr88ce1bNmyiqwHAAAA5fSDviT1n//8p/z8/CqqFgAAAFyDck+t9uzZs0hou3TpkvLz8xUbG3tDCgMAAEDpyh3k5s+fX2S5Tp06uv3221W/Pt+OAAAA4AvlDnKdO3eWJHm9Xp05c0ZNmjSRy/WDZmYBAADwA5Q7iWVnZ2vatGlq166devTooXbt2unJJ59UVhYfWwcAAPCFcge52bNn69KlS0pKStKhQ4eUlJSkS5cuafbs2TeyPgAAAJSg3FOrO3fu1NatW1WnTh1J0u233665c+eqb9++N6w4AAAAlKzcI3L+/v7KzMwssu7s2bNyu90VXhQAAADKVu4Rufvvv1+PPPKIHn74YYWGhiolJUUrV67UsGHDbmR9AAAAKEG5g9wTTzyhZs2aKSkpSenp6WratKnGjBlDkAMAAPCRck+txsfH6/bbb9fKlSu1YcMGrVy5Ui1btlR8fPyNrA8AAAAlKHeQW79+vdq2bVtkXdu2bbV+/foKLwoAAABlK3eQ8/Pzk9frLbLO4/FctQ4AAACVo9xBLiIiQi+//LIT3Lxer1555RVFRETcsOIAAABQsnJ/2GHGjBl67LHH1L17d4WGhio1NVXBwcFaunTpjawPAAAAJSh3kLvlllu0du1aHTp0SKmpqQoJCVG7du34vlUAAAAfKXeQkySXy6X27durffv2N6oeAAAAlBPDaQAAAJYiyAEAAFiKIAcAAGApghwAAIClCHIAAACWIsgBAABYiiAHAABgKYIcAACApQhyAAAAliLIAQAAWIogBwAAYCmCHAAAgKUIcgAAAJYiyAEAAFiKIAcAAGApghwAAIClCHIAAACWIsgBAABYiiAHAABgKYIcAACApQhyAAAAliLIAQAAWIogBwAAYCmCHAAAgKUIcgAAAJYiyAEAAFiKIAcAAGApghwAAIClavq6gBMnTmjs2LHOclZWlrKzs/XJJ58oKipKbrdb/v7+kqQpU6YoMjJSknTgwAHNnDlTeXl5CgsL0/z58xUUFOSTawAAAPAFnwe55s2bKzEx0VmOj4+Xx+NxlhctWqRWrVoV2cfr9Wrq1KmaO3euIiIi9Nprr2nBggWaO3dupdUNAADga1VqajU/P19JSUkaOnRoqdslJyfL399fERERkqSYmBht2rSpMkoEAACoMnw+Ivd927ZtU7NmzdSmTRtn3ZQpU2SMUceOHTV58mQ1bNhQqampCg0NdbYJDAyU1+vVuXPnFBAQUO7zBQXVr9D6AcBGwcENfF0CgOtUpYLcmjVriozGrVq1SiEhIcrPz1d8fLzi4uK0YMGCCjtfRka2vF5TYccDULEIGJXj9OksX5cAoBQul1+Jg09VZmo1LS1Ne/bs0cCBA511ISEhkiS3260RI0Zo3759zvqUlBRnu8zMTLlcrmsajQMAALBdlQlya9euVc+ePdW4cWNJUk5OjrKyCt8lGmO0YcMGhYeHS5Latm2r3Nxc7d27V5K0evVq9evXzzeFAwAA+EiVmVpdu3atZsyY4SxnZGRo/Pjx8ng88nq9atmypWJjYyVJLpdLCQkJio2NLfLnRwAAAG4mfsaYm/YmMe6RA6q24OAGenjFBF+XUa2tHP0y98gBVZwV98gBAADg2lSZqVXgRmjcyK2abn9fl1HtFeTn6ez5fF+XAQA3HYIcqrWabn99mjDG12VUex2nLZNEkAOAysbUKgAAgKUIcgAAAJYiyAEAAFiKIAcAAGApghwAAIClCHIAAACWIsgBAABYiiAHAABgKYIcAACApQhyAAAAliLIAQAAWIogBwAAYCmCHAAAgKUIcgAAAJYiyAEAAFiKIAcAAGApghwAAIClCHIAAACWIsgBAABYiiAHAABgKYIcAACApQhyAAAAliLIAQAAWIogBwAAYCmCHAAAgKUIcgAAAJYiyAEAAFiKIAcAAGApghwAAIClCHIAAACWIsgBAABYiiAHAABgKYIcAACApQhyAAAAliLIAQAAWIogBwAAYCmCHAAAgKUIcgAAAJYiyAEAAFiKIAcAAGApghwAAIClCHIAAACWIsgBAABYqqavC5CkqKgoud1u+fv7S5KmTJmiyMhIHThwQDNnzlReXp7CwsI0f/58BQUFSVKpbQAAADeDKjMit2jRIiUmJioxMVGRkZHyer2aOnWqZs6cqc2bNysiIkILFiyQpFLbAAAAbhZVJsj9t+TkZPn7+ysiIkKSFBMTo02bNpXZBgAAcLOoElOrUuF0qjFGHTt21OTJk5WamqrQ0FCnPTAwUF6vV+fOnSu1LSAgoNznDAqqX6HXANzMgoMb+LoEXCf6DrBXlQhyq1atUkhIiPLz8xUfH6+4uDj17dv3hp83IyNbXq+54eeB7/AfVOU5fTqrwo9J/1WOG9F3ACqOy+VX4uBTlZhaDQkJkSS53W6NGDFC+/btU0hIiFJSUpxtMjMz5XK5FBAQUGobAADAzcLnQS4nJ0dZWYXvBo0x2rBhg8LDw9W2bVvl5uZq7969kqTVq1erX79+klRqGwAAwM3C51OrGRkZGj9+vDwej7xer1q2bKnY2Fi5XC4lJCQoNja2yJ8YkVRqGwAAwM3C50Hu1ltv1T/+8Y9i2+666y4lJSVdcxsAAMDNwOdTqwAAALg+BDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxFkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxFkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxFkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxV09cFnD17VtOmTdPx48fldrt12223KS4uToGBgWrdurVatWoll6swbyYkJKh169aSpG3btikhIUEej0dt2rTR3LlzVadOHV9eCgAAQKXy+Yicn5+fxowZo82bNyspKUm33nqrFixY4LSvXr1aiYmJSkxMdELcxYsX9cwzz2jp0qV67733VK9ePS1fvtxXlwAAAOATPg9yAQEB6tKli7Pcvn17paSklLrPjh071LZtW7Vo0UKSFBMTo40bN97IMgEAAKocn0+tfp/X69Vbb72lqKgoZ92oUaPk8XjUo0cPjR8/Xm63W6mpqQoNDXW2CQ0NVWpq6jWfLyiofoXUDUAKDm7g6xJwneg7wF5VKsjNmjVLdevW1ciRIyVJ27dvV0hIiLKzszV16lQtXrxYkyZNqrDzZWRky+s1FXY8VD38B1V5Tp/OqvBj0n+V40b0HezWqGEduf2rVESolvLzCnT+wqUyt3O5/EocfKoyvTRv3jwdO3ZMS5cudT7cEBISIkmqX7++hg0bphUrVjjrP/74Y2fflJQUZ1sAAPDDuP1ras6Mt31dRrX3dPz9P/gYPr9HTpIWLlyo5ORkLV68WG63W5J0/vx55ebmSpIKCgq0eVj3YGIAABhXSURBVPNmhYeHS5IiIyP12Wef6ejRo5IKPxDRv39/n9QOAADgKz4fkfv666/1+uuvq0WLFoqJiZEkNW/eXGPGjNHMmTPl5+engoICdejQQRMmTJBUOEIXFxenxx57TF6vV+Hh4ZoxY4YvLwMAAKDS+TzI/eQnP9G///3vYtuSkpJK3K9Pnz7q06fPjSoLAACgyqsSU6sAAAC4dgQ5AAAASxHkAAAALEWQAwAAsJTPP+xggwYNa6u2fy1fl1Gt5eZdVtaFXF+XAaACBTRwq1Ztf1+XUa1dzs3Tuax8X5cBHyLIlUNt/1oaMW2Vr8uo1v4v4QFliSAHVCe1avtrw4OjfV1GtRb95gqJIHdTY2oVAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxFkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxFkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsBRBDgAAwFIEOQAAAEsR5AAAACxFkAMAALAUQQ4AAMBSBDkAAABLEeQAAAAsRZADAACwFEEOAADAUgQ5AAAASxHkAAAALEWQAwAAsJTVQe7bb7/V8OHDdc8992j48OE6evSor0sCAACoNFYHudjYWI0YMUKbN2/WiBEjNHPmTF+XBAAAUGlq+rqA65WRkaHDhw9rxYoVkqQBAwZo1qxZyszMVGBgYLmO4XL5lft8TRrXu646UX7X0h/Xwt0w6IYcF0XdqP5rUr98z2dcvxvVd5JUpwnPvxvtRvVfo4C6N+S4KKo8/VfaNn7GGFORBVWW5ORkPfnkk3r33XedddHR0Zo/f77atGnjw8oAAAAqh9VTqwAAADcza4NcSEiI0tLS5PF4JEkej0fp6ekKCQnxcWUAAACVw9ogFxQUpPDwcK1fv16StH79eoWHh5f7/jgAAADbWXuPnCQdOXJE06dP14ULF9SwYUPNmzdPd9xxh6/LAgAAqBRWBzkAAICbmbVTqwAAADc7ghwAAIClCHIAAACWIsgBAABYiiAHAABgKWu/a9UWH3zwgV5++WUZY2SM0bhx4/SrX/1KrVu31r59+1Sv3tXf4VrSPidOnNDYsWOd7bKyspSdna1PPvmk1Bo2bdqkJUuWOMunTp1Sp06d9Oqrr5a636VLl/TnP/9Z//73v2WM0U9+8hPNnj1b9evX144dO7RgwQL5+fmpoKBAffr00cSJE+Xnd+O+s7GyFdcPd9555zX1wZV+Pnv2bKn7zZs3T5s3b9bJkyeVlJSkVq1aXXWsV199Va+88orT7vV69dvf/laXLl2SJAUHB+u5555T8+bNJUnnzp1TXFycPv/8c9WsWVP9+/fXuHHjymzD1Up6vp49e1bTpk3T8ePH5Xa7ddtttykuLk6BgYE6ceKEhg4dqo8//rjYY7799tt644035HK5VKNGDT399NOKiIiQVHr/HDhwQDNnzlReXp7CwsI0f/58BQVVv+8zjYqKktvtlr+/vyRpypQpioyMLPGx+fbbbzVz5kydPn1aNWvW1M9+9jPFxsaqdu3akqSlS5dq3bp1qlmzpurVq6e4uDj95Cc/KfH8pfVfWc89XG379u16+eWXVVBQoEaNGmnu3Lm69dZbtXXrVr3wwgvy9/fXwoULdezYsWL//5Okb7/9VtOnT9e5c+cUEBCgefPmqUWLFpJ01XEWLFigEydOyOVyqW7dunrmmWcUHh5e7LaTJk1y6vz+a/P1/p9b6QxuGK/XayIiIsy///1vY4wxX3zxhWnfvr3xeDymVatWJjs7+5r2+W+zZ882zz333DXXNXjwYLNx48Yyt1uxYoUZP3688Xq9xuv1mvHjx5u//OUvxhhjsrOzTUFBgTHGmPz8fDN06FCzdevWa66lqipvP5TVByX183/vt2fPHpOSkmJ69erlnPP7kpOTzaOPPnpV+4ULF5yfV65cacaOHessP/bYY2bFihXOcnp6ernacLWS+vHs2bPmo48+cpaff/5589RTTxljjPnuu+9M586diz1eZmam6dChgzl9+rQxxpitW7ea/v37O+0l9Y/H4zF9+vQxe/bsMcYYs3jxYjN9+vQfdnFVVEnPhZIem++++858/vnnxpjCx2nChAnm1VdfNcYYc/jwYfPLX/7SXLx40RhjzBtvvGHGjBlT6vlL6z9jSn/uoahz586Zzp07m2+++cYYY8w//vEP88gjjxhjjHn00UfNhg0bjDFlv+6OGjXK/OMf/3COMWrUKOcc3z+OMUX757333jP33Xdfidt+X2mv6df7f+6NxtTqDeZyuZSVlSWpMM03bdpULlfhw758+XINHjxY99xzjzZv3lyufa7Iz89XUlKShg4d6qz705/+pCFDhmjgwIEaO3aszp8/f1U9n3/+uU6dOqWoqChJ0unTpzVq1CgNGTJE9957rxISEpxt/fz8lJubq8uXL+vy5cvKycnRLbfcIkmqV6+eatSoIUnKy8vT5cuXr6rRdmX1Q3F9sGXLFvXr10+DBw/W4sWLiz1ucftFRESU+PVy+fn5iouL07PPPntVW4MGDZyfs7OznfqOHj2qr776Sg899JDTHhwcXGZbdbN//3799re/1aBBgzRo0CDt2rVL8+bN09ChQzVo0CA99NBDOnnypLP9Bx98oCFDhmjQoEG677779OWXXzptxT1fAwIC1KVLF2eb9u3bKyUlpUgNzz//vAYOHKiBAwdq7969kuSMNly8eFFS4e/XledWaf2TnJwsf39/Z+QuJiZGmzZtqrDHq6or7bFp3ry57rzzTkmFz9127do5feHn56fLly8rNzdXUtHHWyocHb3yOzJ06FCdOXPGaSuu/6SSn3uS9OGHHyomJkZDhgzR8OHDdeDAAadt7dq1GjZsmIYMGaIHH3xQ33zzTYU8NlXZsWPH1KRJE91+++2SpJ49e2rXrl166qmn9Omnn2rBggUaNWqUpJJfdzMyMnT48GENGDBAkjRgwAAdPnxYmZmZmjNnzlXH+e/+uTJbVNy2VxT32lyeNp/zdZKs7nbv3m06d+5sfvnLX5pOnTqZ/fv3G2MK3+G/8sorxhhjjhw5Yjp37mzOnDlT6j7ft3HjRjNo0KAi6zIyMpyfFy5caObPn3/Vfs8995yZPXu2s5ybm+uMNOTn55tRo0aZDz/80GmbOHGiiYiIMBEREWbixIlFjnXo0CEzYMAA87Of/czMmTPHeL3ea358qrKy+uG/++D06dOmc+fO5siRI8YYY/7yl78UO5JTXN9dUdwoREJCgvnrX/9aYvuYMWNMt27dzL333mtOnTpljCl8BxoTE2Oeeuopc99995kxY8aYr776qsy26uTs2bOmW7du5tNPPzXGGFNQUGDOnTtX5Hnyt7/9zfm9/uabb0y3bt3Mt99+a4wxJi8vz2RlZRljSn++XuHxeMxDDz1k3njjDWNM4YhOq1atzNq1a40xxnz00UcmMjLS5OXlGWOMWbdunenQoYPp2bOniYyMNEePHjXGlN4/mzZtMr/73e+KnLddu3bm7NmzFfOgVSG9evUyAwcONAMGDDCxsbHm/Pnz5f7dvXTpkomOji4yS7Bs2TLz85//3HTv3t1ER0ebzMxMY0xhv/Tp08cZ2cvOzja5ubll9p8xxT/3jh07Zn7zm984vztfffWV6dmzpzGmcOT9d7/7nXOM7du3m+HDh1fwI1f1XLhwwXTu3NkcPHjQGGPMm2++aVq1amWSk5PNyJEjzbZt25xtS3rd/eyzz0x0dHSR4/bv398kJycbY8xVxzHGmKefftr07NnT9OjRo8jvSXHbGlP6a3Npbb5WvYZQqpiCggK9/vrreu211/TBBx9oyZIlmjhxovMufNiwYZKkO+64Q3feeacOHDhQ5j5XrFmz5qp3BomJic6I3Pr16/XFF18Uac/Pz9f69euL7OfxeJSQkKBBgwZpyJAh+vrrr51RiN27d0uSdu3apV27duny5ctavny5s+/PfvYzJSUlafv27fr888+LvFu1XXn64b/74ODBg7rzzjudr4kbPnx4sccuru9Ksn//fiUnJ2vEiBElbvM///M/2rlzp+69917nXkiv16uDBw9qyJAhzgjAE088UWZbdXLgwAG1bNlSd911lySpRo0aatSokXbs2KHf/OY3GjBggJYvX+48T3bv3q0ePXo499y43W7Vr1/fOV5xz9fvmzVrlurWrauRI0c662rVqqVBgwZJkrp06aLatWvrm2++UXZ2tlatWqW3335b27dv1/Tp0zVu3DgZY26a/inLqlWrtG7dOq1Zs0bGGMXFxZXrsSkoKNCkSZP0i1/8Qr1795YknTx5Uu+//762bNminTt36te//rWmT58uqfDercGDBzsje/Xq1XPuyyup/64o7rm3c+dOHT9+XA888IAGDx6sKVOmqKCgQGfOnNG2bdv05ZdfatiwYRo8eLBeeOEFnTp16sY+kFVAgwYN9OKLL2ru3LkaMmSIMjIy1LBhQ2dW54ry/v9XXvHx8dq+fbsmTZpUZLapJKW9Nl/L63ZlI8jdQF988YXS09PVsWNHSVLHjh1Vp04dHTly5Aftk5aWpj179mjgwIHOur179+qtt97SsmXLlJSUpIkTJyo/P7/Isd977z01b95cP/3pT511K1as0IULF/T3v/9dSUlJ6tOnj/Ly8iRJq1evVt++feXv7y9/f39FR0cXe+NvYGCgevToUa2meMrqh+L6oDyudb89e/boyJEj6t27t6KionTq1Ck9+uij2rVrV5HtXC6X7r//fiUmJkqSQkJCFBIS4kzB/epXv9Lp06eVmZlZalt1d/LkSc2dO1cvvPCC1q9frzlz5lz1PLke8+bN07Fjx/TSSy+V6xaDXbt2qUGDBk7oj46O1vHjx3X27Nky++77U7eZmZlyuVwKCAj4wddQ1Vy51cDtdmvEiBHat29fmb+7Ho9HU6ZMUaNGjfTnP//ZOdamTZvUqlUrNW3aVJJ03333lfghlGv13889SYqMjFRiYqLzb9euXWrSpImMMRo6dKizft26ddq+fXuF1FHVdevWTW+99ZbeeecdjRw5Urm5ufrRj35UZJvSXndDQkKUlpYmj8cjqbCv09PTS7wl5fuu9PfZs2dL3Ka01+brfb2vLAS5G+iWW27RqVOnnHdwR44cUUZGhvPLu2bNGkmF930cPnxY7du3L3MfqfAei549e6px48bOugsXLqh+/foKCAhQfn6+c+zvK+4dRVZWloKDg+Xv76+0tDS9//77Tlvz5s21a9cuZ5Rg586dzqe8vv32W3m9XklSTk6OduzYUewnLW1VVj8U1wft27fX4cOHdfToUUnS3//+96uOW9x+pfn973+vXbt2adu2bdq2bZtuueUWLV++XN27d1dmZmaR8LVp0ya1bt1aktS2bVvVrVtXX3/9taTCQNioUSM1bty41LbqpH379jpy5Ij2798vqfCFPzU1VbVq1VJwcLC8Xq9Wr17tbH/33Xdrx44dTv/l5+crOzvbaS/u+SpJCxcuVHJyshYvXiy3212khsuXLyspKUlS4Zut3Nxc3XHHHWrevLkOHz6sjIwMSdJHH32k+vXrl9k/bdu2VW5urjP6vXr1avXr16+iHzqfy8nJce6TMsZow4YNCg8PL/Wx8Xq9mj59umrUqKH4+Pgin6Bv3ry5Pv30U+Xk5EgqvIftymvZL3/5SyUmJjr3xV28eNF5M1tS/5X23Lv77ru1c+dOp0ZJOnTokKTCT+ImJiY6o3Aej0fJyckV/OhVTadPn5ZUOCOwcOFCxcTEqG7dukW2Ke11NygoSOHh4Vq/fr0kaf369QoPD1dgYOBV57p48aJSU1Od5W3btqlRo0alvuEp7bX5Wl+3Kxt/fuQGCg4O1rPPPqsJEyYUudHyyi+Tx+PRfffdp0uXLikuLs75EwKl7SMV/lLNmDGjyLkiIyO1bt063XPPPWrcuLEiIiL02WefOe2pqanat2+fXnrppSL7jRo1ShMmTNCAAQPUrFkzde3a1WkbO3asZs6c6dxc+tOf/tSZxnj//fe1du1a1ahRQ16vV3369HGmnqqDsvquuD4ICgrSrFmz9Pjjj6t27drOR+a/r7j9JGn27NnasmWLzpw5o9GjRysgIEDvvvtuqTWePn1aTz31lC5fvixJzp+ikApv7p4zZ46eeuop5efnq06dOnr11VeLXEtJbdVFQECAXnnlFT3//PPKycmRy+XSk08+qX79+ik6OlqNGzdWz549nVDUokULzZo1S5MmTZLH41GNGjX0/PPPO/9BF/d8/frrr/X666+rRYsWiomJkVQYGq580CUgIEBffvmlli1bJqkw9LndbrVt21ZjxozRyJEjVatWLbndbr388stl9o+fn58SEhIUGxtb5M+PVDcZGRkaP368PB6PvF6vWrZsqdjY2FJ/rz/88EOtW7dOrVq10pAhQyRJd911l2JjY/WrX/3KmZJ1u91q2LCh5s6dK6lwyvT3v/+9Ro8eLT8/P7ndbi1dulRSyf1X2nOvRYsWmj9/vmbMmOF8WOyuu+5Su3bt1KlTJ02cOFFPPPGEPB6PLl++rH79+qlt27aV/RBXupdeekn79u3T5cuXdffdd2vKlClXbVPW6+6zzz6r6dOn67XXXlPDhg01b968Ys916dIlTZgwQZcuXZLL5VKjRo20dOnSUl/jSnptLqutKvAzxhhfFwEAAIBrx9QqAACApQhyAAAAliLIAQAAWIogBwAAYCmCHAAAgKUIcgAAAJYiyAFAFXPixAm1bt1aBQUFvi4FQBVHkAMAALAUQQ5AtZaamqpx48bpF7/4hbp06eJ8+fprr72mXr16qWvXrpo2bZrzlVBXRsPWrFmjnj17qlOnTnrrrbd06NAhDRw4UBEREYqLi3OO/8477ygmJkZxcXHq2LGj+vXrp3/9619Oe1pamh5//HF17txZffv21d/+9jen7dChQxoyZIjuuusudevWzfm2gZEjR0qSOnXqpA4dOmj//v2l1gzg5kWQA1BteTwePfbYYwoNDdW2bdu0Y8cORUdH65133tHatWv15ptvauvWrcrJySkSziTp4MGD2rJli1588UXNmTNHS5cu1cqVK/Xuu+9q48aN+uSTT5xtDx06pB/96Ef66KOP9Mc//lHjxo3TuXPnJEmTJ0/WLbfcop07d2rRokVauHChE/Ti4+P14IMPat++fXrvvffUv39/SdJf//pXSYXfJbp//3516NChXDUDuPkQ5ABUW4cOHVJ6erqmTZumunXryt/fXxEREUpKStLDDz+sW2+9VfXq1dPkyZO1YcOGIvekjR07Vv7+/urevbvq1q2rAQMGKCgoSM2aNVNERIQOHz7sbBsYGKiHHnpItWrVUnR0tG6//XZt377d+Y7jKVOmyN/fX+Hh4Ro2bJgSExMlSTVr1tTx48eVmZmpevXqqX379iVeS3lqBnDzIcgBqLZSU1MVGhqqmjVrFlmfnp6usLAwZzksLEwFBQXKyMhw1gUFBTk/+/v7X7Wck5PjLDdr1qzIF3KHhoYqPT1d6enpatSokerXr1+kLS0tTVLhiNzRo0fVv39/DR06VB988EGJ11KemgHcfAhyAKqtkJAQpaamXjVq1bRpU508edJZTklJUc2aNYuEtWuRlpYmY4yznJqaqqZNm6pp06Y6f/68srOzi7Q1a9ZMktSiRQtnqvV3v/ud/vjHPyonJ6dIKLxRNQOoHghyAKqtdu3aKTg4WC+88IJycnKUl5enTz/9VAMGDNAbb7yh7777ThcvXtSLL76o/v37XzVyV16ZmZl68803dfnyZW3cuFFHjhxRz549FRISog4dOmjhwoXKy8vTl19+qbfffluDBg2SJCUmJiozM1Mul0sNGzaUJLlcLgUGBsrlcum7775zzlHRNQOoHngFAFBt1ahRQ0uXLtXs2bPVq1cvSdLAgQP19NNPKy0tTSNHjlReXp66d++uZ5555rrP065dOx07dky/+MUv1KRJEy1atEiNGzeWJC1cuFCxsbGKjIxUw4YNNX78eHXr1k2StHPnTj3//PPKzc1VaGioXnzxRdWuXVuS9Pjjj+u3v/2tCgoKtGzZMg0dOrRCawZQPfiZ788HAACuyTvvvKO///3veuutt3xdCoCbEFOrAAAAliLIAQAAWIqpVQAAAEsxIgcAAGApghwAAIClCHIAAACWIsgBAABYiiAHAABgqf8P8tz5vWQLAg4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bA_RUClHM6I8" + }, + "source": [ + "Até o momento analisamos os dados de tempo, dose, compostos e afins. Entretanto, não analisamos os dados de expressões gênicas (G's) e viabilidade celular (C's). Será que podemos criar um gráfico de barras para esses dados?\n", + "Vamos pensar que a nossa base de dados apresenta mais de 3.000 compostos. Mas quantos desses compostos aparecem na coluna ```g-0```? \n", + "Para responder essa questão, vamos usar a função ```unique()``` do Pandas que conta os valores únicos presentes na coluna em questão. Como resposta padrão, o retorno será uma lista com arrays (os nomes dos compostos) mas, nosso objetivo é saber o tamanho dessa lista e, por isso, usamos o ```len```, pois assim, ele contará o tamanho desta lista de arrays." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DkQ2wH9Gj-w7", + "outputId": "2abfe103-7199-4e96-f9eb-9d229b6cf32b" + }, + "source": [ + "len(dados['g-0'].unique())" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "14367" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 9 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wM4yn28tRflX" + }, + "source": [ + "Como temos diversos compostos únicos dentro da coluna ```g-0```, não é viável que façamos o mesmo gráfico utilizado anteriormente. \n", + "Por isso, precisamos traçar uma nova estratégia para visualizar os nossos dadose aqui, usaremos um histograma.\n", + "O primeiro passo, é identificar qual o valor mínimo (```min()```) e o valor máximo (```max()```) para entender qual o intervalo númerico com o qual estamos trabalhando." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mCC5DpK1kmiX", + "outputId": "388669ea-0b94-4b43-d562-bc23107088a9" + }, + "source": [ + "dados['g-0'].min()" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "-5.513" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qzH4Jl0OksuL", + "outputId": "840787d0-9a72-4ea4-d863-f16c54549112" + }, + "source": [ + "dados['g-0'].max()" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "10.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 11 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-Tp7M_wWUCU8" + }, + "source": [ + "Depois que reconhecemos que o nosso intervalo vai de ~5,5 a 10,0, podemos partir para o histograma e a função que usaremos para plotar é do Pandas (```dataframe['variável'].hist()```).\n", + "Assim que rodamos essa função, percebemos que a visualização destes dados ainda não está boa pois, a divisão padrão das barras do histograma, representam intervalos muito grandes que atrapalham o entendimento dos dados.\n", + "Por isso, acresentamos um parâmetro dentro da função ```(bins = número de quebras)``` para melhor dividir e, consequentemente visualizar os dados.\n", + "Quando definimos os bins em 100, podemos perceber que a forma se aproxima bastante de uma curva bastante conhecida: a curva normal." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "RnjRPpubk1z0", + "outputId": "60f94bad-cd61-4b06-aeef-c79d245a49b0" + }, + "source": [ + "dados['g-0'].hist(bins = 100)" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD7CAYAAABnoJM0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAc1ElEQVR4nO3df1CT9+EH8DdBgz+AC2Row4+VzSssk20o2bnbjbqCG3QHsl3nzJj2zmrtXGW2Flo3kXQoR4PUWa/4xe1ce+uY3O16kkUswTt07X5Z6WZnzp56Vu2PRMUAFbSQkuf5/sHxFORXSEKeB57366/k+SThnV+88/yOEEVRBBERqZZG7gBERCQvFgERkcqxCIiIVI5FQESkciwCIiKVYxEQEakci4CISOXmyB0gUF1ddyAIn+8CoddHw+PplTHRxJScj9kCo+RsgLLzMVtggsmm0UQgLm7hmGMztggEQRxRBEPTlEzJ+ZgtMErOBig7H7MFZjqycdEQEZHKsQiIiFSORUBEpHIsAiIilWMREBGpHIuAiEjlWARERCrHIiBFiomdj4SEGOkyEU2fGbtDGc0+MbHzMS/q849k4TM2AID9xSL0yBWKSAU4R0CKMS9qDgqfsUkFQEThwSIgIlI5FgERkcpNWgRdXV14/PHHkZeXh8LCQmzduhWdnZ0AgLNnz2L16tXIy8vDY489Bo/HI90v0DEiIgqvSYsgIiICmzZtgsPhgN1uR0pKCmprayEIAsrKylBRUQGHwwGTyYTa2loACHiMiIjCb9Ii0Ol0WLFihXQ9MzMTLpcLTqcTUVFRMJlMAACz2YyWlhYACHiMiIjCb0qbjwqCgCNHjiAnJwdutxuJiYnSWHx8PARBQHd3d8BjOp3O7yx6ffSoaUPbnSuVkvMpORug3HxKzTVEyfmYLTDTkW1KRbB7924sWLAA69atw4kTJ0IeZio8nt4RJ2hISIhBR4dytzZXcj6lZJvoA66EfPdSyus2HiXnY7bABJNNo4kY8wc0MIUisFqtuHbtGurr66HRaGAwGOByuaTxzs5OaDQa6HS6gMdIfe7diYyIws+vzUf37dsHp9OJuro6aLVaAEBGRgb6+vrQ3t4OAGhsbER+fn5QY6Q+3ImMSH6T/hS7dOkSDh06hNTUVJjNZgBAcnIy6urqUFNTA4vFgv7+fiQlJWHv3r0AAI1GE9AYERGF36RF8MADD+DChQtjji1fvhx2uz2kY0REFF7cs5iISOVYBEREKsciICJSORYBEZHKsQiIiFSOe/KQ4nk/843Y67ivfwA9tz+VMRHR7MIiIMXTzo0cscMZT11JFFpcNEREpHIsAiIilWMREBGpHIuAiEjlWARERCrHIiAiUjkWARGRyrEIiIhUzq8dyqxWKxwOBz7++GPY7XakpaXho48+wpNPPindpqenB729vXj77bcBADk5OdBqtYiKigIAlJaWIjs7GwBw9uxZVFRUjDgxjV6vD/VzIyIiP/hVBLm5uXj00Ufxs5/9TJqWnJwMm+3zvT2rqqrg8/lG3O/AgQNIS0sbMU0QBJSVlaG6uhomkwkHDx5EbW0tqqurg3keREQUIL8WDZlMJhgMhnHHvV4v7HY7HnnkkUkfy+l0IioqCiaTCQBgNpvR0tLiZ1wiIgq1kBxrqK2tDYsXL8bSpUtHTC8tLYUoisjKysL27dsRGxsLt9uNxMRE6Tbx8fEQBAHd3d3Q6XShiENERFMQkiJ4/fXXR80NNDQ0wGAwwOv1oqqqCpWVlaitrQ3FnwMA6PXRo6YNP0KlEik5n5KzjUUpeZWSYzxKzsdsgZmObEEXwY0bN3DmzBnU1NSMmD60KEmr1aK4uBhbtmyRprtcLul2nZ2d0Gg0U54b8Hh6IQiidD0hIQYdHco9JqWS88mZLdAPtRJeSyW/p4Cy8zFbYILJptFEjPkDGgjB5qNHjx7FypUrERcXJ027e/cuenoGw4qiiOPHj8NoNAIAMjIy0NfXh/b2dgBAY2Mj8vPzg41BREQB8muOYM+ePWhtbcWtW7ewYcMG6HQ6NDc3Axgsgp07d464vcfjQUlJCXw+HwRBwJIlS2CxWAAAGo0GNTU1sFgsIzYfJfWIiZ2PeVE8FQaRUvj1bSwvL0d5efmYYw6HY9S0lJQUNDU1jft4y5cvh91u9zMizTbzouZIJ5qxv1gkcxoi4p7FREQqxyIgIlI5FgERkcpxjR3NON7PfNJmp339A+i5/anMiYhmNhYBzTjauZEjVjYrc4tvopmDi4aIiFSORUBEpHIsAiIilWMREBGpHIuAiEjlWARERCrHIiAiUjkWARGRyrEIiIhUjkVARKRyLAIiIpXzqwisVitycnKQnp6OixcvStNzcnKQn5+PoqIiFBUV4a233pLGzp49i9WrVyMvLw+PPfYYPB6PX2NERBRefhVBbm4uGhoakJSUNGrswIEDsNlssNlsyM7OBgAIgoCysjJUVFTA4XDAZDKhtrZ20jEiIgo/v4rAZDLBYDD4/aBOpxNRUVEwmUwAALPZjJaWlknHiIgo/II+DHVpaSlEUURWVha2b9+O2NhYuN1uJCYmSreJj4+HIAjo7u6ecEyn0wUbh4iIpiioImhoaIDBYIDX60VVVRUqKyvDtphHr48eNW3oZCVKpeR8053N+5kP2rmR0/LYcr6uSn5PAWXnY7bATEe2oIpgaHGRVqtFcXExtmzZIk13uVzS7To7O6HRaKDT6SYcmwqPpxeCIErXExJi0NGh3FOUKDlfOLIlJMSMOJlMKMn1uir5PQWUnY/ZAhNMNo0mYswf0EAQm4/evXsXPT2DgURRxPHjx2E0GgEAGRkZ6OvrQ3t7OwCgsbER+fn5k44REVH4+TVHsGfPHrS2tuLWrVvYsGEDdDod6uvrUVJSAp/PB0EQsGTJElgsFgCARqNBTU0NLBYL+vv7kZSUhL179046RkRE4edXEZSXl6O8vHzU9KampnHvs3z5ctjt9imPERFReHHPYiIilWMREBGpHIuAiEjlWARERCrHIiAiUrmgDzFBJCfvZz5pT8u+/gH03P5U5kREMw+LgGY07dzIEXssK3N/UCJl46IhIiKVYxEQEakci4CISOVYBEREKsciICJSORYBEZHKsQiIiFSORUBEpHIsAiIilfNrz2Kr1QqHw4GPP/4YdrsdaWlp6OrqwrPPPosPPvgAWq0W999/PyorKxEfHw8ASE9PR1paGjSawa6pqalBeno6AKCtrQ01NTXw+XxYunQpqqurMX/+/Gl6ikRENBG/5ghyc3PR0NCApKQkaVpERAQ2bdoEh8MBu92OlJQU1NbWjrhfY2MjbDYbbDabVAJ37tzBrl27UF9fjxMnTmDhwoU4fPhwCJ8SERFNhV9FYDKZYDAYRkzT6XRYsWKFdD0zMxMul2vSx3rzzTeRkZGB1NRUAIDZbMYbb7wxhchERBRKITnonCAIOHLkCHJyckZMX79+PXw+Hx588EGUlJRAq9XC7XYjMTFRuk1iYiLcbncoYhARUQBCUgS7d+/GggULsG7dOmnaqVOnYDAY0Nvbi7KyMtTV1eHpp58OxZ8DAOj10aOmDR2OWKmUnE/J2aYi3M9D6a+bkvMxW2CmI1vQRWC1WnHt2jXU19dLK4YBSIuSoqOjsWbNGrzyyivS9NOnT0u3c7lcoxY7+cPj6YUgiNL1hIQYdHQo9yDESs4Xjmzh+mKF8zVW8nsKKDsfswUmmGwaTcSYP6CBIDcf3bdvH5xOJ+rq6qDVaqXpn3zyCfr6+gAAAwMDcDgcMBqNAIDs7GycO3cOV69eBTC4Qvnhhx8OJgYREQXBrzmCPXv2oLW1Fbdu3cKGDRug0+mwf/9+HDp0CKmpqTCbzQCA5ORk1NXV4f3330dFRQUiIiIwMDCAZcuWYdu2bQAG5xAqKyvxxBNPQBAEGI1G7Ny5c/qeIRERTcivIigvL0d5efmo6RcuXBjz9suWLYPdbh/38VatWoVVq1b5GZGIiKYT9ywmIlI5FgERkcqxCIiIVI5FQESkciwCIiKVYxEQEakci4CISOVYBEREKsciICJSORYBEZHKheQw1ERjiYmdj3lR/IgRKR3nCGjazIuag8JnbCh8xiZ3FCKaAH+u0azh/cwnnfegr38APbc/lTkR0czAIqBZQzs3Upr7sL9YBGWeWoRIebhoiIhI5VgEREQqN2kRWK1W5OTkID09HRcvXpSmX7lyBWvXrkVeXh7Wrl0rnXoymDEiIgq/SYsgNzcXDQ0NSEpKGjHdYrGguLgYDocDxcXFqKioCHqMiIjCb9IiMJlMMBgMI6Z5PB6cP38eBQUFAICCggKcP38enZ2dAY8REZE8AtpqyO12Y/HixYiMjAQAREZGYtGiRXC73RBFMaCx+Pj4ED0lIiKaihm7+aheHz1q2tA25Eql5HxKzhaocDwnpb9uSs7HbIGZjmwBFYHBYMCNGzfg8/kQGRkJn8+HmzdvwmAwQBTFgMamyuPphSCI0vWEhBh0dCh3y3El55uubHJ/mab79VbyewooOx+zBSaYbBpNxJg/oIEANx/V6/UwGo04duwYAODYsWMwGo2Ij48PeIyIiOQx6RzBnj170Nrailu3bmHDhg3Q6XRobm7G888/jx07duDgwYOIjY2F1WqV7hPoGBERhd+kRVBeXo7y8vJR05csWYK//OUvY94n0DEiIgo/7llMRKRyLAIiIpVjERARqRyLgIhI5VgEREQqxyIgIlK5GXuICVImnrCeaObhHAGFFE9YTzTzsAiIiFSO8/A0K3k/80kHvevrH0DP7U9lTkSkXCwCmpW0cyOlxVP2F4ugzGNJEikDFw0REakci4CISOVYBEREKsciICJSORYBEZHKBbXV0EcffYQnn3xSut7T04Pe3l68/fbbyMnJgVarRVRUFACgtLQU2dnZAICzZ8+ioqIC/f39SEpKwt69e6HX64OJQkREAQqqCJKTk2Gzfb4HaVVVFXw+n3T9wIEDSEtLG3EfQRBQVlaG6upqmEwmHDx4ELW1taiurg4mChERBShki4a8Xi/sdjseeeSRCW/ndDoRFRUFk8kEADCbzWhpaQlVDCIimqKQ7VDW1taGxYsXY+nSpdK00tJSiKKIrKwsbN++HbGxsXC73UhMTJRuEx8fD0EQ0N3dDZ1OF6o4RETkp5AVweuvvz5ibqChoQEGgwFerxdVVVWorKxEbW1tqP4c9ProUdOGDimgVErOp+RsoTBdz0/pr5uS8zFbYKYjW0iK4MaNGzhz5gxqamqkaQaDAQCg1WpRXFyMLVu2SNNdLpd0u87OTmg0minPDXg8vRAEUbqekBCDjg7lHkhAyflCmU2pX6DpeO2V/J4Cys7HbIEJJptGEzHmD2ggROsIjh49ipUrVyIuLg4AcPfuXfT0DIYVRRHHjx+H0WgEAGRkZKCvrw/t7e0AgMbGRuTn54ciBhERBSAkcwRHjx7Fzp07pesejwclJSXw+XwQBAFLliyBxWIBAGg0GtTU1MBisYzYfJSIiOQRkiJwOBwjrqekpKCpqWnc2y9fvhx2uz0Uf5qIiILEPYuJiFSORUBEpHIsAiIilWMREBGpHE9VSbMez19MNDEWAc16PH8x0cS4aIiISOVYBEREKsciICJSORYBEZHKsQiIiFSORUBEpHLcfJSCFhM7H/Oi+FEimqk4R0BBmxc1B4XP2KRt9YloZmEREBGpHIuAiEjlgl6wm5OTA61Wi6ioKABAaWkpsrOzcfbsWVRUVIw4C5lerweACceIiCi8QjJHcODAAdhsNthsNmRnZ0MQBJSVlaGiogIOhwMmkwm1tbUAMOEYERGF37QsGnI6nYiKioLJZAIAmM1mtLS0TDpGREThF5Jt/kpLSyGKIrKysrB9+3a43W4kJiZK4/Hx8RAEAd3d3ROO6XS6UMQhIqIpCLoIGhoaYDAY4PV6UVVVhcrKSnzve98LRbYJ6fXRo6YNHXNeqZScT8nZQmn4uQm8n/mgnRsZ1OMp/XVTcj5mC8x0ZAu6CAwGAwBAq9WiuLgYW7ZswaOPPgqXyyXdprOzExqNBjqdDgaDYdyxqfB4eiEIonQ9ISEGHR3KPdK8kvMFm03JX5p73XtugmCft1LfU0DZ+ZgtMMFk02gixvwBDQS5juDu3bvo6RkMJYoijh8/DqPRiIyMDPT19aG9vR0A0NjYiPz8fACYcIyIiMIvqDkCj8eDkpIS+Hw+CIKAJUuWwGKxQKPRoKamBhaLZcQmogAmHCMiovALqghSUlLQ1NQ05tjy5ctht9unPEZEROHFPYuJiFSORUBEpHIsAiIileNB5CkgPAcB0ezBOQIKCM9BQDR7sAiIiFSORUBEpHIsAiIilWMREBGpHIuAiEjluP0fqdbwQ1L39Q+g5/anMicikgeLgFTr3kNSK/PAw0TTj4uGiIhUjkVARKRyLAIiIpVjERARqVxQK4u7urrw7LPP4oMPPoBWq8X999+PyspKxMfHIz09HWlpadBoBrumpqYG6enpAIC2tjbU1NTA5/Nh6dKlqK6uxvz584N/NkRENGVBzRFERERg06ZNcDgcsNvtSElJQW1trTTe2NgIm80Gm80mlcCdO3ewa9cu1NfX48SJE1i4cCEOHz4c3LMgCtLQpqQJCTGIieWPElKXoIpAp9NhxYoV0vXMzEy4XK4J7/Pmm28iIyMDqampAACz2Yw33ngjmBgUJjGx86V/lrPN0Kakhc/YeHhtUp2QfeIFQcCRI0eQk5MjTVu/fj18Ph8efPBBlJSUQKvVwu12IzExUbpNYmIi3G73lP+eXh89aprS/0EpOZ+/2YZvdz+b+ft6KPk9BZSdj9kCMx3ZQlYEu3fvxoIFC7Bu3ToAwKlTp2AwGNDb24uysjLU1dXh6aefDtWfg8fTC0EQpesJCTHo6FDuLkFKzudvNiV/OULN39dDqe8poOx8zBaYYLJpNBFj/oAGQrTVkNVqxbVr17B//35p5bDBYAAAREdHY82aNfjPf/4jTR+++Mjlckm3JSKi8Au6CPbt2wen04m6ujpotVoAwCeffIK+vj4AwMDAABwOB4xGIwAgOzsb586dw9WrVwEMrlB++OGHg41BREQBCmrR0KVLl3Do0CGkpqbCbDYDAJKTk7Fp0yZUVFQgIiICAwMDWLZsGbZt2wZgcA6hsrISTzzxBARBgNFoxM6dO4N/JkREFJCgiuCBBx7AhQsXxhyz2+3j3m/VqlVYtWpVMH+aiIhChNvJEd2Dh6cmtWEREN2Dh6cmteGxhoiIVI5zBEQT4GIiUgMWAdEEuJiI1IBFQBOKiZ3PY+8QzXJcR0ATmhc1RzoYGxHNTiwCIiKV4zw/kZ+Grzju9/oADB4EjCuRaaZjERD56d4Vx0OXX3+hgFsW0YzGIqBRuIJ4arhlEc10XEdAo3AFMZG68GcfUQhNdQe04XNfXKxEcmEREIXQ8MVEw9cd9Ht9iNJGjroMgOsaSHYsAgLA9QLTYbyVy/deHuv245VCIHMQ491nqtNp9uI3X8WGf+GH1gsAs//E9DPBeKUAjD0HAYz+Zw58fp7pqT7WZCu/WRazi2xFcOXKFezYsQPd3d3Q6XSwWq1ITU2VK44q8Z//zHDvnMVY04GJ/5lP5bHG+yzcO9c4lUVgLAtlk60ILBYLiouLUVRUBJvNhoqKCvzxj3+UKw7RjOfPP/OpGr7yG/CvXPzZ12LI8HLxp0TGuz2LJjiyFIHH48H58+fxyiuvAAAKCgqwe/dudHZ2Ij4+3q/H0Ggi/JqmJOHMFx09D1GTfMEAYFHc/Bl3WSk5lHZ5Oh5XOzcSG/e0AgAOl38/JI/zf8/lAvh8sdXwxx/r8v89lzuijCa7zb2f8fE+/+NevmcPcml6/wB6e/sA+Pf9Gn77YAz/W97PfAH/H5nofhGiKIoBPWoQnE4nnnvuOTQ3N0vTfvCDH2Dv3r1YunRpuOMQEakadygjIlI5WYrAYDDgxo0b8PkGD9zl8/lw8+ZNGAwGOeIQEamaLEWg1+thNBpx7NgxAMCxY8dgNBr9Xj9AREShI8s6AgC4fPkyduzYgdu3byM2NhZWqxVf/vKX5YhCRKRqshUBEREpA1cWExGpHIuAiEjlWARERCrHIiAiUrlZVwSvvfYa8vPzUVhYiKIiZR5I7fTp0zAajfjTn/4kdxTJb37zG+Tn52P16tUwm804d+6crHmuXLmCtWvXIi8vD2vXrsXVq1dlzTNcV1cXHn/8ceTl5aGwsBBbt25FZ2en3LFGefnll5Geno6LFy/KHUXS398Pi8WC73//+ygsLMSuXbvkjiQ5efIkfvjDH6KoqAirV69Ga2urbFmsVitycnJGvX/T9r0QZxGHwyEWFxeLPT09oiiKYkdHh8yJRuvp6RF//OMfi5s3bxZfe+01ueNI2traRK/XK13Ozc2VNc/69evFpqYmURRFsampSVy/fr2seYbr6uoS//3vf0vXX3jhBfFXv/qVjIlGczqd4saNG8WHHnpIvHDhgtxxJLt37xarqqpEQRBEUVTOd1QQBNFkMkmv1XvvvSdmZmaKPp9PljxnzpwRXS7XqPdvur4Xs2qO4A9/+AO2bt2K6OhoAMAXvvAFmRON9sILL2Djxo2Ii4uTO8oIDz30EObOnQsAyMzMxPXr1yEIgixZhg5KWFBQAGDwoITnz59XzK9unU6HFStWSNczMzPhcrlkTDSS1+tFZWUlnn/+ebmjjHDnzh00NTVh27ZtiIgYPACakr6jGo0GPT2DZ1/o6enBokWLoNHI8y/SZDKNOtLCdH4vZtWJaS5fvox3330XL730ErxeL8xmM37yk5/IHUvyt7/9DT09PcjPz8epU6fkjjOuhoYGfPe735XtS+B2u7F48WJERg4exTEyMhKLFi2C2+1W3N7ngiDgyJEjyMnJkTuK5KWXXsLq1auRnJwsd5QRPvzwQ+h0Orz88ss4ffo0Fi5ciG3btsFkMskdDREREdi/fz9+8YtfYMGCBbhz5w5+97vfyR1rhOn8XsyoIvjRj3407i+vf/7zn/D5fHC73fjzn/+Mrq4u/PSnP8WXvvQlfPOb35Q9X0tLC1588UXp0NvhNtlrN/Tham5uht1uR0NDQzjjzVi7d+/GggULsG7dOrmjAAD++9//wul0orS0VO4oo/h8Pnz44Yf46le/iueeew7vvvsufv7zn+PEiRPSXLxcBgYGcOjQIRw8eBBZWVl455138NRTT6G5uRkLFy6UNVs4zKgiOHr06ITjiYmJKCgogEajgV6vx7e//W3873//C1sRTJSvvb0dHR0dWLNmDYDBFY4nT55Ed3c3tm7dKmu2ISdOnMBvf/tbvPrqq7LOsg8/KGFkZKRiD0potVpx7do11NfXyzb3dK8zZ87g8uXLyM0dPOb/9evXsXHjRlRXV+M73/mOrNkMBgPmzJkjLdr4xje+gbi4OFy5cgVf+9rXZM323nvv4ebNm8jKygIAZGVlYf78+bh8+TK+/vWvy5ptyHR+L5Tx6Q2RgoICvPXWWwCAu3fv4p133sFXvvIVmVMNMplM+Ne//oW2tja0tbUhLy8PJSUlYSkBf5w8eRLV1dU4fPiw7IsUZsJBCfft2wen04m6ujpotVq540g2b96Mv//979Ln7L777sPhw4dlLwEAiI+Px4oVK/CPf/wDwOAWMB6PB/fff7/MyYD77rsP169fx/vvvw9gcDGzx+PBF7/4RZmTfW46vxez6lhDfX192LVrF86fPw8AKCoqwubNm2VONbYdO3YgIyNDMYsUvvWtb2Hu3LkjPlSvvvqqbCu1lXxQwkuXLqGgoACpqamYN28eACA5ORl1dXUyJxstJycH9fX1SEtLkzsKgMH1BL/+9a/R3d2NOXPm4KmnnsLKlSvljgUA+Otf/4rf//730orsX/7yl1i1apUsWfbs2YPW1lbcunULcXFx0Ol0aG5unrbvxawqAiIimrpZtWiIiIimjkVARKRyLAIiIpVjERARqRyLgIhI5VgEREQqxyIgIlI5FgERkcr9P0OEG9FwzSxAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ILTZmvd2fczV" + }, + "source": [ + "Aqui, estamos testando o mesmo histograma para outro gene, o ```g-19```. E queremos fazer uma comparação entre os gráficos e podemos fazer algumas considerações sobre ambos os gráficos.\n", + "Percebemos, por exemplo, que a imagem seguem a mesma tendência de curva mas há um deslocamento para a direita." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "1_aedkvToYlB", + "outputId": "1fb80d8d-3a09-4433-e220-fe35cf995a41" + }, + "source": [ + "dados['g-19'].hist(bins = 100)" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD7CAYAAABnoJM0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAT0klEQVR4nO3df0zc9eHH8RdH4Wi/hZ2wqzuoSbeqHY5kTb1FY0aiML/cDJRs2QIj1kTRJk3aZLElomPg2hqlP1ym677dH3UmHbPqHyuBdqUubTaXTWONVS8sbdNQ/xhXiwekxyhg7z7fPxpOaIE7Du4+d7yfj7+Oe/OB19Hr5/X5+b4sy7IsAQCM5bA7AADAXhQBABiOIgAAw1EEAGA4igAADEcRAIDhKAIAMNwyuwMkamjov4pE5n8LRFHRSgWDI0lItPjImjyZlJesyZFJWaWF53U4snTbbf8z41jGFkEkYiVUBJPLZgqyJk8m5SVrcmRSVil5eTk0BACGowgAwHAUAQAYjiIAAMNRBABgOIoAAAxHEQCA4TL2PgIA6Wfiy7Dc7nxJ0tj4dYWuXrM5EeJBEQBYNLk52arZ3ilJ6tpfq5DNeRAfDg0BgOEoAgAwHEUAAIajCADAcBQBABiOIgAAw1EEAGA4igAADEcRAIDhYhbB0NCQnnrqKVVVVammpkZbt27V4OCgJOns2bPauHGjqqqq9MQTTygYDEaXS3QMAJBaMYsgKytLTz75pHp6etTV1aU77rhD+/btUyQSUVNTk1pbW9XT0yOv16t9+/ZJUsJjAIDUi1kELpdL9913X/Tr9evXq7+/X36/X06nU16vV5JUX1+vEydOSFLCYwCA1JvXpHORSERvvPGGKioqFAgEVFxcHB0rLCxUJBLR8PBwwmMulyvuLEVFK+cTfZrJ2REzAVmTJ5PyplvWiS/Dys3JvuXxzdIt983SPd/NkpV3XkWwa9curVixQo8++qjeeeedpASKVzA4okjEmvdybne+BgYyY05EsiZPJuVNx6xud/60WUYn8928okq33FOl4991LgvN63BkzboBHXcRtLe367PPPtPBgwflcDjk8XjU398fHR8cHJTD4ZDL5Up4DACQenFdPvryyy/L7/frwIEDys3NlSSVlZVpbGxMZ86ckSQdOXJEPp9vQWMAlo7JD6lxu/OVX7Dc7jiYQ8w9ggsXLuj3v/+91qxZo/r6eknS6tWrdeDAAe3Zs0dtbW0aHx9XSUmJ9u7dK0lyOBwJjQFYOviQmswRswjuuusunTt3bsaxDRs2qKura1HHAACpxZ3FAGA4igAADEcRAIDhKAIAMNy8bigDgJtNXiaKzMUeAYAFmbxMdPJSUWQeigAADEcRAIDhKAIAMBxFAACGowgAwHAUAQAYjiIAAMNRBABgOIoAAAxHEQCA4SgCADAcRQAAhqMIAMBwFAEAGI4iAADD8cE0AJJu6ofXjI1fV+jqNZsTYSqKAEDSTX54jSR17a9VyOY8mI5DQwBgOIoAAAxHEQCA4SgCADAcRQAAhqMIAMBwXD4KIC75BcuV52SVsRSxRwAgLnnOZarZ3hm9HwBLB0UAAIajCADAcBQBABiOIgAAw1EEAGA4igAADEcRAIDhKAIAMFxcRdDe3q6KigqtW7dO58+fjz5fUVEhn8+n2tpa1dbW6t13342OnT17Vhs3blRVVZWeeOIJBYPBuMYAAKkVVxFUVlaqo6NDJSUlt4y98sor6uzsVGdnp8rLyyVJkUhETU1Nam1tVU9Pj7xer/bt2xdzDACQenEVgdfrlcfjifuH+v1+OZ1Oeb1eSVJ9fb1OnDgRcwwAkHoLnkFqx44dsixL9957r55++mkVFBQoEAiouLg4+j2FhYWKRCIaHh6ec8zlci00DgBgnhZUBB0dHfJ4PJqYmNALL7ygnTt3puwwT1HRyoSXdbvzFzFJcpE1eTIpbyZljUe6vJ50yRGvZOVdUBFMHi7Kzc1VQ0ODtmzZEn2+v78/+n2Dg4NyOBxyuVxzjs1HMDiiSMSad2a3O18DA6F5L2cHsiZPJuVNl6yLuRJKl9eTDjnitdC8DkfWrBvQCV8+Ojo6qlDoRijLsnT8+HGVlpZKksrKyjQ2NqYzZ85Iko4cOSKfzxdzDACQenHtEezevVsnT57UF198occff1wul0sHDx7Utm3bFA6HFYlEtHbtWrW1tUmSHA6H9uzZo7a2No2Pj6ukpER79+6NOQYASL24iqClpUUtLS23PH/06NFZl9mwYYO6urrmPQYASC3uLAYAw/EBpABSauLLcPTE89j4dYWuXrM5ESgCACmVm5Md/dzjrv21ypzrdpYuigDArPILlivPyWpiqeMcAYBZ5TmXqWZ7Z3QLHksTRQAAhqMIAMBwFAEAGI4iAADDUQQAYDiKAAAMRxEAgOEoAgAwHEUAAIajCADAcBQBABiOIgAAw1EEAGA4igAADEcRAIDhKAIAMBxFAACGowgAwHAUAQAYjiIAAMNRBABgOIoAAAy3zO4AANJLfsFy5TlZNZiEPQIA0+Q5l6lme6dqtnfaHQUpQhEAgOEoAgAwHEUAAIajCADAcBQBABiOIgAAw1EEAGA47hoBYJuJL8Nyu/MlSWPj1xW6es3mRGaiCADYJjcnO3rjWtf+WoVszmMqDg0BgOFiFkF7e7sqKiq0bt06nT9/Pvp8X1+f6urqVFVVpbq6Ol26dGnBYwCA1ItZBJWVlero6FBJScm059va2tTQ0KCenh41NDSotbV1wWMAgNSLWQRer1cej2fac8FgUL29vaqurpYkVVdXq7e3V4ODgwmPAQDskdDJ4kAgoNtvv13Z2dmSpOzsbK1atUqBQECWZSU0VlhYuEgvCQAwHxl71VBR0cqEl528XC0TkDV5MilvJmVdiFS/zkz7uyYrb0JF4PF49PnnnyscDis7O1vhcFhXrlyRx+ORZVkJjc1XMDiiSMSa93Jud74GBjLjIjWyJk8m5U11VjtXjql+nZnyHpAWntfhyJp1Azqhy0eLiopUWlqq7u5uSVJ3d7dKS0tVWFiY8BgAwB4x9wh2796tkydP6osvvtDjjz8ul8ulY8eO6fnnn1dzc7N+97vfqaCgQO3t7dFlEh0DAKRezCJoaWlRS0vLLc+vXbtWb7/99ozLJDoGAEi9jD1ZDGBpYd4h+1AEANIC8w7Zh7mGAMBwFAEAGI4iAADDUQQAYDiKAAAMRxEAgOEoAgAwHEUAAIbjhjIAyi9YrjwnqwNTsUcAQHnOZarZ3hm9sxdmoQgAwHAUAQAYjiIAAMNRBABgOIoAAAzH9WKAobhkFJPYIwAMxSWjmEQRAIDhKAIAMBxFAACGowgAwHAUAQAYjiIAAMNRBABgOIoAAAxHEQCA4SgCADAcRQAAhqMIAMBwFAEAGI4iAADDUQQAYDg+lQJA2pn4Miy3O1+SNDZ+XaGr12xOtLRRBADSTm5OdvQDc7r21ypkc56ljkNDAGA4igAADEcRAIDhFnyOoKKiQrm5uXI6nZKkHTt2qLy8XGfPnlVra6vGx8dVUlKivXv3qqioSJLmHAMApNai7BG88sor6uzsVGdnp8rLyxWJRNTU1KTW1lb19PTI6/Vq3759kjTnGIDkyi9YLrc7P3pFDiAl6dCQ3++X0+mU1+uVJNXX1+vEiRMxxwAkV55zmWq2d0avyAGkRbp8dMeOHbIsS/fee6+efvppBQIBFRcXR8cLCwsViUQ0PDw855jL5VqMOACAeVhwEXR0dMjj8WhiYkIvvPCCdu7cqYcffngxss2pqGhlwstm0m4xWZMnk/JmUtZkSNbrz7S/a7LyLrgIPB6PJCk3N1cNDQ3asmWLHnvsMfX390e/Z3BwUA6HQy6XSx6PZ9ax+QgGRxSJWPPO63bna2AgM25PIWvyZFLexcyaaSu+Scn4t8qk94C08LwOR9asG9ALOkcwOjqqUOhGMMuydPz4cZWWlqqsrExjY2M6c+aMJOnIkSPy+XySNOcYACD1FrRHEAwGtW3bNoXDYUUiEa1du1ZtbW1yOBzas2eP2trapl0iKmnOMQBA6i2oCO644w4dPXp0xrENGzaoq6tr3mMAMBUT0CUfk84BSGtMQJd8TDEBAIajCADAcBQBABiOcwTAEpdfsFx5Tv6rY3bsEQBLHPMLIRaKAAAMRxEAgOEoAgAwHEUAAIajCADAcFxTBiBjMO9QclAEwBK0VO8dYN6h5ODQELAEce8A5oMiAADDUQQAYLildxARgBE4cbx4KAIAGYkTx4uHQ0MAYDiKAAAMRxEAgOEoAgAwHEUAAIbjqiFgiViq00og+dgjAJYIppVAoigCADAc+5FAhuJQ0Fe4y3hheBcBGWryUNCkrv21NqaxF3cZLwyHhgDAcBQBABiOIgAAw3GOAMggnCCObeqJY4mTx/HgHQWkuZtXbFNPiuJWU08cS5w8jgeHhoA0N7li40YxJAt7BACWNO4xiI0iANIQ5wIWD/cYxMahISANMW8QUolNDsBGU7f8xyfCcuZm25xoaZt6mGjiy7DNadIHRQDYaOo0EV37a7kiKMluPkyEGygCIAXY8k8/nET+im1F0NfXp+bmZg0PD8vlcqm9vV1r1qyxKw6QsNlW8lNXLmz5px9OIn/FtpPFbW1tamhoUE9PjxoaGtTa2mpXFGBBpp7YdeZ+dc2/w5Eltzt/2s1gSE+Tewdud74KvrYi+ji/YLnd0VLClj2CYDCo3t5e/eEPf5AkVVdXa9euXRocHFRhYWFcP8PhyEr49y9k2VQja2JWrsyTc3Irffy6RkbGbnm+4GsrolvvU7fk5/tYklbdtvyWx7k52WrcfVKSdKjlf2f8nsV8nKyfm+mP4/m+m/+tJh//3zOV0SKf9u8/5T2VSsla72VZlmUl/JMT5Pf79cwzz+jYsWPR5x555BHt3btX3/nOd1IdBwCMxn0EAGA4W4rA4/Ho888/Vzh84zrecDisK1euyOPx2BEHAIxmSxEUFRWptLRU3d3dkqTu7m6VlpbGfX4AALB4bDlHIEkXL15Uc3Ozrl69qoKCArW3t+tb3/qWHVEAwGi2FQEAID1wshgADEcRAIDhKAIAMBxFAACGM6IIOjs7VVNTo3vuuUd//OMfp41du3ZNP//5z/Xwww/L5/Pp9OnTNqWcWV9fnzZt2qTa2lr98Ic/1Kuvvmp3pDkdPnxYPp9PNTU1qq3NjAnV3n//fZWWlt7y3kgnv/rVr+Tz+bRx40bV19fr008/tTvSNH19faqrq1NVVZXq6up06dIluyPNamhoSE899ZSqqqpUU1OjrVu3anBw0O5YMf32t7/VunXrdP78+cX/4ZYBzp07Z124cMFqamqyDh8+PG3s1VdftX7xi19YlmVZfX191gMPPGCNjIzYEXNGW7ZsiWYeGRmxHnzwQevjjz+2OdXMenp6rIaGBisUClmWZVkDAwM2J4otFApZP/nJT6zNmzff8t5IJ6dOnbImJiaijysrK21ONN2mTZuso0ePWpZlWUePHrU2bdpkc6LZDQ0NWe+9917065deesl69tlnbUwUm9/vtxobG62HHnrIOnfu3KL/fCP2CO6++27deeedcjhufbl/+ctfVFdXJ0las2aNysrK9Pe//z3VEWeVlZWlUOjGBLljY2PKyspK2xvvXnvtNW3dulUrV66UJH3961+3OVFsL730khobG3XbbbfZHWVODz30kHJyciRJ69ev1+XLlxWJRGxOdcPkJJLV1dWSbkwi2dvbm7Zb2S6XS/fdd1/06/Xr16u/v9/GRHObmJjQzp079fzzzyftdxhRBHPp7+9XSUlJ9GuPx6PLly/bmGi65557TsePH1d5ebkqKirU2Nio1atX2x1rRhcvXtTHH3+s+vp6/fjHP9Zbb71ld6Q5/e1vf1MoFJLP57M7yrx0dHTowQcfnHHDxg6BQEC33367srNvzMyZnZ2tVatWKRAI2JwstkgkojfeeEMVFRV2R5nVb37zG23cuDGp/++XxCeU/ehHP5q10f/5z39G36DpKFb2N998U7W1tXryySd15coVbdq0SWVlZfrud7+b4qSxs4bDYQUCAf3pT3/S0NCQfvazn+mb3/ymvve976U46Q1z5T1x4oT2798fnQrdbvG+h48dO6auri51dHSkMt6StWvXLq1YsUKPPvqo3VFm9NFHH8nv92vHjh1J/T1Logj+/Oc/J7xscXGx/vOf/0QPtwQCgWm7jckWK/vhw4f117/+VZK0atUq3X///frggw9sKYJYWYuLi1VdXS2Hw6GioiI98MAD+uSTT2wrgrnynjlzRgMDA/rpT38q6cYJxNOnT2t4eFhbt25NVcSoeN7D77zzjn7961/r9ddfT6vDblMnkczOzs6YSSTb29v12Wef6eDBg2mzd3WzDz74QBcvXlRlZaUk6fLly2psbNSLL76o73//+4v2e9Lz1aeQz+fTm2++KUm6dOmSPv30U5WXl9uc6iurV6/Wu+++K0kaGRnRhx9+qLvuusvmVDOrrq6OZh0dHdWHH36ob3/72zanmpnX69W//vUvnTp1SqdOnVJVVZW2bdtmSwnE4/Tp03rxxRd16NChtDs0mImTSL788svy+/06cOCAcnNz7Y4zq82bN+sf//hH9H36jW98Q4cOHVrUEpAMmWuou7tbe/bs0dWrV5WTk6Ply5frtdde05133qnR0VE1Nzfr3//+txwOh5qamvSDH/zA7shRfr9fu3fv1ujoqK5fv65HHnkkbVdWY2Nj+uUvf6ne3l5JUm1trTZv3mxzqvg0NzerrKwsbQ8R3H///crJyZm2cn399dfT5iR3Jk0ieeHCBVVXV2vNmjXKy8uTdGOD68CBAzYni62iokIHDx7U3Xffvag/14giAADMzvhDQwBgOooAAAxHEQCA4SgCADAcRQAAhqMIAMBwFAEAGI4iAADD/T/vwhUQr40OmwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i8HZHcicEJ0F" + }, + "source": [ + "Como concluimos que plotar os gráficos de todos os genes é inviável, vamos analisar resumidamente algumas estatísticas sobre eles. \n", + "Para isso, vamos usar a função ```describe``` do Pandas que já calcula e descreve algumas estatísticas importantes para o entendimento dos dados (contagem, média, desvio padrão, mínimo, alguns quartis e máximo).\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 331 + }, + "id": "Kv-2zPLBprgD", + "outputId": "9968a9fc-9780-4ded-fc89-22f1caad14b0" + }, + "source": [ + "dados.describe()" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tempog-0g-1g-2g-3g-4g-5g-6g-7g-8g-9g-10g-11g-12g-13g-14g-15g-16g-17g-18g-19g-20g-21g-22g-23g-24g-25g-26g-27g-28g-29g-30g-31g-32g-33g-34g-35g-36g-37g-38...c-60c-61c-62c-63c-64c-65c-66c-67c-68c-69c-70c-71c-72c-73c-74c-75c-76c-77c-78c-79c-80c-81c-82c-83c-84c-85c-86c-87c-88c-89c-90c-91c-92c-93c-94c-95c-96c-97c-98c-99
count23814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.000000...23814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.000000
mean48.0201560.248366-0.0956840.1522530.0819710.057347-0.1388360.035961-0.202651-0.1900830.119905-0.1233210.1823070.1432030.209402-0.173884-0.0244320.126823-0.1466630.087687-0.082982-0.111908-0.0873790.047548-0.117474-0.113212-0.052746-0.0910550.112176-0.046458-0.076239-0.1976990.382177-0.1894320.078791-0.0933120.135729-0.188616-0.6067100.534425...-0.517397-0.360770-0.435752-0.613591-0.402083-0.619682-0.452265-0.497164-0.413836-0.277029-0.547845-0.358611-0.442906-0.475194-0.010404-0.467001-0.276963-0.455848-0.412918-0.456404-0.472514-0.505481-0.492735-0.446836-0.463029-0.409310-0.333124-0.295009-0.328342-0.401615-0.469244-0.461411-0.513256-0.500142-0.507093-0.353726-0.463485-0.378241-0.470252-0.301505
std19.4028071.3933990.8123631.0357310.9500121.0320911.1793880.8823951.1254941.7498851.0871801.2915011.2536041.2345901.2730681.2471780.6598391.4189971.1796880.7433010.8447961.2195290.8244010.9248380.7601591.2031860.8669771.1037651.0016871.0277581.2793991.3025671.5591740.9335141.1722701.1743251.0617191.3976772.2002772.003317...2.1223181.7107251.8988712.3078201.7850552.2255961.9910212.0638961.8870011.4596392.1878351.7306341.9247162.0219271.0298202.0043171.4293401.9242631.8887881.8328632.0113962.0913532.0556241.9874762.0140451.8839741.6472411.6340731.6631701.8327942.0004882.0424752.0017142.1071052.1595891.6292912.0597251.7036151.8348281.407918
min24.000000-5.513000-5.737000-9.104000-5.998000-6.369000-10.000000-10.000000-10.000000-10.000000-8.337000-10.000000-5.870000-8.587000-5.018000-10.000000-10.000000-10.000000-10.000000-4.226000-10.000000-10.000000-5.700000-10.000000-10.000000-10.000000-8.272000-8.184000-4.835000-7.913000-10.000000-10.000000-2.956000-8.356000-7.182000-10.000000-9.261000-10.000000-10.000000-10.000000...-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-9.839000-10.000000-10.000000-10.000000-10.000000-6.452000-10.000000-9.938000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000
25%24.000000-0.473075-0.562200-0.437750-0.429575-0.470925-0.602225-0.493900-0.525175-0.511675-0.360200-0.511475-0.489675-0.447500-0.481200-0.607975-0.404150-0.391950-0.513775-0.272200-0.488675-0.524600-0.538900-0.440375-0.508900-0.533900-0.497700-0.512875-0.467800-0.378300-0.505750-0.457975-0.328200-0.600500-0.478700-0.570525-0.481800-0.541950-0.604100-0.470250...-0.588075-0.564025-0.561000-0.583250-0.566500-0.603200-0.541575-0.560825-0.555200-0.534500-0.569100-0.558300-0.573350-0.594275-0.389925-0.551200-0.544150-0.575075-0.568275-0.582650-0.558575-0.562375-0.572800-0.561225-0.560675-0.560100-0.533700-0.504575-0.544275-0.569150-0.566175-0.565975-0.589975-0.568700-0.563775-0.567975-0.552575-0.561000-0.592600-0.562900
50%48.000000-0.008850-0.0466000.0752000.008050-0.026900-0.015650-0.000650-0.0179000.0100000.1604500.0385500.0138000.0602500.009800-0.0301000.0000000.149400-0.0022000.000000-0.027800-0.002800-0.069350-0.0118000.0000000.018300-0.0116500.0161000.0376000.0037500.0217500.0270000.019100-0.0540000.0233500.003350-0.0006000.015350-0.0007000.005800...-0.017650-0.041550-0.002950-0.012650-0.0056000.0076500.0049500.000000-0.023800-0.011450-0.007100-0.019500-0.019500-0.0093000.081550-0.0069000.018400-0.014650-0.0143500.005300-0.005300-0.0040500.003300-0.007900-0.004600-0.0024000.007850-0.005600-0.020600-0.030000-0.0099000.003250-0.009100-0.013750-0.003300-0.010250-0.001250-0.0068000.014000-0.019500
75%72.0000000.5257000.4030750.6639250.4634000.4653750.5104250.5287250.4119000.5492250.6977750.5254000.5752750.6044500.5758250.4579750.3824750.8295000.4947750.3278000.4006000.4924000.4148750.4334000.3292500.5277000.4616500.5084250.5864500.4312750.5076000.4580750.4710750.3919500.5513000.5037250.5648750.5170250.4605000.642300...0.4526750.4276750.4621750.4479750.4471500.4412500.4706000.4585500.4410000.4600750.4609500.4499750.4452000.4732000.5635750.4563500.4934000.4483750.4519750.4630750.4476750.4620000.4689000.4523750.4604750.4616750.4659500.4634000.4500750.4308750.4577500.4615000.4456750.4529000.4709000.4447500.4652250.4464000.4612750.438650
max72.00000010.0000005.0390008.25700010.00000010.0000007.2820007.3330005.4730008.8870006.43300010.00000010.00000010.00000010.00000010.0000004.1340006.4180004.7500008.8720004.0810009.8420005.2480005.9420005.20100010.0000008.49400010.00000010.00000010.0000009.41600010.00000010.0000006.79600010.00000010.00000010.0000005.8340005.60200010.000000...3.8880003.5960004.8570003.5490003.3820003.3280004.1570003.7360003.5820003.1190003.3230005.0140002.8980004.1850003.1700003.2760004.9920003.7700002.8510003.2110004.5340003.8900003.9940004.3210004.0200003.7380003.2520005.4060003.1100003.3200004.0690003.9600003.9270003.5960003.7470002.8140003.5050002.9240003.1110003.805000
\n", + "

8 rows × 873 columns

\n", + "
" + ], + "text/plain": [ + " tempo g-0 ... c-98 c-99\n", + "count 23814.000000 23814.000000 ... 23814.000000 23814.000000\n", + "mean 48.020156 0.248366 ... -0.470252 -0.301505\n", + "std 19.402807 1.393399 ... 1.834828 1.407918\n", + "min 24.000000 -5.513000 ... -10.000000 -10.000000\n", + "25% 24.000000 -0.473075 ... -0.592600 -0.562900\n", + "50% 48.000000 -0.008850 ... 0.014000 -0.019500\n", + "75% 72.000000 0.525700 ... 0.461275 0.438650\n", + "max 72.000000 10.000000 ... 3.111000 3.805000\n", + "\n", + "[8 rows x 873 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "G4mCKUkUFYhb" + }, + "source": [ + "Neste ponto, vamos separar as variáveis que queremos analisar da base de dados (exemplo: ```g-0``` e ```g-1```) através de uma lista de arrays.\n", + "Entretanto, apesar desta ser uma ótima estratégia para a separação, temos 771 genes e escrevê-los um a um seria muito trabalhoso e podemos fazer de uma outra forma." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 399 + }, + "id": "OAkjbZdkqPlR", + "outputId": "1f7cfb30-4c6a-4921-c7e3-b37767d89f96" + }, + "source": [ + "dados[['g-0', 'g-1']]" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
g-0g-1
01.06200.5577
10.07430.4087
20.62800.5817
3-0.5138-0.2491
4-0.3254-0.4009
.........
238090.1394-0.0636
23810-1.32600.3478
238110.39420.3756
238120.66600.2324
23813-0.85981.0240
\n", + "

23814 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " g-0 g-1\n", + "0 1.0620 0.5577\n", + "1 0.0743 0.4087\n", + "2 0.6280 0.5817\n", + "3 -0.5138 -0.2491\n", + "4 -0.3254 -0.4009\n", + "... ... ...\n", + "23809 0.1394 -0.0636\n", + "23810 -1.3260 0.3478\n", + "23811 0.3942 0.3756\n", + "23812 0.6660 0.2324\n", + "23813 -0.8598 1.0240\n", + "\n", + "[23814 rows x 2 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0LHi_9AUGFmS" + }, + "source": [ + "Uma estratégia mais direta em que não precisaremos escrever a lista gene a gene, é o uso da função ```loc[]``` do Pandas.\n", + "Como argumentos, passamos primeiramente o ```:```, os dois pontos faz com que o ```loc[]```retorne todos os elementos de uma determinada coluna, isso é importante quando não sabemos qual a quantidade de linhas de um dataframe. E, o segundo elemento, passamos as colunas que são de nosso interesse. No caso, queremos que a função nos retorne todos os elementos das colunas ```g-0```até ```g-771```.\n", + "E, por fim, podemos declarar a nossa função de interesse a partir deste filtro realizado nos dados, o ```describe()```." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 331 + }, + "id": "dQX0KOhUqm66", + "outputId": "9966282b-ee3b-4852-a094-227c3cce5262" + }, + "source": [ + "dados.loc[:,'g-0':'g-771'].describe()" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
g-0g-1g-2g-3g-4g-5g-6g-7g-8g-9g-10g-11g-12g-13g-14g-15g-16g-17g-18g-19g-20g-21g-22g-23g-24g-25g-26g-27g-28g-29g-30g-31g-32g-33g-34g-35g-36g-37g-38g-39...g-732g-733g-734g-735g-736g-737g-738g-739g-740g-741g-742g-743g-744g-745g-746g-747g-748g-749g-750g-751g-752g-753g-754g-755g-756g-757g-758g-759g-760g-761g-762g-763g-764g-765g-766g-767g-768g-769g-770g-771
count23814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.000000...23814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.000000
mean0.248366-0.0956840.1522530.0819710.057347-0.1388360.035961-0.202651-0.1900830.119905-0.1233210.1823070.1432030.209402-0.173884-0.0244320.126823-0.1466630.087687-0.082982-0.111908-0.0873790.047548-0.117474-0.113212-0.052746-0.0910550.112176-0.046458-0.076239-0.1976990.382177-0.1894320.078791-0.0933120.135729-0.188616-0.6067100.5344250.132026...0.263569-0.2426380.110180-0.039868-0.0640560.1936290.004470-0.1870850.0671860.006159-0.201189-0.2433170.5489030.2470650.0859500.0905440.215525-0.0077050.2369540.0227850.1032240.0484020.109367-0.1032620.0041290.0662110.072773-0.033051-0.400643-0.3389780.2072990.0091610.1710270.002316-0.209799-0.0762510.134162-0.128018-0.2192100.101524
std1.3933990.8123631.0357310.9500121.0320911.1793880.8823951.1254941.7498851.0871801.2915011.2536041.2345901.2730681.2471780.6598391.4189971.1796880.7433010.8447961.2195290.8244010.9248380.7601591.2031860.8669771.1037651.0016871.0277581.2793991.3025671.5591740.9335141.1722701.1743251.0617191.3976772.2002772.0033170.990477...1.0758091.3094820.8812830.9171191.1869661.2126211.1756111.1821801.0572920.9969401.0293701.3788152.0237911.6393071.2387530.9612121.2937830.9662131.2840741.0155571.0359681.0486450.8560801.1753720.7010310.9969141.0773101.5799481.9134681.7015541.0964881.2003951.3577011.0527711.2019181.1154770.9512641.2306361.3261931.417674
min-5.513000-5.737000-9.104000-5.998000-6.369000-10.000000-10.000000-10.000000-10.000000-8.337000-10.000000-5.870000-8.587000-5.018000-10.000000-10.000000-10.000000-10.000000-4.226000-10.000000-10.000000-5.700000-10.000000-10.000000-10.000000-8.272000-8.184000-4.835000-7.913000-10.000000-10.000000-2.956000-8.356000-7.182000-10.000000-9.261000-10.000000-10.000000-10.000000-4.223000...-5.504000-10.000000-3.790000-10.000000-10.000000-10.000000-7.920000-10.000000-9.462000-6.634000-10.000000-10.000000-2.912000-9.833000-7.227000-5.561000-8.393000-5.790000-4.915000-10.000000-10.000000-7.918000-5.255000-10.000000-6.264000-10.000000-5.505000-10.000000-10.000000-10.000000-8.193000-10.000000-9.795000-8.180000-10.000000-10.000000-4.269000-10.000000-10.000000-10.000000
25%-0.473075-0.562200-0.437750-0.429575-0.470925-0.602225-0.493900-0.525175-0.511675-0.360200-0.511475-0.489675-0.447500-0.481200-0.607975-0.404150-0.391950-0.513775-0.272200-0.488675-0.524600-0.538900-0.440375-0.508900-0.533900-0.497700-0.512875-0.467800-0.378300-0.505750-0.457975-0.328200-0.600500-0.478700-0.570525-0.481800-0.541950-0.604100-0.470250-0.401700...-0.390700-0.565075-0.433275-0.498650-0.526300-0.430750-0.488775-0.593125-0.498275-0.489800-0.564100-0.538000-0.464000-0.521975-0.488600-0.442925-0.457200-0.477900-0.458175-0.479075-0.478825-0.489300-0.327500-0.576775-0.278275-0.492700-0.501575-0.526450-0.507375-0.559175-0.433875-0.502250-0.537075-0.508775-0.606175-0.506200-0.353100-0.544600-0.554400-0.523800
50%-0.008850-0.0466000.0752000.008050-0.026900-0.015650-0.000650-0.0179000.0100000.1604500.0385500.0138000.0602500.009800-0.0301000.0000000.149400-0.0022000.000000-0.027800-0.002800-0.069350-0.0118000.0000000.018300-0.0116500.0161000.0376000.0037500.0217500.0270000.019100-0.0540000.0233500.003350-0.0006000.015350-0.0007000.0058000.007400...0.065650-0.0141000.030850-0.001800-0.0084000.1014000.033400-0.0016000.0008500.014800-0.0440000.0174000.000850-0.0155500.0253500.0177500.0534500.027700-0.0021000.009500-0.004450-0.0000500.0024000.0242500.0000000.0053000.0136000.0013500.0073500.0387000.059600-0.005900-0.013600-0.027700-0.0118500.0099000.0054000.0006000.028700-0.006500
75%0.5257000.4030750.6639250.4634000.4653750.5104250.5287250.4119000.5492250.6977750.5254000.5752750.6044500.5758250.4579750.3824750.8295000.4947750.3278000.4006000.4924000.4148750.4334000.3292500.5277000.4616500.5084250.5864500.4312750.5076000.4580750.4710750.3919500.5513000.5037250.5648750.5170250.4605000.6423000.439400...0.6469000.4679000.5434000.4772000.4974000.8464000.5738750.5016750.5198250.5150000.4123750.4794000.6463250.5652000.6100750.5069750.6717250.5141750.5241750.5013250.5169750.5174750.3752750.5722500.2516000.5409500.5309000.5279000.4752750.5220750.6485000.4921500.5225000.4570000.4830000.5111750.4090750.4985000.4964000.536950
max10.0000005.0390008.25700010.00000010.0000007.2820007.3330005.4730008.8870006.43300010.00000010.00000010.00000010.00000010.0000004.1340006.4180004.7500008.8720004.0810009.8420005.2480005.9420005.20100010.0000008.49400010.00000010.00000010.0000009.41600010.00000010.0000006.79600010.00000010.00000010.0000005.8340005.60200010.00000010.000000...10.0000005.44400010.0000004.88900010.0000007.63500010.0000006.6640009.56600010.0000003.4970006.91100010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000005.32300010.0000006.53300010.00000010.0000004.0080005.90000010.0000009.55200010.0000008.3460005.4440006.31700010.0000005.91100010.00000010.000000
\n", + "

8 rows × 772 columns

\n", + "
" + ], + "text/plain": [ + " g-0 g-1 ... g-770 g-771\n", + "count 23814.000000 23814.000000 ... 23814.000000 23814.000000\n", + "mean 0.248366 -0.095684 ... -0.219210 0.101524\n", + "std 1.393399 0.812363 ... 1.326193 1.417674\n", + "min -5.513000 -5.737000 ... -10.000000 -10.000000\n", + "25% -0.473075 -0.562200 ... -0.554400 -0.523800\n", + "50% -0.008850 -0.046600 ... 0.028700 -0.006500\n", + "75% 0.525700 0.403075 ... 0.496400 0.536950\n", + "max 10.000000 5.039000 ... 10.000000 10.000000\n", + "\n", + "[8 rows x 772 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8mp610qzHQGY" + }, + "source": [ + "Apesar do describe reunir as nossas estatísticas de interesse, é bastante complexo analisar o dataframe resposta. Para facilitar o nosso entendimento, vamos plotar histogramas que nos ajudaram na visualização das estatísticas de todas as colunas selecionadas.\n", + "Olhando o dataframe original, anteriormente, fizemos o histograma de apenas uma coluna. Mas agora, nosso conjunto de dados de interesse é o ```describe()``` que fizemos a partir do ```loc[]``` e, deste ponto de vista, não queremos mais fazer o histograma coluna a coluna (genes), queremos que ele seja a partir das linhas (estatísticas). Por isso, vamos transpor as linhas e colunas (transformar as linhas em colunas e vice-versa).\n", + "Para isso, vamos usar o ```.T[]``` no código anterior que produzimos para organizar o ```describe()```.\n", + "Ou seja, vamos manter todo o código até o ```describe()``` e, ao final, acrescentaremos o ```.T[]```. Mas, ao rodarmos essa linha, percebemos que temos como devolutiva o mesmo dataframe mas transposto. E, como aqui, nosso interesse é produzir histogramas, acrescentamos como argumento do ```.T[]``` a estatística alvo (```.T['estatística']```) e, por último, acrescentamos o ```.hist(bins = número de quebras)``` para que o histograma seja observado.\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "ij9QVxGArZsd", + "outputId": "d0594cfd-08a0-4035-da4a-69360e4b263b" + }, + "source": [ + "dados.loc[:,'g-0':'g-771'].describe().T['mean'].hist(bins=30)" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 17 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD7CAYAAABkO19ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAaxElEQVR4nO3df1CT9+EH8HcSStAJxUTAoK7cuOqyuukJd+5287YTrahB1NrhsHa1s17nrmfXastsm6BWMKi9aivX9rZ1c7q5sZ1wRCetR2/OrlrtyRyLdivF1pYImEgFVMAnn+8ffmU4f+R5Qp6QfPp+3XnXJI/P85Y+ed/DJ598HoMQQoCIiKRlHOoARESkLxY9EZHkWPRERJJj0RMRSY5FT0QkORY9EZHkWPRERJJLGOoAFy50IxjUdyq/1ToCfn+XrseIlHjKCjCvnuIpK8C8ehqY1Wg0YOTIr2j6+0Ne9MGg0L3orx8nXsRTVoB59RRPWQHm1dNgsnLohohIcix6IiLJseiJiCTHoicikhyLnohIcix6IiLJseiJiCQ35PPoiSIhOWUYksyhT+fePiUKaYhiC4uepJBkTkDB0zUht6vdWhiFNESxhUM3RESSY9ETEUlOVdG/8847mD9/PgoLCzFv3jy89dZbAIDm5mYUFRVh1qxZKCoqwpkzZ/TMSkREYQg5Ri+EwDPPPIPdu3dj/PjxOH36NH74wx9ixowZcLlcKC4uRmFhIWpqauB0OrFz585o5CYiIpVUXdEbjUZ0dnYCADo7O5Geno4LFy7A6/XC4XAAABwOB7xeLwKBgH5piYhIs5BX9AaDAS+//DJWrlyJ4cOHo7u7G2+88QZ8Ph8yMjJgMpkAACaTCenp6fD5fLBYLLoHJyIidUIW/dWrV/H666+jsrISOTk5+OCDD/Dkk0+ioqIiIgGs1hER2U8oaWnJUTlOJMRTVoB59RRPWQHm1dNgsoYs+lOnTqGtrQ05OTkAgJycHAwbNgxmsxmtra1QFAUmkwmKoqCtrQ02m01TAL+/S/fF/9PSktHe3qnrMSIlnrICsZNXy5sgFvKqESs/W7WYVz8DsxqNBs0XyCHH6EePHo1z587h448/BgA0NTXB7/fjnnvugd1uh8fjAQB4PB7Y7XYO2xARxZiQV/RpaWkoLS3FqlWrYDAYAABlZWVITU1FaWkpSkpKUFlZiZSUFLjdbt0DExGRNqqWQJg3bx7mzZt30/PZ2dmoqqqKeCgiIoocfjOWiEhyLHoiIsmx6ImIJMeiJyKSHIueiEhyLHoiIsmx6ImIJMeiJyKSHIueiEhyLHoiIsmpWgKBKNKSU4YhyRz69OvpVWBONEUhEZG8WPQ0JJLMCSh4uibkdrVbC1VvR0S3xqEbIiLJseiJiCTHoicikhyLnohIciE/jP3ss8/w05/+tP9xZ2cnurq68P7776O5uRklJSXo6OhAamoq3G43srKy9MxLREQahSz6sWPHoqbmv7MeNm7cCEVRAAAulwvFxcUoLCxETU0NnE4ndu7cqV9aIiLSTNPQTW9vL2pra/HAAw/A7/fD6/XC4XAAABwOB7xeLwKBgC5BiYgoPJqKvr6+HhkZGbjvvvvg8/mQkZEBk+nal1lMJhPS09Ph8/l0CUpEROHR9IWpP//5z3jggQciGsBqHRHR/d1OWlpyVI4TCfGUFWBePcVTVoB59TSYrKqLvrW1FceOHUNFRQUAwGazobW1FYqiwGQyQVEUtLW1wWazaQrg93chGBTaUmuUlpaM9vZOXY8RKfGUFQg/71C+weLl5/tlOReGSjzlHZjVaDRovkBWPXSzd+9efO9738PIkSMBAFarFXa7HR6PBwDg8Xhgt9thsVg0BSAiIn1pKvr/HbYpLS3Frl27MGvWLOzatQvr1q2LeEAiIhoc1UM3dXV1Nz2XnZ2NqqqqiAYiIqLI4jdjiYgkx6InIpIci56ISHIseiIiybHoiYgkx6InIpIci56ISHK8OTh9qfT2KaqWX7jScxWdFy9HIRGR/lj09KWSeJcJBU/XhNyudmsh4mMVFKLQOHRDRCQ5XtET3QKHeEgmLHqiW+AQD8mEQzdERJJj0RMRSY5FT0QkORY9EZHkVH0Y29PTg7KyMrz33nswm82YPHkyNmzYgObmZpSUlKCjowOpqalwu93IysrSOTIREWmhqug3b94Ms9mMuro6GAwGnD9/HgDgcrlQXFyMwsJC1NTUwOl0YufOnboGJiIibUIO3XR3d6O6uhqrVq2CwWAAAIwaNQp+vx9erxcOhwMA4HA44PV6EQgE9E1MRESahLyiP3v2LFJTU/Hqq6/i6NGj+MpXvoJVq1YhKSkJGRkZMJlMAACTyYT09HT4fD5YLBbdgxMRkTohi15RFJw9exbf+MY38Oyzz+If//gHHn/8cWzbti0iAazWERHZTyhqvuUYK+IpKxB/eSNNz39/vP1smVc/g8kasuhtNhsSEhL6h2gmTZqEkSNHIikpCa2trVAUBSaTCYqioK2tDTabTVMAv78LwaAIL71KaWnJaG+Pj+8vxlNWIPy88fQGC0Wv/19flnNhqMRT3oFZjUaD5gvkkGP0FosFU6dOxbvvvgsAaG5uht/vR1ZWFux2OzweDwDA4/HAbrdz2IaIKMaomnWzbt06rF27Fm63GwkJCaioqEBKSgpKS0tRUlKCyspKpKSkwO12652XiIg0UlX048aNw29/+9ubns/OzkZVVVXEQxERUeTwm7FERJJj0RMRSY5FT0QkORY9EZHkWPRERJJj0RMRSY5FT0QkOd4cnGgQevsUVcs5XOm5is6Ll6OQiOhmLHqiQUi8y4SCp2tCble7tRDxsaoKyYhDN0REkmPRExFJjkVPRCQ5Fj0RkeRY9EREkmPRExFJjtMriaJA7Xx7AOjpVWBONAG48y0XOTef1FJV9NOnT0diYiLMZjMAYPXq1Zg2bRoaGhrgdDrR09ODMWPGYPPmzbBarboGJopHaufbA9fm3HNuPkWS6iv67du3Y/z48f2Pg8Eg1qxZg/LycuTm5qKyshJbtmxBeXm5LkGJiCg8YY/RNzY2wmw2Izc3FwCwePFiHDhwIGLBiIgoMlRf0a9evRpCCOTk5OCpp56Cz+dDZmZm/+sWiwXBYBAdHR1ITU3VJSwREWmnquh3794Nm82G3t5ebNy4EevXr8fMmTMjEsBqHRGR/YSi9oOwWBBPWYH4yyuTWPvZx1qeUOIp72Cyqip6m80GAEhMTERxcTF+8pOf4OGHH0ZLS0v/NoFAAEajUfPVvN/fhWBQaPo7WqWlJaO9PT4+toqnrED4eePpDRbLYulc+bKcu0NhYFaj0aD5AjnkGP2lS5fQ2XntAEII7N+/H3a7HRMnTsSVK1dw/PhxAMCePXuQn5+vNT8REeks5BW93+/HE088AUVREAwGkZ2dDZfLBaPRiIqKCrhcrhumVxIRUWwJWfTjxo1DdXX1LV+bMmUKamtrIx6KiIgih0sgEBFJjkVPRCQ5Fj0RkeRY9EREkmPRExFJjkVPRCQ5Fj0RkeRY9EREkmPRExFJjkVPRCQ5Fj0RkeRY9EREklN9hymiUJJThiHJzFOKKNbwXUkRk2ROQMHTNaq2rd1aqHMaIrqOQzdERJLjFT2FFGpIhrcFJIptmor+1VdfxSuvvILa2lqMHz8eDQ0NcDqdN9xhymq16pWVhojaIRkOxxDFJtVDN//617/Q0NCAMWPGAACCwSDWrFkDp9OJuro65ObmYsuWLboFJaIb9fYpSEtLDvknOWXYUEelIabqir63txfr16/H1q1b8fDDDwMAGhsbYTabkZubCwBYvHgx8vLyUF5erl9aIuqXeJdJ9W9anVHIQ7FLVdFv27YN8+bNw9ixY/uf8/l8yMzM7H9ssVgQDAbR0dGB1NRU1QGs1hEa4oYvnsaR4ykrxYdonVPxdu7GU97BZA1Z9CdOnEBjYyNWr14d9kHuxO/vQjAodNn3dWlpyWhvj49rmljMGk9vBrq1aJxTsXju3kk85R2Y1Wg0aL5ADln0x44dQ1NTE/Ly8gAA586dw49//GMsXboULS0t/dsFAgEYjUZNV/NERKS/kB/GrlixAocPH0Z9fT3q6+sxevRo/PKXv8Ty5ctx5coVHD9+HACwZ88e5Ofn6x6YiIi0CXsevdFoREVFBVwu1w3TK4mIKLZoLvr6+vr+/54yZQpqa2sjGoiIiCKLSyAQEUmORU9EJDkWPRGR5Fj0RESSY9ETEUmORU9EJDkWPRGR5Fj0RESSY9ETEUmORU9EJDkWPRGR5Fj0RESSY9ETEUmORU9EJDkWPRGR5Fj0RESSU3XjkZUrV+Kzzz6D0WjE8OHD8cILL8But6O5uRklJSXo6OhAamoq3G43srKydI5MRERaqCp6t9uN5ORkAMDBgwexdu1a7N27Fy6XC8XFxSgsLERNTQ2cTid27typa2AiItJG1dDN9ZIHgK6uLhgMBvj9fni9XjgcDgCAw+GA1+tFIBDQJykREYVF9T1jn3vuObz77rsQQuAXv/gFfD4fMjIyYDKZAAAmkwnp6enw+XywWCyqA1itI7SnDkNaWnLojWJEPGWl+BCtcyrezt14yjuYrKqLfuPGjQCA6upqVFRUYNWqVWEfdCC/vwvBoIjIvm4nLS0Z7e2duh4jUmIxazy9GejWonFOxeK5eyfxlHdgVqPRoPkCWfOsm/nz5+Po0aMYPXo0WltboSgKAEBRFLS1tcFms2ndJRER6Shk0Xd3d8Pn8/U/rq+vx9133w2r1Qq73Q6PxwMA8Hg8sNvtmoZtiIhIfyGHbi5fvoxVq1bh8uXLMBqNuPvuu/Haa6/BYDCgtLQUJSUlqKysREpKCtxudzQyExGRBiGLftSoUfjjH/94y9eys7NRVVUV8VBERBQ5/GYsEZHkWPRERJJj0RMRSY5FT0QkORY9EZHkWPRERJJj0RMRSU71Wjckn+SUYUgy8xSQXW+fomq9ois9V9F58XIUElG08V3+JZZkTkDB0zUht6vdWhiFNKSXxLtMqv8/x8cSX6QVh26IiCTHoicikhyLnohIcix6IiLJseiJiCTHoicikhyLnohIciHn0V+4cAHPPPMMPv30UyQmJuKee+7B+vXrYbFY0NDQAKfTiZ6eHowZMwabN2+G1WqNRm4iIlIp5BW9wWDA8uXLUVdXh9raWowbNw5btmxBMBjEmjVr4HQ6UVdXh9zcXGzZsiUamYmISIOQRZ+amoqpU6f2P548eTJaWlrQ2NgIs9mM3NxcAMDixYtx4MAB/ZISEVFYNC2BEAwG8fvf/x7Tp0+Hz+dDZmZm/2sWiwXBYBAdHR1ITU1VvU+rdYSWCGFTs9ZHrIinrCSXwZ578XbuxlPewWTVVPQbNmzA8OHD8dBDD+Htt98O+6AD+f1dCAZFRPZ1O2lpyWhvj49VPKKZNZ5OcoqOwZx78fQ+A+Ir78CsRqNB8wWy6qJ3u9345JNP8Nprr8FoNMJms6GlpaX/9UAgAKPRqOlqnoiI9KdqeuVLL72ExsZG7NixA4mJiQCAiRMn4sqVKzh+/DgAYM+ePcjPz9cvKRERhSXkFf1//vMfvP7668jKysLixYsBAGPHjsWOHTtQUVEBl8t1w/RKIiKKLSGL/t5778WHH354y9emTJmC2traiIciIqLI4TdjiYgkx6InIpIci56ISHIseiIiybHoiYgkx6InIpIci56ISHIseiIiybHoiYgkx6InIpIci56ISHIseiIiyWm68QgRyau3T1F1M5orPVfRefFyFBJRpLDoiQgAkHiXCQVP14TcrnZrIeLjvkx0HYduiIgkx6InIpJcyKJ3u92YPn06JkyYgH//+9/9zzc3N6OoqAizZs1CUVERzpw5o2dOIiIKU8iiz8vLw+7duzFmzJgbnne5XCguLkZdXR2Ki4vhdDp1C0lEROELWfS5ubmw2Ww3POf3++H1euFwOAAADocDXq8XgUBAn5RERBS2sGbd+Hw+ZGRkwGQyAQBMJhPS09Ph8/lgsVg07ctqHRFOBM3UTBuLpN4+BYl3mcLa9nZZ1e5Ty7GJwnG7czTa77PBiqe8g8k65NMr/f4uBINC12OkpSWjvT26E8LS0pJVTVUDrk1Xu57vTlnV7nPg/kJlJArHrc6voXifDUY85R2Y1Wg0aL5ADmvWjc1mQ2trKxRFAQAoioK2trabhniIiGjohVX0VqsVdrsdHo8HAODxeGC32zUP2xARkf5CDt28+OKLeOutt3D+/HksW7YMqamp2LdvH0pLS1FSUoLKykqkpKTA7XZHIy8REWkUsuiff/55PP/88zc9n52djaqqKl1CxbLklGFIMg/5RxtEQ+ZOa+IMfJ5r4sQONpZGSeYE1R+IEsmIa+LEHy6BQEQkOV7Rx4D//VV4sNMe1S43S0RfDiz6GKDlV+Gh2B8RxTcO3RARSY5FT0QkORY9EZHkWPRERJJj0RMRSY6zbohIF2qn+Wr5Bq3ab6bzW7k3YtETkS70+Aatlm+m81u5/8WhGyIiycXtFb2WX+GIiL7M4rboubgYEZE6HLohIpIci56ISHKDLvrm5mYUFRVh1qxZKCoqwpkzZyIQi4iIImXQY/QulwvFxcUoLCxETU0NnE4ndu7cGYlsEdHbpyDxLlPI+bycd0s0NGRaVjtW5/kPquj9fj+8Xi/efPNNAIDD4cCGDRsQCARU3yjcaDSEffz0kcNCbpN4lwk/fvGtkNv98vn70a0yi5rjatlOj33G+nZDeexY324ojz0U26l9jwLX3qdqj62mWwbTP7eSZE6IeN9cdz1rOJkNQgih+W/9v8bGRjz77LPYt29f/3Nz5szB5s2bcd9994W7WyIiiiB+GEtEJLlBFb3NZkNraysURQEAKIqCtrY22Gy2iIQjIqLBG1TRW61W2O12eDweAIDH44Hdblc9Pk9ERPob1Bg9ADQ1NaGkpAQXL15ESkoK3G43vva1r0UqHxERDdKgi56IiGIbP4wlIpIci56ISHIseiIiybHoiYgkJ13RX758GU8++SRmzpyJ/Px8vPPOO7fd9tSpU1iyZAnmzJmDOXPm4K9//WsUk16jJS8A9PT0YO7cuVi4cGGUEt5Ibd6DBw9i4cKFcDgcmDt3Ln71q19FLaOahfYURcG6deswY8YMzJw5E1VVVVHLN5CarDt27MDcuXNRUFCAhQsX4m9/+1v0g/4/LYsYfvzxx5g0aRLcbnf0Av4PtXn379+PgoICOBwOFBQU4Pz589ENCnVZ/X4/VqxYgYKCAsyePRulpaW4elXFzZWEZF555RXx3HPPCSGEaG5uFt/5zndEV1fXTdt1d3eL6dOnixMnTgghhOjr6xOBQCCqWYVQn/e68vJy8fOf/1wsWLAgWhFvoDZvQ0ODOHfunBBCiIsXL4oZM2aIY8eORSXj0qVLRXV1tRBCiOrqarF06dKbttm7d6949NFHhaIowu/3i2nTpomzZ89GJd9AarIeOnRIXLp0SQghxKlTp0ROTo64fPlyVHNepyavEEJcvXpVPPTQQ+Kpp54SmzZtimbEG6jJe/LkSTF79mzR1tYmhLh2vl65ciWqOYVQl/XFF1/s/3n29vaKRYsWiX379oXct3RX9H/5y19QVFQEAMjKysLEiRNx6NChm7bzeDzIycnB5MmTAQAJCQkYOXJkVLMC6vMCwPHjx3HmzBkUFg7dXbPU5p00aRIyMjIAAMnJycjOzsbnn3+ue77rC+05HA4A1xba83q9CAQCN2y3f/9+PPjggzAajbBYLJgxYwYOHDige75wsk6bNg3Dhl1byGvChAkQQqCjoyOqWbXkBYA33ngD3//+95GVlRXllP+lNu+vf/1rPProo0hLSwNw7Xw1m80xmdVgMKC7uxvBYBC9vb3o6+vrf5/diXRF39LSgjFjxvQ/ttlsOHfu3E3bffTRR0hISMBjjz2GwsJCrF27Fl988UU0owJQn/fSpUsoKyvDunXrohnvJmrzDtTU1ISGhgZ8+9vf1jsefD4fMjIyYDKZAAAmkwnp6enw+Xw3bZeZmdn/WM2/Y6iyDlRdXY2vfvWrGD16dLRi9lOb9/Tp0zh8+DAeeeSRqGccSG3epqYmnD17FkuWLMGCBQtQWVkJEeWvF6nNunLlSjQ3N+O73/1u/5+cnJyQ+4+7e8YuWLAALS0tt3zt73//u+r9BINBHDlyBHv27MGoUaNQXl6OTZs2oby8PFJRAUQub0VFBYqLi5GRkaHrzV0ilfe6trY2rFy5Ei6XS9WVB93e+++/j23btkX18w6t+vr68MILL6C8vLy/tGKdoij48MMP8eabb6K3txfLly9HZmYm5s+fP9TRbnLgwAFMmDABv/nNb9Dd3Y3HHnsMBw4cQH5+/h3/XtwV/d69e+/4emZmJj7//PP+9XZ8Ph+mTp1603Y2mw1Tp05Feno6AKCgoABr166N2bwffPABDh06hMrKSvT09OCLL75AQUEBamtrYzIvcO3X0WXLlmH58uWYPXt2RHPezsCF9kwm020X2rPZbGhpacG3vvUtADdf4cdSVgA4ceIE1qxZg8rKyiFbYkRN3vb2dnz66adYsWIFAODixYsQQqCrqwsbNmyIubzAtXM6Pz8fiYmJSExMRF5eHk6ePBnVolebddeuXSgrK4PRaERycjKmT5+Oo0ePhix66YZu8vPz8Yc//AEAcObMGfzzn//EtGnTbtpu9uzZOHnyJLq6ugAAhw4dwoQJE6KaFVCft7a2FvX19aivr8dLL72E8ePHR7zk1VCb98KFC1i2bBmWLFmCBx98MGr51C60l5+fj6qqKgSDQQQCARw8eBCzZs2KWk4tWU+ePImf/exn2L59+5De50FN3szMTBw9erT/XP3Rj36EH/zgB1EvebV5gWvj4YcPH4YQAn19fThy5Ai+/vWvx2TWsWPH9n8m1tvbi/feew/33ntv6ANE7jPj2NDd3S2eeOIJMWPGDHH//feLt99+u/+1l19+Wfzud7/rf7x3714xd+5c4XA4xOOPPy7a29tjOu91R44cGbJZN2rzbtq0SXzzm98U8+bN6//zpz/9KSoZP/roI7Fo0SJx//33i0WLFommpiYhhBDLly8XJ0+eFEJcmxXidDpFXl6eyMvLE3v27IlKtnCyLly4UEydOvWGn+Xp06djNu9A27dvH9JZN2ryKooiysrKRH5+vpgzZ44oKysTiqLEZNZPPvlEPPLII8LhcIjZs2eL0tJS0dfXF3LfXNSMiEhy0g3dEBHRjVj0RESSY9ETEUmORU9EJDkWPRGR5Fj0RESSY9ETEUmORU9EJLn/A7Almer5zTrAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qbINMiTKKNqK" + }, + "source": [ + "A seguir, reproduzimos o código acima apenas alterando o parâmetro estatístico a ser analisado (mínimo e máximo, por exemplo). \n", + "E assim, podemos perceber as nuances de cada métrica." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "u31uRxYWr2PG", + "outputId": "d2e77e40-f825-4826-a8a8-d764398d9dbe" + }, + "source": [ + "dados.loc[:,'g-0':'g-771'].describe().T['min'].hist(bins=30)" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 18 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD7CAYAAACL+TRnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAX+UlEQVR4nO3df0zV1/3H8df9MGFa0FsQ2wuasVl1dyWb07vYLMFtaANtULoljYxpk6rr0kbj6mAjGi8dahiIbeamX7rVtlnHSt2+qQy0oA1u3bqlKd3YZCxtY7RLy/XXRVZQ0a/33u8fpjezEz73AveHnOcjMZF7Pp/POedtfN1zD/fejyMUCoUEAJjUrEQPAAAQe4Q9ABiAsAcAAxD2AGAAwh4ADEDYA4ABCHsAMMAnEj2A0Vy4cFHBYPQfA8jKSpffPxSDEU0e1MgeNbJHjezFs0aW5dDtt99207akDvtgMDSmsP/oXIyOGtmjRvaokb1kqBHbOABgAMIeAAxA2AOAAQh7ADAAYQ8ABiDsAcAAUYX9T3/6Uy1YsEDvvPOOJKm7u1srV65UUVGR1q5dK7/fHz52tDYAQHxFHPb/+Mc/1N3drdzcXElSMBhUZWWlvF6vOjo65PF41NDQYNsWD1f/L6Ds7AzbPxnTp8ZtTACQSBF9qOrq1auqqanR7t279dBDD0mSenp6lJaWJo/HI0kqKyvTsmXLVFtbO2pbPKROSdGK77XYHte6u1SDcRgPACRaRGH/4x//WCtXrtTs2bPDj/l8PuXk5IR/zszMVDAY1MDAwKhtTqcz4sFlZaVHfOxYZWdnxLyPZGXy3CNFjexRI3vJUCPbsP/rX/+qnp4eVVRUxGM8N/D7h8b0MeNoCnvunJlr++zsDGPnHilqZI8a2YtnjSzLMeIi2Tbs33zzTZ04cULLli2TJJ0+fVrr1q3TmjVr1NfXFz6uv79flmXJ6XTK5XKN2AYAiD/bX9A+8sgj+uMf/6jOzk51dnbqzjvv1P79+7V+/XoNDw+rq6tLktTc3Kzi4mJJUn5+/ohtAID4G/O3XlqWpfr6elVXV+vKlSvKzc3Vrl27bNsAAPEXddh3dnaG/75o0SK1trbe9LjR2gAA8cUnaAHAAIQ9ABiAsAcAAxD2AGAAwh4ADEDYA4ABCHsAMABhDwAGIOwBwACEPQAYgLAHAAMQ9gBgAMIeAAxA2AOAAQh7ADAAYQ8ABojo5iWPPfaY3n//fVmWpWnTpmnbtm1yu90qLCxUamqq0tLSJEkVFRUqKCiQJHV3d8vr9d5wp6qsrKzYzQQAMKKIwr6urk4ZGRmSpFdffVVbtmzRyy+/LEnas2eP5s+ff8PxwWBQlZWVqq2tlcfj0b59+9TQ0KDa2toJHj4AIBIRbeN8FPSSNDQ0JIfDMerxPT09SktLk8fjkSSVlZWpvb19HMMEAIxHxPeg3bp1q15//XWFQiE988wz4ccrKioUCoW0ePFibd68WdOnT5fP51NOTk74mMzMTAWDQQ0MDMjpdE7sDAAAtiIO+507d0qSDh48qPr6ev385z9XU1OTXC6Xrl69qp07d6qmpkYNDQ0TNrisrPQJu9ZIsrMz7A+apEyee6SokT1qZC8ZahRx2H/kgQcekNfr1YULF+RyuSRJqampKi8v16OPPipJcrlc6uvrC5/T398vy7KiXtX7/UMKBkPRDjGqwp47Nxj19SeD7OwMY+ceKWpkjxrZi2eNLMsx4iLZds/+4sWL8vl84Z87Ozs1Y8YMpaWlaXDw+gRCoZAOHz4st9stScrPz9fw8LC6urokSc3NzSouLh73RAAAY2O7sr98+bI2bdqky5cvy7IszZgxQ42NjfL7/dq4caMCgYCCwaDmzp2r6upqSZJlWaqvr1d1dfUNb70EACSGbdjPnDlTBw4cuGnbwYMHRzxv0aJFam1tHfvIAAAThk/QAoABCHsAMABhDwAGIOwBwACEPQAYgLAHAAMQ9gBgAMIeAAxA2AOAAQh7ADAAYQ8ABiDsAcAAhD0AGICwBwADEPYAYADCHgAMQNgDgAEiuuH4Y489pvfff1+WZWnatGnatm2b3G63Tp48qaqqKg0MDMjpdKqurk55eXmSNGobACC+IlrZ19XV6be//a0OHjyotWvXasuWLZKk6upqlZeXq6OjQ+Xl5fJ6veFzRmsDAMRXRGGfkZER/vvQ0JAcDof8fr96e3tVUlIiSSopKVFvb6/6+/tHbQMAxF9E2ziStHXrVr3++usKhUJ65pln5PP5dMcddyglJUWSlJKSolmzZsnn8ykUCo3YlpmZGZuZAABGFHHY79y5U5J08OBB1dfXa9OmTTEb1EeystJj3kd2dob9QZOUyXOPFDWyR43sJUONIg77jzzwwAPyer268847debMGQUCAaWkpCgQCOjs2bNyuVwKhUIjtkXD7x9SMBiKdohRFfbcucGorz8ZZGdnGDv3SFEje9TIXjxrZFmOERfJtnv2Fy9elM/nC//c2dmpGTNmKCsrS263W21tbZKktrY2ud1uZWZmjtoGAIg/25X95cuXtWnTJl2+fFmWZWnGjBlqbGyUw+HQE088oaqqKu3bt0/Tp09XXV1d+LzR2gAA8WUb9jNnztSBAwdu2jZ37lz9+te/jroNABBffIIWAAxA2AOAAQh7ADAAYQ8ABiDsAcAAhD0AGICwBwADEPYAYADCHgAMQNgDgAEIewAwAGEPAAYg7AHAAIQ9ABiAsAcAAxD2AGAA25uXXLhwQd///vf1r3/9S6mpqfrUpz6lmpoaZWZmasGCBZo/f74s6/pzRn19vRYsWCDp+u0L6+vrFQgEdPfdd6u2tlZTp06N7WwAADdlu7J3OBxav369Ojo61Nraqjlz5qihoSHc3tzcrJaWFrW0tISD/uLFi9q2bZsaGxt19OhR3Xbbbdq/f3/sZgEAGJVt2DudTi1ZsiT888KFC9XX1zfqOa+99pry8/OVl5cnSSorK9Mrr7wyvpECAMbMdhvnPwWDQb344osqLCwMP7ZmzRoFAgEtXbpUGzduVGpqqnw+n3JycsLH5OTkyOfzTdyoAQBRiSrst2/frmnTpmn16tWSpN/97ndyuVwaGhpSZWWl9u7dq8cff3zCBpeVlT5h1xpJdnZGzPtIVibPPVLUyB41spcMNYo47Ovq6vTee++psbEx/AtZl8slSUpPT9eDDz6o5557Lvz4G2+8ET63r68vfGw0/P4hBYOhqM+LprDnzg1Gff3JIDs7w9i5R4oa2aNG9uJZI8tyjLhIjuitl08++aR6enq0d+9epaamSpL+/e9/a3h4WJJ07do1dXR0yO12S5IKCgp0/PhxnTp1StL1X+Led999450HAGCMbFf27777rp5++mnl5eWprKxMkjR79mytX79eXq9XDodD165d0xe/+EVt2rRJ0vWVfk1Njb7zne8oGAzK7XZr69atsZ0JAGBEtmE/b948vf322zdta21tHfG85cuXa/ny5WMfGQBgwvAJWgAwAGEPAAYg7AHAAIQ9ABiAsAcAAxD2AGAAwh4ADEDYA4ABCHsAMABhDwAGIOwBwACEPQAYgLAHAAMQ9gBgAMIeAAxA2AOAAQh7ADCAbdhfuHBB3/72t1VUVKQVK1Zow4YN6u/vlyR1d3dr5cqVKioq0tq1a+X3+8PnjdYGAIgv27B3OBxav369Ojo61Nraqjlz5qihoUHBYFCVlZXyer3q6OiQx+NRQ0ODJI3aBgCIP9uwdzqdWrJkSfjnhQsXqq+vTz09PUpLS5PH45EklZWVqb29XZJGbQMAxF9Ue/bBYFAvvviiCgsL5fP5lJOTE27LzMxUMBjUwMDAqG0AgPj7RDQHb9++XdOmTdPq1at19OjRWI0pLCsrPeZ9ZGdnxLyPZGXy3CNFjexRI3vJUKOIw76urk7vvfeeGhsbZVmWXC6X+vr6wu39/f2yLEtOp3PUtmj4/UMKBkNRnSNFV9hz5wajvv5kkJ2dYezcI0WN7FEje/GskWU5RlwkR7SN8+STT6qnp0d79+5VamqqJCk/P1/Dw8Pq6uqSJDU3N6u4uNi2DQAQf7Yr+3fffVdPP/208vLyVFZWJkmaPXu29u7dq/r6elVXV+vKlSvKzc3Vrl27JEmWZY3YBgCIP9uwnzdvnt5+++2bti1atEitra1RtwEA4otP0AKAAQh7ADAAYQ8ABiDsAcAAhD0AGICwBwADEPYAYADCHgAMQNgDgAEIewAwAGEPAAYg7AHAAIQ9ABiAsAcAAxD2AGAAwh4ADEDYA4ABIrrheF1dnTo6OvTBBx+otbVV8+fPlyQVFhYqNTVVaWlpkqSKigoVFBRIkrq7u+X1em+4LWFWVlaMpgEAGE1EK/tly5apqalJubm5/9W2Z88etbS0qKWlJRz0wWBQlZWV8nq96ujokMfjUUNDw8SOHAAQsYjC3uPxyOVyRXzRnp4epaWlyePxSJLKysrU3t4+thECAMYtom2c0VRUVCgUCmnx4sXavHmzpk+fLp/Pp5ycnPAxmZmZCgaDGhgYkNPpjPjaWVnp4x2erezsjJj3kaxMnnukqJE9amQvGWo0rrBvamqSy+XS1atXtXPnTtXU1Ezodo3fP6RgMBT1edEU9ty5waivPxlkZ2cYO/dIUSN71MhePGtkWY4RF8njejfOR1s7qampKi8v11/+8pfw4319feHj+vv7ZVlWVKt6AMDEGXPYX7p0SYOD15+tQqGQDh8+LLfbLUnKz8/X8PCwurq6JEnNzc0qLi6egOECAMYiom2cHTt26MiRIzp//rwefvhhOZ1ONTY2auPGjQoEAgoGg5o7d66qq6slSZZlqb6+XtXV1Te89RIAkBiOUCgU/aZ4nIxnz37F91psj2vdXWrsfiN7rfaokT1qZG9S7NkDAG4NhD0AGICwBwADEPYAYADCHgAMQNgDgAEIewAwAGEPAAYg7AHAAIQ9ABiAsAcAAxD2AGAAwh4ADEDYA4ABCHsAMABhDwAGsA37uro6FRYWasGCBXrnnXfCj588eVKrVq1SUVGRVq1apVOnTkXUBgCIP9uwX7ZsmZqampSbm3vD49XV1SovL1dHR4fKy8vl9XojagMAxJ9t2Hs8Hrlcrhse8/v96u3tVUlJiSSppKREvb296u/vH7UNAJAYEd1w/ON8Pp/uuOMOpaSkSJJSUlI0a9Ys+Xw+hUKhEdsyMzMnbuQAgIiNKezjZaQb506k7OyMmPeRrEyee6SokT1qZC8ZajSmsHe5XDpz5owCgYBSUlIUCAR09uxZuVwuhUKhEdui5fcPKRgMRX1eNIWN113fk00873h/q6JG9qiRvXjWyLIcIy6Sx/TWy6ysLLndbrW1tUmS2tra5Ha7lZmZOWobACAxbFf2O3bs0JEjR3T+/Hk9/PDDcjqdOnTokJ544glVVVVp3759mj59uurq6sLnjNYGAIg/RygUin6fJE7Gs42z4nsttse17i419iUoL7/tUSN71MjeLb2NAwC4tRD2AGAAwh4ADEDYA4ABCHsAMABhDwAGIOwBwACEPQAYgLAHAAMQ9gBgAMIeAAxA2AOAAQh7ADAAYQ8ABiDsAcAAhD0AGICwBwADjOmG4/+psLBQqampSktLkyRVVFSooKBA3d3d8nq9unLlinJzc7Vr1y5lZWWNe8AAgOiNO+wlac+ePZo/f37452AwqMrKStXW1srj8Wjfvn1qaGhQbW3tRHQHAIhSTLZxenp6lJaWJo/HI0kqKytTe3t7LLoCAERgQlb2FRUVCoVCWrx4sTZv3iyfz6ecnJxwe2ZmpoLBoAYGBuR0OieiSwBAFMYd9k1NTXK5XLp69ap27typmpoa3XvvvRMxthHvkj6RsrMzYt5HsjJ57pGiRvaokb1kqNG4w97lckmSUlNTVV5erkcffVQPPfSQ+vr6wsf09/fLsqyoV/V+/5CCwVDUY4qmsOfODUZ9/ckgOzvD2LlHihrZo0b24lkjy3KMuEge1579pUuXNDh4fRKhUEiHDx+W2+1Wfn6+hoeH1dXVJUlqbm5WcXHxeLoCAIzDuFb2fr9fGzduVCAQUDAY1Ny5c1VdXS3LslRfX6/q6uob3noJAEiMcYX9nDlzdPDgwZu2LVq0SK2treO5PABggvAJWgAwAGEPAAYg7AHAAIQ9ABiAsAcAAxD2AGAAwh4ADDAhX4SGW0fG9Kn6ZNr1f/bRvlZi+Mo1DX54OV7DAhBjhL1hPpn2Ca34Xovtca27S8U3ngCTB2GPW9Z/vkoZzUS/SpnofiO9XjTXBD6OsJ9A/KeNr4l+lXKzf7+Rtroi6fd/f1QS8TewRnI9iVdcGDvCfgJFGj7S+ALoZnjyGNnV/wtMaOi27i6N6FqpU1Im9HrAeBD2SS7Z99hvhSejyRS6kT5x8eSPjyPsIxDN9sxkEYvVMNsP4xfNExf1xn8yK8HGKJrVdaSiCdNEmOjVcDTzvXI1oLTUlIiOBRAZwj5BEhmmiRDpfKXrc54s2y7JLlHvLGKbKf6MDvtkD8hoTKZ9aYxforbhEvk7Jp5oRhfTsD958qSqqqo0MDAgp9Opuro65eXlxbLLqBCQmKzi+coxWRZMyf5mhkSLadhXV1ervLxcpaWlamlpkdfr1S9+8YtYdgkgBhK17WjqKjwWYhb2fr9fvb29eu655yRJJSUl2r59u/r7+5WZmRnRNSzLMeb+Z90+NamPS2TfyX5cIvtO9uMS2fdEHpc6JUXrdhyxPe5/frAsqlcOkfQd6RNNpG8UuHLlmoaGhkc9ZjxZFo3R+nGEQqFQLDrt6enRD37wAx06dCj82P33369du3bp7rvvjkWXAIAR8BXHAGCAmIW9y+XSmTNnFAgEJEmBQEBnz56Vy+WKVZcAgBHELOyzsrLkdrvV1tYmSWpra5Pb7Y54vx4AMHFitmcvSSdOnFBVVZU+/PBDTZ8+XXV1dfrMZz4Tq+4AACOIadgDAJIDv6AFAAMQ9gBgAMIeAAxA2AOAASZN2Le0tGjFihX63Oc+p1/+8pc3tF2+fFnf/e53de+996q4uFjHjh1L0CiTy8mTJ7VmzRqVlpbqvvvu009+8pNEDykpvfDCCyouLtaKFStUWsqX4o3kjTfekNvt/q//f5B++MMfqri4WCtXrlRZWZmOHz8e9zFMmq84drvdeuqpp/Szn/3sv9r279+v9PR0HT16VKdOndK3vvUtHTlyRLfddlsCRpo8du3apaKiIq1evVoXL15USUmJvvKVr+jzn/98ooeWNI4cOaL29nb95je/UXp6us6fP5/oISWloaEhNTQ0aOnSpYkeSlJaunSptmzZoilTpujYsWN6/PHH9eqrr8Z1DJNmZT9//nzdddddsqz/ntIrr7yiVatWSZLy8vKUn5+v1157Ld5DTDoOh0ODg9e/7HV4eFgOh4MPvX3Ms88+qw0bNig9PV2SNHPmzASPKDn96Ec/0rp163T77bcneihJ6Wtf+5qmTJkiSVq4cKFOnz6tYDAY1zFMmrAfTV9fn3Jzc8M/u1wunT59OoEjSg5btmzR4cOHVVBQoMLCQq1bt06zZ89O9LCSyokTJ/S3v/1NZWVl+sY3vqEDBw4kekhJ5/e//70GBwdVXFyc6KHcEpqamvTVr371pgvTWLpltnG+/vWvq6+v76Ztf/rTn5SSwj1LP86uZi+99JJKS0u1fv16nT17VmvWrFF+fr6+8IUvxHmkiWNXo0AgIJ/Pp1/96le6cOGCvvnNb+rTn/60vvSlL8V5pIkzWo3a29u1e/fu8FeZmyrSfDp06JBaW1vV1NQUz+FJuoXC/uWXXx7zuTk5Ofrggw/CWxQ+n09LliyZqKElLbuavfDCC+F9w1mzZumee+7Rm2++aVTY29UoJydHJSUlsixLWVlZ+vKXv6y///3vRoX9aDXq6urSuXPn9OCDD0qSLly4oGPHjmlgYEAbNmyI1xATLpJ8Onr0qJ566ik9//zzCdkONGIbp7i4WC+99JIk6dSpUzp+/LgKCgoSPKrEmz17tv7whz9Iuv4Ltrfeekvz5s1L8KiSS0lJSbhGly5d0ltvvaXPfvazCR5V8vB4PPrzn/+szs5OdXZ2qqioSBs3bjQq6CNx7Ngx1dbWav/+/QnbKp00343T1tam+vp6ffjhh5oyZYqmTp2qZ599VnfddZcuXbqkqqoq/fOf/5RlWaqsrNTy5csTPeSE6+np0Y4dO3Tp0iVdu3ZN999/P/9JP2Z4eFjbtm1Tb2+vJKm0tFSPPPJIgkeVvKqqqpSfn6/Vq1cneihJ5Z577tGUKVNueAPE888/H9dfaE+asAcAjMyIbRwAMB1hDwAGIOwBwACEPQAYgLAHAAMQ9gBgAMIeAAxA2AOAAf4fNSleujU+jBEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "bYnsG81Sr8mc", + "outputId": "128f1443-6844-4043-a12d-b9e9fbe32a4b" + }, + "source": [ + "dados.loc[:,'g-0':'g-771'].describe().T['max'].hist(bins=30)" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 19 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD7CAYAAACL+TRnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZgUlEQVR4nO3df2xV9eH/8VdP+dw7K20vLQVugYkjYu4kG4ObmWxDs+IGW6qSLYtNI0sU5iKToXzKJPxoWaHrt6UfN1RYmRCTJUSiUYsXGcWlmgWyMIiSrcM4g+jAXqHc0tkWSuWe8/mDD/cr9se9tz23t5f38/EX977PPed1S/u677577rlZjuM4AgDc0Kx0BwAApB5lDwAGoOwBwACUPQAYgLIHAANQ9gBgAMoeAAwwLt0BhnLhQo9s2/23ARQWjlck0u36ft2WKTmlzMlKTvdlSlYTclpWliZMuHnAsaTK/tlnn9UzzzyjUCikWbNm6fjx46qsrNTly5c1depUbdmyRYWFhZI05FiibNtJSdlf23cmyJScUuZkJaf7MiWryTkTXsb55z//qePHj2vq1Kn/F8bW6tWrVVlZqebmZgWDQTU0NMQdAwCMvoTKvq+vT9XV1dq4cWPsvtbWVnm9XgWDQUlSWVmZDhw4EHcMADD6ElrG2bp1q+677z5NmzYtdl84HFZxcXHsdkFBgWzbVmdn55BjPp8v4XCFheMT3jZZRUW5Kdu3mzIlp5Q5WcnpvkzJanLOuGX/zjvvqLW1VRUVFa4fPJ5IpDsla1dFRblqb+9yfb9uy5ScUuZkJaf7MiWrCTktK2vQSXLcsj969KhOnjypBQsWSJI++eQTLV26VEuWLFFbW1tsu46ODlmWJZ/PJ7/fP+gYAGD0xV2zf+SRR3To0CG1tLSopaVFU6ZM0a5du7Rs2TL19vbq2LFjkqQ9e/Zo0aJFkqTZs2cPOgYAGH3DPs/esizV19erqqrqutMr440BAEZf1lj+8BLW7DMjp5Q5WcnpvkzJmu6cuXk36Uve+PPrvs+i+k/nxWEdY0Rr9gCAkfuSd5zu/e+9cbcL/c/9KTk+18YBAANQ9gBgAMoeAAxA2QOAASh7ADAAZQ8ABqDsAcAAlD0AGICyBwADUPYAYADKHgAMQNkDgAEoewAwAGUPAAag7AHAAJQ9ABggoQ8vWb58uc6cOSPLspSTk6MNGzYoEAiopKREHo9HXq9XklRRUaH58+dLko4fP67KysrrPpawsLAwdc8EADCohMq+rq5Oubm5kqQ///nPWrt2rV599VVJ0tNPP61Zs2Zdt71t21q9erVqa2sVDAa1fft2NTQ0qLa21uX4AIBEJLSMc63oJam7u1tZWVlDbt/a2iqv16tgMChJKisr04EDB0YQEwAwEgl/Bu26det0+PBhOY6jnTt3xu6vqKiQ4ziaN2+eVq1apby8PIXDYRUXF8e2KSgokG3b6uzslM/nc/cZAADiSrjsa2pqJElNTU2qr6/Xc889p927d8vv96uvr081NTWqrq5WQ0ODa+EG+5R0NxQV5cbfaAzIlJxS5mQlp/syJavJORMu+2sWL16syspKXbhwQX6/X5Lk8XhUXl6uRx99VJLk9/vV1tYWe0xHR4csy0p6Vh+JdMu2nWQjxlVUlKv29i7X9+u2TMkpZU5WcrovU7KmO2cyBT7cnJaVNegkOe6afU9Pj8LhcOx2S0uL8vPz5fV61dV1NZDjONq/f78CgYAkafbs2ert7dWxY8ckSXv27NGiRYuGFR4AMHJxZ/aXLl3SypUrdenSJVmWpfz8fDU2NioSiWjFihWKRqOybVszZ85UVVWVJMmyLNXX16uqquq6Uy8BAOkRt+wnTpyoF198ccCxpqamQR83d+5chUKh4ScDALiGd9ACgAEoewAwAGUPAAag7AHAAJQ9ABiAsgcAA1D2AGAAyh4ADEDZA4ABKHsAMABlDwAGoOwBwACUPQAYgLIHAANQ9gBgAMoeAAxA2QOAASh7ADBA3I8llKTly5frzJkzsixLOTk52rBhgwKBgE6dOqU1a9aos7NTPp9PdXV1mjFjhiQNOQYAGF0Jzezr6ur02muvqampSQ8//LDWrl0rSaqqqlJ5ebmam5tVXl6uysrK2GOGGgMAjK6Eyj43Nzf27+7ubmVlZSkSiejEiRMqLS2VJJWWlurEiRPq6OgYcgwAMPoSWsaRpHXr1unw4cNyHEc7d+5UOBzW5MmTlZ2dLUnKzs7WpEmTFA6H5TjOoGMFBQUJhyssHJ/k00lcUVFu/I3GgEzJKWVOVnK6L1Oympwz4bKvqamRJDU1Nam+vl4rV650PcwXRSLdsm3H9f0WFeWqvb3L9f26LVNySpmTlZzuy5Ss6c6ZTIEPN6dlZQ06SU76bJzFixfryJEjmjJlis6ePatoNCpJikajOnfunPx+v/x+/6BjAIDRF7fse3p6FA6HY7dbWlqUn5+vwsJCBQIB7du3T5K0b98+BQIBFRQUDDkGABh9cZdxLl26pJUrV+rSpUuyLEv5+flqbGxUVlaWNm7cqDVr1mj79u3Ky8tTXV1d7HFDjQEARlfcsp84caJefPHFAcdmzpypl156KekxAMDo4h20AGAAyh4ADEDZA4ABKHsAMABlDwAGoOwBwACUPQAYgLIHAANQ9gBgAMoeAAxA2QOAASh7ADAAZQ8ABqDsAcAAlD0AGICyBwADUPYAYIC4n1R14cIF/epXv9K///1veTwe3XLLLaqurlZBQYFuv/12zZo1S5Z19TWjvr5et99+u6Srn1VbX1+vaDSqO+64Q7W1tbrppptS+2wAAAOKO7PPysrSsmXL1NzcrFAopOnTp6uhoSE2vmfPHu3du1d79+6NFX1PT482bNigxsZGvfHGG7r55pu1a9eu1D0LAMCQ4pa9z+fTnXfeGbs9Z84ctbW1DfmYv/zlL5o9e7ZmzJghSSorK9Of/vSnkSUFAAxb3GWcz7NtWy+88IJKSkpi9y1ZskTRaFR33XWXVqxYIY/Ho3A4rOLi4tg2xcXFCofD7qUGACQlqbLftGmTcnJy9OCDD0qS3nrrLfn9fnV3d2v16tXatm2bnnjiCdfCFRaOd21fX1RUlJuyfbspU3JKmZOVnO7LlKwm50y47Ovq6vTRRx+psbEx9gdZv98vSRo/frx+8pOf6Pnnn4/df+TIkdhj29raYtsmIxLplm07ST8unqKiXLW3d7m+X7dlSk4pc7KS032ZkjXdOZMp8OHmtKysQSfJCZ16+dRTT6m1tVXbtm2Tx+ORJP3nP/9Rb2+vJOnKlStqbm5WIBCQJM2fP1//+Mc/9OGHH0q6+kfcH/zgB8MKDwAYubgz+/fff187duzQjBkzVFZWJkmaNm2ali1bpsrKSmVlZenKlSv6xje+oZUrV0q6OtOvrq7Wz3/+c9m2rUAgoHXr1qX2mQAABhW37G+77Ta99957A46FQqFBH3fPPffonnvuGX4yAIBreActABiAsgcAA1D2AGAAyh4ADEDZA4ABKHsAMABlDwAGoOwBwACUPQAYgLIHAANQ9gBgAMoeAAxA2QOAASh7ADAAZQ8ABqDsAcAAlD0AGICyBwADxC37Cxcu6Gc/+5kWLlyoe++9V4899pg6OjokScePH9d9992nhQsX6uGHH1YkEok9bqgxAMDoilv2WVlZWrZsmZqbmxUKhTR9+nQ1NDTItm2tXr1alZWVam5uVjAYVENDgyQNOQYAGH1xy97n8+nOO++M3Z4zZ47a2trU2toqr9erYDAoSSorK9OBAwckacgxAMDoG5fMxrZt64UXXlBJSYnC4bCKi4tjYwUFBbJtW52dnUOO+Xy+hI9XWDg+mXhJKSrKTdm+3ZQpOaXMyUpO92VKVpNzJlX2mzZtUk5Ojh588EG98cYbrof5okikW7btuL7foqJctbd3ub5ft2VKTilzspLTfZmSNd05kynw4ea0rKxBJ8kJl31dXZ0++ugjNTY2yrIs+f1+tbW1xcY7OjpkWZZ8Pt+QYwCA0ZfQqZdPPfWUWltbtW3bNnk8HknS7Nmz1dvbq2PHjkmS9uzZo0WLFsUdAwCMvrgz+/fff187duzQjBkzVFZWJkmaNm2atm3bpvr6elVVVeny5cuaOnWqtmzZIkmyLGvQMQDA6Itb9rfddpvee++9Acfmzp2rUCiU9BgAYHTxDloAMABlDwAGoOwBwACUPQAYgLIHAANQ9gBgAMoeAAxA2QOAASh7ADAAZQ8ABqDsAcAAlD0AGICyBwADUPYAYADKHgAMQNkDgAEoewAwQEIfOF5XV6fm5mZ9/PHHCoVCmjVrliSppKREHo9HXq9XklRRUaH58+dLko4fP67KysrrPpawsLAwRU8DADCUhGb2CxYs0O7duzV16tR+Y08//bT27t2rvXv3xoretm2tXr1alZWVam5uVjAYVENDg7vJAQAJS6jsg8Gg/H5/wjttbW2V1+tVMBiUJJWVlenAgQPDSwgAGLGElnGGUlFRIcdxNG/ePK1atUp5eXkKh8MqLi6ObVNQUCDbttXZ2SmfzzfSQwIAkjSist+9e7f8fr/6+vpUU1Oj6upqV5drCgvHu7avLyoqyk3Zvt2UKTmlzMlKTvdlSlaTc46o7K8t7Xg8HpWXl+vRRx+N3d/W1hbbrqOjQ5ZlJT2rj0S6ZdvOSCIOqKgoV+3tXa7v122ZklPKnKzkdF+mZE13zmQKfLg5LStr0EnysE+9vHjxorq6rgZyHEf79+9XIBCQJM2ePVu9vb06duyYJGnPnj1atGjRcA8FABihhGb2mzdv1sGDB3X+/Hk99NBD8vl8amxs1IoVKxSNRmXbtmbOnKmqqipJkmVZqq+vV1VV1XWnXgIA0iOhsl+/fr3Wr1/f7/6mpqZBHzN37lyFQqHhJwMAuIZ30AKAASh7ADAAZQ8ABqDsAcAAlD0AGICyBwADUPYAYADKHgAMQNkDgAEoewAwAGUPAAag7AHAAJQ9ABiAsgcAA1D2AGAAyh4ADEDZA4ABKHsAMEDcsq+rq1NJSYluv/12/etf/4rdf+rUKT3wwANauHChHnjgAX344YcJjQEARl/csl+wYIF2796tqVOnXnd/VVWVysvL1dzcrPLyclVWViY0BgAYfXHLPhgMyu/3X3dfJBLRiRMnVFpaKkkqLS3ViRMn1NHRMeQYACA9xg3nQeFwWJMnT1Z2drYkKTs7W5MmTVI4HJbjOIOOFRQUJHWcwsLxw4mXkKKi3JTt202ZklPKnKzkdF+mZDU557DKfrREIt2ybcf1/RYV5aq9vcv1/botU3JKmZOVnO7LlKzpzplMgQ83p2VlDTpJHlbZ+/1+nT17VtFoVNnZ2YpGozp37pz8fr8cxxl0DACQHsM69bKwsFCBQED79u2TJO3bt0+BQEAFBQVDjgEA0iPuzH7z5s06ePCgzp8/r4ceekg+n0+vv/66Nm7cqDVr1mj79u3Ky8tTXV1d7DFDjQEARl/csl+/fr3Wr1/f7/6ZM2fqpZdeGvAxQ40BAEYf76AFAANQ9gBgAMoeAAxA2QOAASh7ADAAZQ8ABqDsAcAAlD0AGICyBwADUPYAYADKHgAMQNkDgAEoewAwAGUPAAag7AHAAJQ9ABiAsgcAAwzrA8c/r6SkRB6PR16vV5JUUVGh+fPn6/jx46qsrNTly5c1depUbdmyRYWFhSMODABI3ojLXpKefvppzZo1K3bbtm2tXr1atbW1CgaD2r59uxoaGlRbW+vG4QAASUrJMk5ra6u8Xq+CwaAkqaysTAcOHEjFoQAACXBlZl9RUSHHcTRv3jytWrVK4XBYxcXFsfGCggLZtq3Ozk75fD43DgkASMKIy3737t3y+/3q6+tTTU2Nqqur9b3vfc+NbCosHO/KfgZSVJSbsn27KVNySpmTlZzuy5SsJucccdn7/X5JksfjUXl5uR599FH99Kc/VVtbW2ybjo4OWZaV9Kw+EumWbTsjjdhPUVGu2tu7XN+v2zIlp5Q5WcnpvkzJmu6cyRT4cHNaVtagk+QRrdlfvHhRXV1XQzmOo/379ysQCGj27Nnq7e3VsWPHJEl79uzRokWLRnIoAMAIjGhmH4lEtGLFCkWjUdm2rZkzZ6qqqkqWZam+vl5VVVXXnXoJAEiPEZX99OnT1dTUNODY3LlzFQqFRrJ7AIBLeActABiAsgcAA1D2AGAAyh4ADEDZA4ABKHsAMABlDwAGcOVCaEA65ObdpC95438L916+oq5PL41CImDsouyRsb7kHad7/3tv3O1C/3O/xv6VW4DUYhkHAAzAzB6jItElF4lll9HEUpg5KHuMikSXXCTp5f9XmjHXHc90LIWZg7LHmOP5r+yEC2gsY9aMsYSyx4ASLarLfVF5PdmSxu6nAPV9Fr0u22A53S7dG2nW/MWv4RddG8uEFy5TX4Qp+zRIZv06Lz8nVqZDSWdRjfVZeDK/KSRSusn8/yVisCId6L7Pv7gOxe3vh0S/hokuwSWaL5mvdSJfm2vZxvL3Q6qM/YQ3oGTWr5Mp0xvpGzMd4s1eP8/NF7hEi/TaPsfybwtuv7Cm6mfFTclMjNKJn3rDZMo3ZjrcKH8ryATJvLDCHZS9i5g1Y6wY62WaCS+sY/1rmKyUNtOpU6e0Zs0adXZ2yufzqa6uTjNmzEjlIZMynD9CxjPWv4Fhhkwo07HuRvsaprTsq6qqVF5ervvvv1979+5VZWWl/vjHP6bykEm5kf4IeaPNQgC4K2VlH4lEdOLECT3//POSpNLSUm3atEkdHR0qKChIaB+WlZWqeLF9T5pwU0Lbp2u7RLf1/Fe2lm4+GHe7Xeu/f8M8ZxO3S+exx/p26Ty229sNt/uGelyW4zjOsPYaR2trq5588km9/vrrsft++MMfasuWLbrjjjtScUgAwCC4EBoAGCBlZe/3+3X27FlFo1FJUjQa1blz5+T3+1N1SADAIFJW9oWFhQoEAtq3b58kad++fQoEAgmv1wMA3JOyNXtJOnnypNasWaNPP/1UeXl5qqur01e+8pVUHQ4AMIiUlj0AYGzgD7QAYADKHgAMQNkDgAEoewAwgFGXaFy+fLnOnDkjy7KUk5OjDRs2KBAIpDvWoJ599lk988wzCoVCmjVrVrrjDKikpEQej0der1eSVFFRofnz56c5VX+XL1/Wb37zG/31r3+V1+vVnDlztGnTpnTH6ufMmTP6xS9+Ebvd1dWl7u5u/e1vf0tjqoG9+eab2rp1qxzHkeM4euyxx/T9738/3bH6eeutt7R161ZduXJF+fn5qq2t1fTp09MdS3V1dWpubtbHH3983c94yi4g6Rjk008/jf37jTfecBYvXpzGNENrbW11li5d6nz3u9913nvvvXTHGdRYz3fNpk2bnJqaGse2bcdxHKe9vT3NiRKzefNm59e//nW6Y/Rj27YTDAZj//fvvvuuM2fOHCcajaY52fU6Ozudb37zm84HH3zgOI7jNDU1OQ8//HCaU1119OhRp62trd/P0JIlS5ympibHca7mXbJkiSvHM2oZJzf3/18Vsru7W1lZqbvQ2kj09fWpurpaGzduTHeUG0JPT4+ampq0cuXK2P/5xIkT05wqvr6+PoVCIf34xz9Od5QBWZalrq6rnzfV1dWlSZMmybLGVqV89NFHmjhxom699VZJ0t13361Dhw6po6MjzcmkYDDY74oC1y4gWVpaKunqBSRPnDjhSl6jlnEkad26dTp8+LAcx9HOnTvTHWdAW7du1X333adp06alO0pCKioq5DiO5s2bp1WrVikvLy/dka5z+vRp+Xw+Pfvsszpy5IhuvvlmrVy5UsFgMN3RhtTS0qLJkyePyQsHZmVl6Xe/+52WL1+unJwc9fT06A9/+EO6Y/Vz66236vz58/r73/+ur33tawqFQpKkcDg8Jt/NHw6HNXnyZGVnX/38jOzsbE2aNMmVvGPrZXgU1NTU6K233tITTzyh+vr6dMfp55133lFra6vKy8vTHSUhu3fv1muvvaaXX35ZjuOouro63ZH6iUajOn36tL761a/qlVdeUUVFhVasWKHu7u50RxvSyy+/PGZn9VeuXNGOHTu0fft2vfnmm/r973+vxx9/XD09PemOdp3c3Fz99re/VW1trX70ox8pEokoLy8vVqYmMa7sr1m8eLGOHDmiCxcupDvKdY4ePaqTJ09qwYIFKikp0SeffKKlS5fq0KFD6Y42oGu/hno8HpWXl+vtt99Oc6L+/H6/xo0bF/vV+Otf/7omTJigU6dOpTnZ4M6ePaujR4/q3nvvTXeUAb377rs6d+6c5s2bJ0maN2+ebrrpJp08eTLNyfr71re+pRdeeEGvvPKKHnzwQfX29urLX/5yumMNKJUXkDSm7Ht6ehQOh2O3W1palJ+fL5/Pl8ZU/T3yyCM6dOiQWlpa1NLSoilTpmjXrl36zne+k+5o/Vy8eDG2Zus4jvbv3z8mz24qKCjQnXfeqcOHD0u6erZDJBLRLbfckuZkg3v11Vd19913a8KECemOMqApU6bok08+0QcffCDp6nWwIpHImCzR9vZ2SZJt23rqqadUVlamnJycNKcaWCovIGnMtXHOnz+v5cuX69KlS7IsS/n5+XryySfH5Hro55WUlKixsXFMnnp5+vRprVixQtFoVLZta+bMmVq/fr0mTZqU7mj9nD59WmvXrlVnZ6fGjRunxx9/XHfffXe6Yw1q4cKFWrdune666650RxnUa6+9pueeey72R+9f/vKXuueee9Kcqr9169bp7bff1meffaZvf/vbWrt2bexU4XTavHmzDh48qPPnz2vChAny+Xx6/fXXU3YBSWPKHgBMZswyDgCYjLIHAANQ9gBgAMoeAAxA2QOAASh7ADAAZQ8ABqDsAcAA/wvWv8p8voSzagAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "g8FvuJapKhco" + }, + "source": [ + "É muito interessante que a gente replique a análise desenvolvida para os ```genes (g)```, nos ```tipos celulares (c)```. \n", + "Por isso, vamos copiar a linha de código que produz os histogramas mas aqui, vamos modificar o argumento ```loc[:,'g-0':'g-771'] -> loc[:,'c-0':'c-99']``` e a quantidade de bins ```hist(bins=100) -> hist(bins=50)```." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "hu2jZ2snuJ09", + "outputId": "bc773912-7bf2-49de-e099-0b406b6ed129" + }, + "source": [ + "dados.loc[:,'c-0':'c-99'].describe().T['mean'].hist(bins=50)" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD7CAYAAAB68m/qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAATq0lEQVR4nO3de2xUZf7H8c9Ma1sK05SWaR0BRY0gugpJ2XRj1j+2VEFo6YLBapVNugvGGLwkXmBZVi41sOOFSFYJEKMxuwQ3JAppUesFAglegq6sIihut2hjC4UpKy1gCzNn/9gf/em2Mz0z58yFh/frL/r0zPN8v3NOPzk5nT54LMuyBAC44HnTXQAAwB0EOgAYgkAHAEMQ6ABgCAIdAAxBoAOAIQh0ADBEdroLOHHilCKR5H0Uvrh4hEKhnqTNnyr0kVnoI7OY0IfdHrxej0aOHD7o99Ie6JGIldRAP7+GCegjs9BHZjGhD6c98MgFAAxBoAOAIQh0ADAEgQ4AhiDQAcAQBDoAGIJABwBDpP1z6Eg9X8Ew5eUOPPU/9J5T98kzaagIgBsI9ItQXm62qh/ZNmC88dkadaehHgDu4JELABiCQAcAQxDoAGAIAh0ADEGgA4AhCHQAMASBDgCGINABwBAEOgAYgkAHAEPYCvRgMKiKigpNmDBBhw4dkiSdOHFCCxYs0LRp01RdXa2FCxeqq6srqcUCAKKzFehTp07Vpk2bNHr06P4xj8ej+fPnq7m5WY2NjRo7dqyeeeaZpBUKAIjNVqBPmTJFgUDgJ2OFhYUqLy/v/3ry5Mlqb293tzoAgG2uPEOPRCLavHmzKioq3JgOAJAAV7bPbWhoUH5+vu655564X1tcPMKNEmLy+31JXyMVUtGHKWukAn1kFhP6cNqD40APBoP65ptvtH79enm98d/wh0I9ikQsp2VE5ff7dOzYhb/Lt5t9xLpokv1ecT4yC31kDrs9eL2eqDfCjgJ9zZo12r9/vzZu3KicnBwnUwEAHLIV6E8++aTefvttHT9+XPX19SosLNRzzz2nDRs2aNy4cbrzzjslSWPGjNELL7yQ1IIBAIOzFehLly7V0qVLB4x/9dVXrhcEAEgMfykKAIYg0AHAEAQ6ABiCQAcAQxDoAGAIAh0ADEGgA4AhCHQAMASBDgCGINABwBAEOgAYwpX90JGZfAXDlJfLKQYuFvy0GywvN1vVj2wbMN74bE0aqgGQbDxyAQBDEOgAYAgCHQAMQaADgCEIdAAwBIEOAIYg0AHAEAQ6ABiCQAcAQxDoAGCIIQM9GAyqoqJCEyZM0KFDh/rHW1tbVVtbq2nTpqm2tlaHDx9OZp0AgCEMGehTp07Vpk2bNHr06J+ML1u2THV1dWpublZdXZ2eeOKJpBUJABjakIE+ZcoUBQKBn4yFQiEdOHBAVVVVkqSqqiodOHBAXV1dyakSADCkhJ6hd3R0qLS0VFlZWZKkrKwslZSUqKOjw9XiAAD2pX373OLiEUlfw+/3JX2NVEhFH6askQr0kVlM6MNpDwkFeiAQ0NGjRxUOh5WVlaVwOKzOzs4Bj2bsCIV6FIlYiZRhi9/v07Fj3UmbP1US6SORiyPZ79XFfD4yEX1kDrs9eL2eqDfCCT1yKS4u1sSJE9XU1CRJampq0sSJE1VUVJTIdAAAFwx5h/7kk0/q7bff1vHjx1VfX6/CwkJt375dy5cv1+LFi7Vu3ToVFBQoGAymol4AQBRDBvrSpUu1dOnSAeNXX321tmzZkpSiAADx4y9FAcAQBDoAGIJABwBDEOgAYAgCHQAMQaADgCEIdAAwBIEOAIYg0AHAEAQ6ABiCQAcAQxDoAGAIAh0ADEGgA4AhCHQAMASBDgCGINABwBAEOgAYgkAHAEMQ6ABgCAIdAAxBoAOAIQh0ADBEttMJdu7cqbVr18qyLFmWpYULF+rWW291ozYAQBwcBbplWXr88ce1adMmjR8/Xl9++aXuuusuVVZWyuvl5h8AUslx6nq9XnV3d0uSuru7VVJSQpgDQBo4ukP3eDx67rnndP/99ys/P1+nTp3Sxo0b3aoNABAHR4F+7tw5bdiwQevWrVNZWZk++eQTPfzww9q+fbuGDx9ua47i4hFOSrDF7/clfY1USEUfpqyRCvSRWUzow2kPjgL94MGD6uzsVFlZmSSprKxMw4YNU0tLi2688UZbc4RCPYpELCdlxOT3+3TsWHfS5k+VRPpI5OJI9nt1MZ+PTEQfmcNuD16vJ+qNsKOH3ZdeeqmOHDmif/3rX5KklpYWhUIhXX755U6mBQAkwNEdut/v1/Lly/XQQw/J4/FIklatWqXCwkJXigMA2Of4c+izZs3SrFmz3KgFAOAAny8EAEMQ6ABgCAIdAAxBoAOAIQh0ADAEgQ4AhiDQAcAQBDoAGIJABwBDEOgAYAgCHQAMQaADgCEIdAAwBIEOAIYg0AHAEAQ6ABiCQAcAQxDoAGAIAh0ADEGgA4AhCHQAMASBDgCGINABwBDZTifo7e3VqlWr9MEHHyg3N1eTJ09WQ0ODG7UBAOLgONCffvpp5ebmqrm5WR6PR8ePH3ejLgBAnBwF+qlTp7R161bt2rVLHo9HkjRq1ChXCgMAxMfRM/S2tjYVFhbq+eef15w5czRv3jx9/PHHbtUGAIiDozv0cDistrY2XXfddVq0aJH+8Y9/6L777tM777yjESNG2JqjuNjecU74/b6kr+GmvrNh5VySNWC8oDBfuYOM954NDzqeiFS8Vxfa+YiGPjKLCX047cFRoAcCAWVnZ6uqqkqSNGnSJI0cOVKtra264YYbbM0RCvUoErGclBGT3+/TsWPdSZs/Gfx+n6of2TZgvPHZmrjH45Xs9+pCPB+DoY/MYkIfdnvwej1Rb4QdPXIpKipSeXm59uzZI0lqbW1VKBTSFVdc4WRaAEACHH/KZcWKFVqyZImCwaCys7P11FNPqaCgwI3aAABxcBzoY8eO1V/+8hc3agEAOMBfigKAIQh0ADAEgQ4AhiDQAcAQBDoAGIJABwBDEOgAYAgCHQAMQaADgCEIdAAwBIEOAIYg0AHAEAQ6ABiCQAcAQxDoAGAIAh0ADEGgA4AhCHQAMASBDgCGINABwBAEOgAYgkAHAEMQ6ABgCNcC/fnnn9eECRN06NAht6YEAMTBlUD/4osvtG/fPo0ePdqN6QAACXAc6H19fVq5cqWWL1/uQjkAgEQ5DvS1a9dq1qxZGjNmjBv1AAASlO3kxZ9++qn279+vRx99NOE5iotHOCnBFr/fl/Q1EtF3NqycS7LSXUa/vrPhQd+r3rNh5Q5SZ7TxofoabI1or0nXeDQ/Pv7HfWTauYxHpv58xMuEPpz24CjQ9+7dq5aWFk2dOlWSdOTIEf3ud7/T6tWr9ctf/tLWHKFQjyIRy0kZMfn9Ph071p20+Z3w+32qfmTbgPHGZ2vSUI2Uc0lW1HriHY/2nkc7H7Hei3QcH41b82SKTP75iIcJfdjtwev1RL0RdhTo9957r+69997+rysqKrR+/XqNHz/eybQAgATwOXQAMISjO/T/tWPHDjenAwDEgTt0ADAEgQ4AhiDQAcAQBDoAGIJABwBDEOgAYAgCHQAMQaADgCEIdAAwBIEOAIYg0AHAEK7u5ZJKvoJhyssdWP4PvefUffJMGirCeVH3Ve8LSzJj32ogE12wgZ6Xmx11X+oLe1fkC1+8+6qf/x4AZ3jkAgCGINABwBAEOgAYgkAHAEMQ6ABgCAIdAAxBoAOAIQh0ADAEgQ4AhiDQAcAQjv70/8SJE3r88cf17bffKicnR1dccYVWrlypoqIit+oDANjk6A7d4/Fo/vz5am5uVmNjo8aOHatnnnnGrdoAAHFwFOiFhYUqLy/v/3ry5Mlqb293XBQAIH6u7bYYiUS0efNmVVRUxPW64uIRbpUgafCtW/1+n/rOhpVzSZara/3vutHmT/bapot3u91kHz+YqFsGnw0rd5Bzn0nXhCnbGZvQh9MeXAv0hoYG5efn65577onrdaFQjyIRK+71ojUea+vWY8eSt7Gu3++LuTXsYGubcAGmQrzvnRvHR5PIdZeO69Euv9+XEXU4ZUIfdnvwej1Rb4RdCfRgMKhvvvlG69evl9fLB2cAIB0cB/qaNWu0f/9+bdy4UTk5OW7UBABIgKNA//rrr7VhwwaNGzdOd955pyRpzJgxeuGFF1wpDgBgn6NAv+aaa/TVV1+5VQsAwAEeeAOAIQh0ADAEgQ4AhiDQAcAQBDoAGIJABwBDEOgAYAgCHQAMQaADgCEIdAAwhGvb516ofAXDlJc78G34ofecuk+esX08kiPaPuPJPr63L6zcnOTunx+tzmjXXrzivbbhvlSfg4s+mfJys6PuVz3YzsSxjof7Yu0znuzjk3meo617fg03dvaO99qG+1J9DnjkAgCGINABwBAEOgAYgkAHAEMQ6ABgCAIdAAxBoAOAIQh0ADAEgQ4AhiDQAcAQBDoAGMJxoLe2tqq2tlbTpk1TbW2tDh8+7EJZAIB4OQ70ZcuWqa6uTs3Nzaqrq9MTTzzhRl0AgDg52m0xFArpwIEDevnllyVJVVVVamhoUFdXl4qKimzN4fV6El6/ZOSwuMajreXW8dHG3ZzL1PFMrCmd74WTnws7a/x4frfWSrdM7SOefLHTQ6xjPJZlWfZL+6n9+/dr0aJF2r59e//YjBkz9PTTT+v6669PdFoAQAL4pSgAGMJRoAcCAR09elThcFiSFA6H1dnZqUAg4EpxAAD7HAV6cXGxJk6cqKamJklSU1OTJk6caPv5OQDAPY6eoUtSS0uLFi9erJMnT6qgoEDBYFBXXXWVW/UBAGxyHOgAgMzAL0UBwBAEOgAYgkAHAEMQ6ABgCOMC/cyZM3r44Yd1yy23aPr06dq5c2fUYw8ePKi7775bM2bM0IwZM7Rr164UVhqb3T4++ugjTZo0STU1NaqpqdHcuXNTXGls8ZwPSert7dXMmTM1Z86cFFU4NLs9HDx4ULNnz1ZNTY1mzpypP/7xj+rr60txtdHZ7ePdd9/VnDlzVFVVpZkzZ+qll15KcaWx2e3j6NGjmjdvnsrKyjLqerKzoWE4HNaKFStUWVmpW265RVu2bLE3uWWYP//5z9Yf/vAHy7Isq7W11brpppusnp6eAcedOnXKqqiosD799FPLsizr7NmzVldXV0prjcVuHx9++KE1e/bsVJdnm90+zlu9erX1+9//PqN6stvDmTNnrN7eXsuyLCscDlsLFy60XnnllZTWGovdPvbt22cdOXLEsizLOnnypFVZWWnt3bs3pbXGYrePkydPWnv37rV27tyZUdfTvHnzrK1bt1qWZVlbt2615s2bN+CY119/3frtb39rhcNhKxQKWTfffLPV1tY25NzG3aG/+eabqq2tlSSNGzdOP/vZz7R79+4BxzU1NamsrEyTJ0+WJGVnZ2vkyJEprTUWu31kunj6+Pjjj3X48GHV1NSkssQh2e0hLy9POTk5kqRz587phx9+kNebOT9idvuYNGmSSktLJUk+n09XX321vvvuu5TWGovdPnw+n6ZMmaJhw6JvgpZq5zc0rKqqkvTfDQ0PHDigrq6unxz3xhtvaO7cufJ6vSoqKlJlZaXeeuutIefPnKvNJe3t7Ro9enT/14FAQEeOHBlw3D//+U9lZ2drwYIFqqmp0ZIlS/T999+nstSY7PYhSYcPH9bs2bM1d+5cvf7666kq0Ra7fZw+fVqrVq3SihUrUlmeLfGci6NHj6qmpkbl5eUaPny47rjjjlSVOaR4+jivpaVF+/bt0y9+8Ytkl2dbIn1kio6ODpWWliorK0uSlJWVpZKSEnV0dAw47rLLLuv/2m6PjrbPTYfZs2ervb190O+9//77tueJRCL68MMP9eqrr2rUqFFavXq1/vSnP2n16tVulRqTW31cf/312rVrl3w+n9ra2lRfX6/S0lLddNNNbpUak1t9PPXUU6qrq1NpaWnK/5MUt3qQpNLSUm3btk2nT5/WY489pnfeeUczZ850o8whudmHJHV2dur+++/XsmXL+u/YU8HtPi4mF1ygD3UHetlll+m7777r30+mo6ND5eXlA44LBAIqLy9XSUmJJKm6ulpLlixxv+Ao3OpjxIgR/f8eO3asKisr9fe//z1lge5WH5988ol2796tdevWqbe3V99//72qq6vV2NiYlLp/zK0efiw/P18zZsxQY2NjygLdzT5CoZDq6+s1f/583Xbbba7XGksyzkem+PGGhllZWVE3NAwEAmpvb9eNN94oaeAdezTGPXKZPn26/va3v0n676OIzz//XDfffPOA42677TZ99tln6unpkSTt3r1bEyZMSGmtsdjto7OzU9b/7d7w73//W3v27NG1116b0lpjsdtHY2OjduzYoR07dmjNmjUaP358SsLcDrs9tLW19X+qpa+vT++9957Gjx+f0lpjsdvHiRMnVF9fr7vvvjvjPjUl2e8jE9nd0HD69OnasmWLIpGIurq69O6772ratGlDzm/cXi6nT5/W4sWLdfDgQXm9Xj322GOqrKyUJK1du1YlJSW66667JElbt27Viy++KI/HozFjxqihoUGjRo1KZ/n97Pbx17/+VZs3b1Z2drbC4bB+/etfa/78+Wmu/v/Fcz7O++ijjxQMBvXaa6+lo+QB7Pawbdu2/uspEono5z//uRYtWqS8vLw0d/BfdvsIBoPatGmTrrzyyv7X/uY3v9Htt9+ertJ/wm4f4XBYv/rVr9TX16eenh4VFRVp7ty5euCBB9Jaf7QNDRcsWKAHH3xQN9xwg8LhsFauXKk9e/ZIkhYsWND/i+BYjAt0ALhYGffIBQAuVgQ6ABiCQAcAQxDoAGAIAh0ADEGgA4AhCHQAMASBDgCG+A+dnAYA/AActgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kUCr17j6xpu5" + }, + "source": [ + "Um outro tipo de gráfico super interessante e útil é o boxplot. \n", + "Para visualizá-lo, vamos usar a função ```boxplot```do Seaborn e, como argumentos dessa função vamos passar um ```x```, onde ```x = coluna que será plotada neste eixo``` e a base de dados ```data = conjunto de dados```.\n", + "O boxplot apresenta uma caixa no meio onde podemos identificar a mediana (linha no meio da caixa que é o ponto onde metade dos dados estão na direita e a outra metade para a esquerda), os outliers (pontos acima ou abaixo do eixo principal do gráfico que representam valores discrepantes para mais ou para menos), a maior concentração dos dados (caixa principal que representa onde está a mior parte dos dados - primeiro quartil (25%) e terceiro quartil (75%)) e os máximos e mínimos desconsiderando os outliers (linhas laterais à caixa principal).\n", + "O boxplot é uma importante ferramenta na visualização de dados porque em apenas um gráfico, podemos identificar várias métricas estatísticas." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 303 + }, + "id": "R9LHaY0yv29K", + "outputId": "3527f845-0c42-440b-d3f0-f49a7b942ffe" + }, + "source": [ + "sns.boxplot(x='g-0' , data=dados)" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 21 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV8AAAEMCAYAAABjr7XYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAATBUlEQVR4nO3da1TU9b7H8c/MgOF4CUQlFAXdmtrKoqXdJRVLfQCY2y7kSvdZWZiJl26rstyV1kke7Ky2tqxd5s60dZ6kS/Os8oKaml1XyzTd7jIBzwYVCQyhQmb+54HNyAAKcvuO8X494TL//2++AvPmP/8ZB5fjOI4AAG3KbT0AALRHxBcADBBfADBAfAHAAPEFAAPEFwAMEF8AMBBxIRuXllbI7z/7tODY2M4qKTnV4kO1lHCej9maJpxnk8J7PmZrmqbO5na7FBPT6ZyXX1B8/X4nJL6Bz4WzcJ6P2ZomnGeTwns+Zmua1piN0w4AYID4AoAB4gsABogvABggvgBggPgCgAHiCwAGiC8AGCC+AGCA+AKAAeILAAaILwAYIL4AYID4AoAB4gsABogvABggvgBggPgCgIEL+jNCuLitXv2ujhzJP+82J0+WyeNxq3Pnrg2u16dPoiZPntpS4wHtCvFtR44cydfB73+QJyr6nNv4fi2TJHmiqs67VmA7AE1DfNsZT1S0vIljznl5Zf4WSTrvNjW3A9A0nPMFAAPEFwAMEF8AMEB8AcAA8QUAA8QXAAwQXwAwQHwBwADxBQADxBcADBBfADBAfAHAAPEFAAPEFwAMEF8AMEB8AcAA8QUAA8QXAAwQXwAwQHwBwADxBQADxBcADBBfADBAfAHAAPEFAAPEFwAMEF8AMEB8AcAA8QUAA8QXAAwQXwAwQHwBwADxBQADxBcADBBfADBAfAHAAPEFAAPEFwAMEF8AMEB8AcAA8TWwa9cnys3NtR7jopSbm6tduz6xHgNotgjrAdqjnTu3KzLSo6FDr7Ue5aKzadMmnT7t080332I9CtAsHPkCgAHiCwAGiC8AGCC+AGCA+AKAAeILAAaILwAYIL4AYID4AoAB4gsABogvABggvgBggPgCgAHiCwAGiC8AGCC+AGCA+AKAAeILAAaILwAYIL4AYID4AoAB4gsABogvABggvgBggPgCgAHiCwAGiC8AGCC+AGCA+AKAAeILAAaILwAYIL4AYID4AoAB4gsABogvABggvgBggPgCgAHiCwAGiC8AGIho7SsoKyvVsmV/1+TJf9Hq1f/UjBmzdfJkmRYtWqC4uHjNnfu4HMfRsmV/14wZs+U4jpYsWSxJmjXrEV16abQkqaAgT4sWLVBsbHdFRUVpypRpWr36n5o8eapWr35XM2bM1qWXRqusrFRLliyWz1etqKhL9OCDc4Jr1J6p5j5nZpyqd99dLkmaOPEOLVmyWI7jqEePnoqIiJDjSC6XSz7faZ04cUJPPfWsHMfRokUL5PV20k8/lUhySXIa9bVZvDhHDz/8RIt9rduDffv2SZLuu2+y8SRoDI8nQj5ftTwej3w+X8hlLpdLqaljtWXLxzW2P7tdly5dVF5erujoGHXo0EHHjx+TJEVEnMlWdXV18OOa72dm/kWrVi2X2+2Wz+fTpEmZ+uCD/9H06bO0ceP/yufzyXEcRUZGBDuSnj5Rr7/+imbOnKt169YEe1VefkpFRf+npKT++utfX2jRr43LcZzGlUJSSckp+f1nN+/Ro4uKi8vPu8/Klcu1bdsWxcf3UlFRoUaNGqODBw+osPA/kqTRo2+VJG3btkWjRo2RJG3dujl42ZQp90mSnnnm8eA+ktSrV28VFRWGrDtlyn1auXJ5cP/aa9SeqeY+gRkD1+H1dlJlZcV5/229evWWpJC5LtTy5aubvO+FyslZqB+OnJA3ccw5t6nM3yJJ590msN2APt31xBPzW3TGhhBdNKz+A6DAL4KaAh3p2NGrysoKeb2d9MsvlcGu1Mzjhd5W3W6XYmM7n/vyC1rtApWVlWrnzu1yHEeFhf+R4zjasWNbSKx27NimHTu2/X7Zdu3Ysa3GZdt18mSZCgry6gQusF7g7c6dn6igIC9kf0naufPMGvXNFNin5owBDYU3MENzwiudOfpF40yf/l/WI+CiUP/xZO3wSmc7Eri9V1ZWhHSlpgULnmnRKVv1tMP69WtCjpSls3cVQj921XjfCbls3boPdPDggQavy+/36803l6q6OvSuTWCNwNFvzZkC+9SesS3t3btHOTkL2+S6Cgry5fd5WmQtf/WvKijIb7PZJen06ao2uy6gtry8H1t0vVY98t29e1e9v23qcmq9Pfv53bt3Nero0uer/n270DUc58wa9c0U2KdxMwJAy2nVI98bb7xZn3yyrRFxC5yjqX2uxqUbb7w55BzxuXg8EYqLi1NhYWHIGi7XmTXqmymwz7Fjx0wD3FbnTQPnfFuCOyJKfdv4nC/ne/FH0qpHvunpE+V2u0I+F3iksubHERGeGu9HhFyWkfFnZWXNbPC63G63srJmBteqvUZ9MwX2qT1jWxo69Gqz677YREZ2sB4B7VhSUv8WXa9V4xsdHaMRI0bK5XKpV6/ecrlcSkkZFXyWgCSlpIxSSsqo3y8bqZSUUTUuG6lLL41W375JIftICq4XeDtixC3q2zcpZH9JGjFiZMhTzWrOFNin5owBXm+nBv99vXr1rjPXheKpZo33xhsrrEfARaH+gymPp+4d/UA/Ard3r7dTSFdqaumnmrX6f7JIT5+ogQMHKSsrWwMHDgoeyUZFRSkxsZ8yMv4c3Cbwfv/+A9S//4CQI9bAPr17J+hPfxoQXC8ra2Zw38D19e8/QImJSRo0aFDIGrVnqrlPYK3Adc+YMUuXXHKJOnTooN69E5SYmKS+fZOUmNhPCQkJioqK0vTp2cG5unWL/X31xh9Fc9SLP7pA8Dyeug/0ulwujRkzrtb2Z7fr0qWLpDMHTD17xgU/X9895Jrv33vvfXK5XMG1Jk3KlMvl0gMPPPR7G/qpb9+kkI7MmDFbHTt21EMPzQ7pVXx8gqSWP+qV2uB5vpbCdb6cnIWKjPTokUfmtfn1XuzP83355f/W6dO+Nr/exgrXnzmJ2ZqqqbOZPs8XAFA/4gsABogvABggvgBggPgCgAHiCwAGiC8AGCC+AGCA+AKAAeILAAaILwAYIL4AYID4AoAB4gsABogvABggvgBggPgCgAHiCwAGiC8AGCC+AGCA+AKAAeILAAaILwAYIL4AYID4AoAB4gsABogvABggvgBggPgCgAHiCwAGiC8AGCC+AGCA+AKAAeILAAaILwAYIL4AYID4AoCBCOsB2qMRI0aqa9eO1mNclG677Tb9/PMv1mMAzUZ8Ddx88y3q0aOLiovLrUe56KSmpvJ1wx8Cpx0AwADxBQADxBcADBBfADBAfAHAAPEFAAPEFwAMEF8AMEB8AcAA8QUAA8QXAAwQXwAwQHwBwADxBQADxBcADBBfADBAfAHAAPEFAAPEFwAMEF8AMEB8AcAA8QUAA8QXAAwQXwAwQHwBwADxBQADxBcADBBfADBAfAHAAPEFAAPEFwAMEF8AMEB8AcAA8QUAA8QXAAwQXwAwQHwBwADxBQADxBcADBBfADBAfAHAQIT1AGhbvl/LVJm/5byXSzrvNme3696SowHtCvFtR/r0SWxwm5MnI+TxuNW5c9cGtuzeqPUA1I/4tiOTJ09t1HY9enRRcXF5K08DtG+c8wUAA8QXAAwQXwAwQHwBwADxBQADxBcADBBfADBAfAHAAPEFAAPEFwAMEF8AMEB8AcAA8QUAA8QXAAwQXwAwQHwBwADxBQADxBcADFzQnxFyu12N+lw4Cef5mK1pwnk2KbznY7amacpsDe3jchzHaepAAICm4bQDABggvgBggPgCgAHiCwAGiC8AGCC+AGCA+AKAAeILAAaILwAYaJH4rly5UuPHj1d6eromTJjQEku2uM8//1xDhgzRe++9Zz1K0PPPP6/x48crIyNDmZmZ2rt3r+k8hw8f1t13361x48bp7rvvVl5enuk8NZWWluqBBx7QuHHjlJ6eruzsbP3000/WY9WxZMkSDRo0SP/+97+tRwn67bff9Oyzz2rs2LFKT0/X/PnzrUcK2rp1q26//XZNmDBBGRkZ2rhxo9ksOTk5Sk1NrfP9a7XbhdNMH3/8sTN58mSnvLzccRzHKS4ubu6SLa68vNy54447nKysLGflypXW4wTl5uY6VVVVwffHjBljOs+UKVOctWvXOo7jOGvXrnWmTJliOk9NpaWlzmeffRb8eNGiRc5TTz1lOFFd+/btc6ZNm+aMHj3aOXjwoPU4QQsXLnRefPFFx+/3O44TPrdRv9/vDB8+PPi1OnDggJOcnOz4fD6Teb788kunsLCwzvevtW4XzT7yXb58ubKzs9W5c2dJUvfu3Zv9C6GlLVq0SNOmTVNMTIz1KCFGjx6tyMhISVJycrKOHj0qv99vMktJSYn279+vtLQ0SVJaWpr2798fNkeX0dHRuv7664MfJycnq7Cw0HCiUFVVVVqwYIGee+4561FCVFRUaO3atZozZ45crjMv9BJOt1G3263y8nJJUnl5uXr27Cm32+Zs6PDhwxUfHx/yuda8XVzQq5rV59ChQ9qzZ49effVVVVVVKTMzU3fddVezB2sp27dvV3l5ucaPH69t27ZZj3NOq1at0qhRo8x+8IqKihQXFyePxyNJ8ng86tmzp4qKitStWzeTmc7F7/fr/fffV2pqqvUoQa+++qoyMjKUkJBgPUqII0eOKDo6WkuWLNHnn3+uTp06ac6cORo+fLj1aHK5XHrllVf00EMPyev1qqKiQm+++ab1WCFa83bRYHwnTpx4ziOMTz/9VD6fT0VFRVq9erVKS0t1zz33qF+/frr22mubNVhjnW++jz76SH/729/0zjvvtMkstTX0tQt8Qzds2KD169dr1apVbTneRWvhwoXyer269957rUeRJH3zzTfat2+fHnvsMetR6vD5fDpy5IiuuOIKPfHEE9qzZ48efPBBbdq0KXhv1Up1dbXeeOMNvf766xo2bJi+/vprzZ07Vxs2bFCnTp1MZ2sLDcZ3zZo15728V69eSktLk9vtVmxsrG666SZ9++23bRbf88331Vdfqbi4WHfeeaekMw/abN26VWVlZcrOzjadLWDTpk1avHixVqxYYXp3MD4+XseOHZPP55PH45HP59Px48fr3A2zlpOTo/z8fC1btszsXkJtX375pQ4dOqQxY8ZIko4ePapp06bppZde0ogRI0xni4+PV0RERPBu89VXX62YmBgdPnxYQ4cONZ3twIEDOn78uIYNGyZJGjZsmDp27KhDhw7pqquuMp0toDVvF83+6U1LS9OOHTskSZWVlfr66681ePDgZg/WEoYPH67du3crNzdXubm5GjdunGbNmtUm4W2MrVu36qWXXtLbb79tfnc1NjZWQ4YM0YcffihJ+vDDDzVkyJCwOuXw8ssva9++fVq6dKk6dOhgPU5QVlaWdu7cGfw5u+yyy/T222+bh1eSunXrpuuvv167du2SdOaR+5KSEiUmJhpPJl122WU6evSofvzxR0lnTmGWlJSob9++xpOd1Zq3i2a/mPqvv/6q+fPna//+/ZKkCRMmKCsrq9mDtYYnn3xSV155ZdjcXb3hhhsUGRkZ8o1csWKF2QODhw4d0pNPPqmff/5ZXbt2VU5Ojvr3728yS23ff/+90tLSlJSUpKioKElSQkKCli5dajxZXampqVq2bJkuv/xy61EknTnvO2/ePJWVlSkiIkJz587VyJEjrceSJK1bt07/+Mc/gg8Gzp49W7feeqvJLC+88II2btyoEydOKCYmRtHR0dqwYUOr3S74SxYAYCA8TpoBQDtDfAHAAPEFAAPEFwAMEF8AMEB8AcAA8cUfSllZmWbOnKnk5GSNHj1a69evtx4JqFezX1gHCCcLFixQZGSkdu3apQMHDmj69OkaPHiwBg4caD0aEIL/ZIGw99133+npp59Wfn6+UlJS5Ha7lZiYqIcffjhku8rKSl133XVav369+vXrJ0l6/PHHFRcXF5YveoP2jdMOCGtVVVXKzs7WxIkT9cUXXygtLU2bN2+ud9u8vDx5PJ5geCVp8ODB+uGHH9pqXKDROO2AsLZnzx5VV1dr6tSpcrlcGjt27DlfjauysrLOyyR26dJFFRUVbTEqcEE48kVYO378uOLi4oIvvCIp+HJ+999/v6655hpdc801Wrdunbxer06dOhWy/6lTp9rFa8Pi4sORL8Jajx49dOzYMTmOEwxwUVGR+vTpo7feeitk28rKSvl8PuXl5SkpKUmS9K9//UsDBgxo67GBBnHki7CWnJwsj8ej9957T9XV1dq8efM5/8qz1+vVbbfdptdeey342tJbtmwJ27+ojfaNZzsg7O3du1fPPPOMCgoKlJKSIr/fryFDhmjmzJl1ti0rK9O8efP06aefKjo6Wo8++qjS09MNpgbOj/jionPnnXcqMzNTkyZNsh4FaDJOOyDsffHFFyouLlZ1dbXWrFmjgwcPKiUlxXosoFl4wA1h7/Dhw5o7d65++eUXJSQk6LXXXlPPnj2txwKahdMOAGCA0w4AYID4AoAB4gsABogvABggvgBggPgCgIH/B0WEIsg40bSaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-4kvTdIE3d0W" + }, + "source": [ + "Podemos também, além de definir apenas os dados que irão no eixo x, definimos os dados para o outro eixo, atribuindo um valor para o parâmetro ```y``` (```y = variável que vai ser plotada neste eixo```).\n", + "Como podemos perceber, no boxplot que representa o ```tratamento = com_droga``` apresenta muitos outliers e isso gera uma discussão bastante interessante pois, do ponto de vista biológico a investigação desses pontos é importante mas, dependendo da área que estamos trabalhando, esse ponto pode apresentar outras soluções. \n", + "Dito isso, é importante para um cientista de dados não só entender e manipular a base de dados mas também saber acerca do negócio que estamos tratando." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 521 + }, + "id": "h87JI4a_yNa1", + "outputId": "029511d6-7c98-4af5-be72-2020ca41c860" + }, + "source": [ + "plt.figure(figsize=(10,8))\n", + "sns.boxplot(y='g-0', x='tratamento' , data=dados)" + ], + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAHmCAYAAAA2tinxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXzU5b328WtmkgAhyISALKLoUYNRayPEYkLKphUbSCAaBKm1p9iDuxzPU5ZSiyxKCceiVEsVeoTXA6hHUdSAolRQIQk8FRWq7CmbrDFkaBLWzNzPHznMMUICZJL87sx83v+Y78xkciXCjyv3b3MZY4wAAABgBbfTAQAAAPC/KGcAAAAWoZwBAABYhHIGAABgEcoZAACARShnAAAAFqGcAQAAWCTK6QD1qbS0QoEAl20DAAD2crtdio9vWePzYVXOAgFDOQMAAE0auzUBAAAsQjkDAACwCOUMAADAIpQzAAAAi1DOAAAALEI5AwAAsAjlDAAAwCKUMwAAAItQzgAAACxCOQMAALAI5QwAAMAilDMAAACLhNWNz4FzmTx5gnbu3K6rrkrU+PETnY4DAMAZGn3lLDc3V/369VPXrl21devW4OM7duzQ0KFD1b9/fw0dOlQ7d+5s7GiIADt3bpckbd++9RyvBADAGY1ezm655RYtXLhQl1xySbXHn3zySQ0fPlwffPCBhg8frgkTJjR2NIS5yZOr/5maOnWiM0EAAKhFo5ezlJQUdezYsdpjJSUl2rhxowYOHChJGjhwoDZu3KjDhw83djyEsdOrZqexegYAsJEVx5zt379f7du3l8fjkSR5PB5dfPHF2r9/v9q0aXPe75OQENdQERGm2rVr5XQEAACqsaKc1ZeSknIFAsbpGGhCiovLnI4AAIgwbrer1gUlKy6l0bFjRx08eFB+v1+S5Pf7dejQoTN2fwKhiIqq/rtIdHS0Q0kAAKiZFeUsISFBSUlJWrJkiSRpyZIlSkpKuqBdmsC5eDzVy5nb7XEoCQAANWv0cvbUU0+pV69eOnDggH75y19qwIABkqSJEydqwYIF6t+/vxYsWKBJkyY1djSEue7db6o2p6T8yKEkAADUzGWMCZuDtDjmDLX5y1/+rIKCVcE5Le3H+tWvHnQwEQAgEjWJY86AxrBu3d9qnQEAsAHlDBHD642vdQYAwAaUM0SM4uKDtc4AANiAcgYAAGARyhkiRrt27avNF1/cvoZXAgDgHMoZIobPV1ptLi0treGVAAA4h3KGiMF1zgAATQHlDBHj5MmTtc4AANiAcoaI8cUXn1WbP/+c65wBAOxDOUPE+P69MMLn3hgAgHBCOUPEaNMmodqckJBQwysBAHAO5QwR4/DhkmpzSUlJDa8EAMA5lDNEjEDAX+sMAIANKGcAAAAWoZwBAABYhHKGiNGsWbNaZwAAbEA5Q8Q4ceJErTMAADagnAEAAFiEcgYAAGARyhkAAIBFKGcAAAAWoZwhYrjdnlpnAABsQDlDxOAOAQCApoByBgAAYBHKGQAAgEUoZwAAABahnAEAAFiEcgYAAGARyhkAAIBFKGcAAAAWoZwBAABYhHIGAABgEcoZAACARShnAAAAFqGcAQAAWIRyhgjmcjoAAABnoJwhghmnAwAAcAbKGQAAgEUoZwAAABahnAEAAFiEcgYAAGARyhkAAIBFopwO8F0rV67UzJkzZYyRMUaPPPKIbrvtNqdjAQAANBprypkxRmPGjNHChQuVmJiozZs36+6779att94qt5sFPgAAEBmsaj1ut1tlZWWSpLKyMl188cUUMwAAEFGsWTlzuVx67rnn9NBDDyk2NlYVFRWaPXv2Bb1HQkJcA6VDuGrXrpXTEQAAqMaaclZZWamXXnpJs2bNUvfu3bVu3Tr9+7//u5YuXaqWLVue13uUlJQrEOCq7zh/xcVlTkcAAEQYt9tV64KSNfsMN23apEOHDql79+6SpO7du6tFixYqKipyOBkAAEDjsaacdejQQQcOHNA//vEPSVJRUZFKSkp02WWXOZwMAACg8VizW7Ndu3aaOHGiRo0aJZfLJUmaOnWqvF6vw8kAAAAajzXlTJKysrKUlZXldAwAAADHWLNbEwAAAJQzAAAAq1DOAAAALEI5AwAAsAjlDAAAwCKUMwAAAItQzgAAACxCOQMAALAI5QwAAMAilDMAAACLUM4AAAAsQjkDAACwCOUMAADAIpQzAAAAi1DOAAAALEI5AwAAsAjlDAAAwCKUMwAAAItQzgAAACxCOQMAALAI5QwAAMAilDMAAACLUM4AAAAsQjkDAACwCOUMAADAIpQzAAAAi1DOAAAALEI5AwAAsAjlDAAAwCKUMwAAAItQzgAAACxCOQMAALAI5QwAAMAilDMAAACLUM4AAAAsQjkDAACwCOUMAADAIpQzAAAAi1DOAAAALEI5AwAAsAjlDAAAwCKUMwAAAItEOR3gu06cOKGpU6eqsLBQzZo1U3JysqZMmeJ0LAAAgEZjVTn7z//8TzVr1kwffPCBXC6Xvv32W6cjAQAANCpryllFRYXefvttffLJJ3K5XJKktm3bOpwKAACgcVlTzvbs2SOv16sXXnhBa9euVcuWLTVq1CilpKSc93skJMQ1YEKEo3btWjkdAQCAaqwpZ36/X3v27NG1116rsWPHav369XrggQe0fPlyxcWdX+kqKSlXIGAaOCnCSXFxmdMRAAARxu121bqgZM3Zmh07dlRUVJQGDhwoSfrhD3+o+Ph47dixw+FkAAAAjceactamTRv16NFD+fn5kqQdO3aopKREXbp0cTgZAABA47Fmt6YkTZo0SePHj1dubq6ioqI0ffp0XXTRRU7HAgAAaDRWlbNLL71U8+fPdzoGAACAY6zZrQkAAADKGQAAgFUoZwAAABahnAEAAFiEcgYAAGARyhkAAIBFKGcAAAAWoZwBAABYhHIGAABgEcoZAACARShnAAAAFqGcAQAAWIRyBgAAYBHKGQAAgEUoZwAAABahnAEAAFiEcgYAAGARyhkAAIBFKGcAAAAWoZwBAABYhHIGAABgEcoZAACARShnAAAAFqGcAQAAWIRyBgBAiHy+Uk2bNllHjvicjoIwQDkDACBEeXmLtW3bFr377ltOR0EYoJwBABACn69Uq1d/ImOMVq/+lNUzhIxyBgBACPLyFisQMJKkQCDA6hlCRjkDACAEhYX58vsrJUl+f6UKC/MdToSmjnIGAEAIUlN7yuOJkiR5PFFKTe3pcCI0dZQzAABCkJmZLbfbJUlyu93KyrrD4URo6ihnAACEwOuNV3p6b7lcLqWn91Lr1l6nI6GJi3I6AAAATV1mZrb27v2GVTPUC1bOAAAALEI5AwAgRFyEFvWJcgYAQAi4CC3qG+UMAIAQcBFa1DfKGQAAIeAitKhvlDMAAELARWhR3yhnAACEgIvQor5RzgAACAEXoUV94yK0AACEiIvQoj5ZuXL2wgsvqGvXrtq6davTUQAAOCevN17jxk1g1Qz1wrpy9vXXX+vLL7/UJZdc4nQUAACARmdVOTt58qQmT56siRMnOh0FAADAEVYdczZz5kxlZWWpc+fOdfr8hIS4ek6EcNeuXSunIwAAUI015eyLL77QV199pV//+td1fo+SkvLgVZqB81FcXOZ0BABAhHG7XbUuKFmzW/Nvf/ubioqKdMstt6hfv346cOCA7rvvPq1evdrpaAAAAI3GmpWzkSNHauTIkcG5X79+evHFF5WYmOhgKgAAgMZlzcoZAABNlc9XqmnTJuvIEZ/TURAGrC1nK1asYNUMANAk5OUt1rZtW/Tuu285HQVhwNpyBgBAU+DzlWrVqk9kjNHq1Z+weoaQUc4AAAhBXt5i+f2VkqTKykpWzxAyyhkAACEoKFgtY6ou42SMUUEBVxlAaChnAACEICEhodYZuFCUMwAAQlBSUlLrDFwoyhkAACFIS0uvdQYuFOUMAIAQ9O7dr9rcp88tDiVBuKCcAQAQgg8/fL/WGbhQlDMAAEKwdm1BtXnNmnyHkiBcUM4AAAAsQjkDACAEPXqk1ToDF4pyBgBACHJyhlWbhwy526EkCBeUMwAAQuRyuar9FwgF5QwAgBDk5S2W2131z6nb7ebemggZ5QwAgBAUFubL7/dLkvx+vwoLOVsToaGcAQAQgtTUnvJ4oiRJHk+UUlN7OpwITR3lDACAEGRmZsvtrjrWzO12KyvrDocToamjnAEAEAKvN17p6b3lcrmUnt5LrVt7nY6EJi7K6QAAADR1mZnZ2rv3G1bNUC8oZwAAhMjrjde4cROcjoEwwW5NAAAAi1DOAAAALEI5AwAAsAjlDAAAwCKUMwAAAItQzgAAACxCOQMAIERff71B9933M23c+JXTURAGKGcAAIToT396TsYYvfDCDKejIAxQzgAACMHXX2/Q8ePHJUnHjx9n9Qwho5wBABCCP/3puWozq2cIFeUMAIAQnF41q2kGLhTlDAAAwCLndePzoqIivfPOO9q2bZsqKirUsmVLXX311Ro0aJCuvPLKhs4IAIC1vN428vkOB+f4+DYOpkE4OOfK2ZIlSzR06FAdOHBAN910kzIzM/WjH/1IBw8e1LBhw/Tee+81Rk4AAKx01VVXf29OdCgJwsU5V85mzJihl156Sd27dz/juXXr1mn06NHKyMhokHAAANhuw4Yvq83r13/hUBKEi3OunJWWluq6664763PXXnutSktL6z0UAABNhcfjqXUGLtQ5y1laWprGjx+v3bt3V3t89+7deuKJJ5SWltZg4QAAsN2xY0drnYELdc7dmlOnTtWkSZOUkZGh6OhotWzZUhUVFaqsrNRtt92mqVOnNkZOAACAiHDOcta6dWvNmDFDx44d086dO4Nna15++eVq0aJFY2QEAMBabdok6PDhkuCckJDgYBqEg/O+zlmLFi2UlJSklJQUFRUVUcwAAJDk8/mqzaWlvhpeCZyfOl2EdsKECfWdAwCAJikQ8Nc6AxeqTuXMGFPfOQAAAKDzvEPA96WkpNR3DpWWlmrMmDHavXu3YmJi1KVLF02ePFlt2nClZQAAEDlc5jyXwWbOnHnWx2NiYtShQwf9+Mc/Vtu2bescxOfzacuWLerRo4ckKTc3V0eOHLmgs0FLSsoVCLCqF6r8/E+1evUnTseod1u2bDrjsa5dkxxI0rDS03urZ89eTscAIsavfnWPAoFAcHa73frLXxY4mAi2c7tdSkiIq/n5832jnTt3as6cOVq7dq12796ttWvXas6cOdq0aZNeffVV3Xrrrfr000/rHNTr9QaLmSQlJydr3759dX4/AAAaw3eL2dlm4EKd98rZqFGjNHDgQP3kJz8JPvbXv/5VS5Ys0XPPPafFixdr3rx5euedd0IOFQgENGLECPXr10/33ntvyO8HSFJmZuYZj+Xl5TmQBIhMK1as0PLly52OUe+++uqrMx67/vrrHUjSsH7yk5+oX79+TseICOd9zNnq1as1Y8aMao/17dtXY8aMkSRlZWVpypQp9RJqypQpio2N1T333HNBn8duTdQmOjpGp06dDM4xMc1UXFzmYCIgsvzzn8d06lT4ncnocrmqnSjncrnC8vv85z+Psc2sJ+farXne5eyyyy7Tq6++Wq0wvfbaa7rsssskVR3QXx/XPsvNzdWuXbv04osvyu2u08mkwFm99NI8jRgxPDi/+OJcB9MAkadnz15heTzk119v0B/+MC04/5//8xtde234rZyh8Zx3OXvqqaf06KOPas6cOWrfvr0OHjwoj8ej559/XpK0Y8cOjRo1KqQwM2bM0FdffaXZs2crJiYmpPcCahMT08zpCADCxHXX3RBcPWvRogXFDCE772POJOnUqVNav369Dh06pHbt2ik5OVnR0dH1EmTbtm0aOHCgLr/8cjVv3lyS1LlzZ/3pT3867/dgtybOJTe3atf72LG/czgJgHDyu9+N0d693+jXvx5POcM51dtuTUmKjo5ukGucSdLVV1+tLVu2NMh7AwDQkOLiWqlr1ySKGeoFB3UBAABYhHIGAABgEcoZAACARShnAAAAFqGcAQAAWIRyBgAAYBHKGQAAgEUoZwAAABahnAEAAFiEcgYAAGARyhkAAIBFKGcAAAAWoZwBAABYhHIGAABgEcoZAACARShnAAAAFqGcAQAAWIRyBgAAYBHKGQAAgEUoZwAAABahnAEAAFiEcgYAAGARyhkAAIBFKGcAAAAWoZwBAABYhHIGAABgEcoZAACARShnAAAAFqGcAQAAWIRyBgAAYBHKGQAAgEWinA7QFL3yyv/Vnj27nI6BOti9u+r/W27uFIeToK4uvbSLhg+/1+kYANBgKGd1sGfPLm3Ztl2e5l6no+ACBfweSdL2Pd86nAR14T/uczoCADQ4ylkdeZp7FdvlFqdjABHl6K6PnI4AAA2OcgYAluCQiaaLQyaaPpsOmaCcAYAl9uzZpZ3bN6tDHJvmpiZWAUnS8QPbHU6CujhQXul0hGrYAgCARTrERemXN7RxOgYQUeZuOOx0hGq4lAYAAIBFKGcAAAAWoZwBAABYhHIGAABgEcoZAACARawqZzt27NDQoUPVv39/DR06VDt37nQ6EgAAQKOyqpw9+eSTGj58uD744AMNHz5cEyZMcDoSAABAo7LmOmclJSXauHGj5s6dK0kaOHCgpkyZosOHD6tNG7uu+XPkiE/+4z5uJQM0Mv9xn44csWazBQANwpqt3P79+9W+fXt5PFU3pvZ4PLr44ou1f//+8y5nCQlxDRkxyOOxasERiCgej1vt2rVyOkaDiI726LjTIYAIFR3tsWbbYk05qw8lJeUKBEyDf524uIvkaX6SG58Djezoro8UF3eRiovLnI7SIE6d8jsdAYhYp075G23b4na7al1QsmYJqGPHjjp48KD8/qqNk9/v16FDh9SxY0eHkwEAADQea1bOEhISlJSUpCVLlmjQoEFasmSJkpKSrDveDAAaypEjPpWWV1p3nz8g3B0or1T8EZ/TMYKsKWeSNHHiRI0bN06zZs3SRRddpNzcXKcjAQAANCqrytmVV16pN954w+kYAOCI1q29anbsW/3yBvYYAI1p7obDat7a63SMIGuOOQMAAADlDAAAwCqUMwAAAItQzgAAACxCOQMAALCIVWdrNiXcW7NpClRW3RzHHdXc4SSoC/9xn6S2TscAgAZFOauDSy/t4nQE1NHu3bskSZddyj/wTVNb/v4BCHuUszoYPvxepyOgjnJzp0iSxo79ncNJAAA4O445AwAAsAgrZwBgkQPcW7NJKj8ZkCTFxbDm0RQdKK/U5U6H+A7KGQBYguPpmq5D/3M8a9sO/D9sii6XXX//KGcAYAmOZ226OJ4V9Yn1VwAAAItQzgAAACxCOQMAALAI5QwAAMAilDMAAACLUM4AAAAsQjkDAACwCOUMAADAIpQzAAAAi1DOAAAALEI5AwAAsAjlDAAAwCKUMwAAAItQzgAAACxCOQMAALAI5QwAAMAilDMAAACLUM4AAAAsQjkDAACwCOUMAADAIpQzAAAAi1DOAAAALEI5AwAAsAjlDAAAwCKUMwAAAItQzgAAACxCOQMAALAI5QwAAMAilDNElOLiQ9qyZZOWLctzOgoAAGdFOUNEOXy4RJL0+uuvOpwEAICzs6KcTZo0SbfffruysrI0bNgw/f3vf3c6EsLQkiXvVJtZPQMA2CjK6QCS1KtXL40fP17R0dFauXKlHn/8cf31r391OlbEys//VKtXf+J0jHq3ZcumavPrr7+q9eu/dChNw0lP762ePXs5HQMAUEdWlLO+ffsGP05OTtaBAwcUCATkdluxsAcAANBorChn37Vw4UL16dOnTsUsISGuARJFnsGDB2jw4AFOx6h3mZmZZzz2zDPTHUgCINxER3skSe3atXI4CcJBo5Sz7Oxs7du376zPFRQUyOOp+kO9dOlS5eXlaeHChXX6OiUl5QoETJ1zIvIUF5c5HQFAGDh1yi+JbQrOj9vtqnVBqVHK2eLFi8/5muXLl+vZZ5/VvHnz1LZt20ZIBQAAYB8rdmuuXLlSv//97zV37lx17tzZ6TgAgAYQricbSdLu3bskSbm5UxxO0nA42ajxWFHOfvOb3yg6OlqPPfZY8LF58+YpPj7ewVQAAJyf1q1bOx0BYcSKcrZmzRqnIwAAGljPnr1YeQHOA9eqAAAgRD5fqaZNm6wjR3xOR0EYoJwBABCiRYte09atm7Vo0WtOR0EYoJwBABACn69Ua9bkS5IKC1ezeoaQUc4AAAjBokWvKRAISJICgQCrZwgZ5QwAgBCsXVtQbT69igbUFeUMAADAIpQzAABC0KNHWq0zcKEoZwAAhCAnZ5hcLpckyeVya8iQux1OhKaOcgYAQAi83nilpqZLklJTe6p1a6/DidDUWXGHAAAAmrKcnGH69ttiVs1QLyhnAACEyOuN17hxE5yOgTDBbk1EDLfbU+sMAIANKGeIGN26pdQ6AwBgA8oZItb/nFwFAIBVKGeIGJ9//rdq87p1f6vhlQAAOIdyhohx+t53Nc0AANiAcgYAAGARyhkihut7B5l9fwYAwAaUM0QMY0ytMwAANqCcIWK43e5aZwAAbMC/TogYXm98tTk+vo1DSQAAqBnlDBHj8OGSanNJybcOJQEAoGaUMwAAAItQzhAxPB5PrTMA1JXPV6pp0ybryBGf01EQBihniBh+v7/WGQDqatGi17R162a98carTkdBGKCcIWJ06nRJrTMA1IXPV6rCwtWSpMLCfFbPEDLKGSLGyJEPV5vvv/8Rh5IACCeLFr0WvG6iMQFWzxAyyhkixmWXXa7Y2JaSpNjYlrr00i4OJwIQDtauLah1Bi4U5QwRw+cr1YkTJyRJJ0+eYNcDAMBKlDNEjLy8xcGPjZHeffctB9MACBc9eqRVm2++uadDSRAuKGeIGIWF+fL7KyVJfn+lCgvzHU4EIBzk5AwL3g7O7XYrJ2eYw4nQ1FHOEDFSU3vK7a66tpnb7VFqKr/dAgid1xsfXC1LTU1X69ZehxOhqaOcIWJkZmbLmIAkyRijrKw7HE4EIFzk5AxTYuI1rJqhXkQ5HQBoTC6XS8YYuVxOJwEQTrzeeI0bN8HpGAgTrJwhYuTlLZbrf1qZy+XihAAAgJUoZ4gYVScEVN2yye/3c0IAAMBKlDNEjNTUnvJ4qvbkezxRnBAAALAS5QwRIzMzW2531W5Nt9vNCQEAACtRzhAxvN54paf3lsvlUnp6L053BwBYibM1EVEyM7O1d+83rJoBAKzlMsYYp0PUl5KScgUCYfPtAACAMOR2u5SQEFfz842YBXCcz1eqadMmc9NzAIC1rCpna9euVVJSkhYsWOB0FISpRYte09atm7Vo0WtORwEA4KysKWfl5eV65pln1KtXL6ejIEz5fKXBa5sVFq5m9QwAYCVrytm0adN03333KT4+3ukoCFOLFr0WvLdmIBBg9QwAYCUrztb85JNPVFZWpttvv10ff/xxnd+ntoPrgLVrC6rNa9bka9y40Q6lAQDg7BqlnGVnZ2vfvn1nfW7ZsmX6wx/+oLlz54b8dThbE7U5feum787FxWUOpQEARKpzna3ZKOVs8eLFNT732Wefqbi4WEOGDJEklZaWauXKlfL5fHrkkUcaIx4ihNvtViAQqDYDAGAbx3drpqSkqLCwMDiPGzdO119/ve655x4HUyEc3XxzTxUUrKo2AwBgG5YOEDFycoZVm4cMuduhJAAA1MzxlbPvmzZtmtMREMZcLpeMMXK5XE5HAQDgrFg5Q8TIy1scLGUul0vvvvuWw4kAADgT5QwRo7AwP3hCQCAQCF6QFgAAm1DOEDG6dUupdQYAwAaUM0QsjjsDANiIcoaI8fnnn1Wb1637m0NJAACoGeUMEeP662+oNv/gBzfU8EoAAJxDOUPE2LNnV7V59+5dNbwSAADnUM4QMQ4ePFDrDACADShniBgeT1StMwAANqCcIWL4/ZW1zgAA2IByhojRqdMltc4AANiAcoaIMXLkw9Xm++9/xKEkAADUjHKGiHHZZZcHV8s6dbpEl17axeFEAMKFz1eqadMm68gRn9NREAYoZ4god9/9c7lcLg0f/gunowAII3l5i7Vt2xa9++5bTkdBGKCcIaKcvkvAunX/z+EkAMKFz1eq1as/kTFGq1d/yuoZQkY5Q8RgAwqgIeTlLVYgYCRJgUCA1TOEjHKGiFG1AQ1IkgIBPxtQAPWisDA/eGkev79ShYX5DidCU0c5Q8So2oD6JUl+v58NKIB6kZraM3hRa48nSqmpPR1OhKaOcoaI0a1bSrW5e/ebHEoCIJxkZmbL7XZJktxut7Ky7nA4EZo6yhkiljHG6QgAwoDXG6/09N5yuVxKT++l1q29TkdCE8fNBRExTp+pWdMMAHWVmZmtvXu/YdUM9YKVM0SM7x8HwnEhAOqL1xuvceMmsGqGekE5Q8To3btftblPn1scSgIAQM0oZ4gYH374fq0zAAA2oJwhYqxdW1BtXrOGS2kAAOxDOUPEOH2Ns5pmAABsQDlDxHC73bXOAADYgH+dEDFuvrlnrTMAADagnCFi3HbbT6vN/ftnOJQEAICaUc4QMT75ZIVcrqpbrLhcLn388UcOJwIA4EyUM0SMwsL84C2bjDHc+BwAYCXKGSIGNz4HADQFlDNELG58DgCwEeUMEYMbnwMAmgLKGSJGampPud0eSZLb7eHG5wAAK1HOEDEyM7Pl8VT9kfd4PMrKusPhRAAAnIlyhojh9cYrPb23XC6X0tN7qXVrr9ORAAA4Q5TTAYDGlJmZrb17v2HVDABgLZcJo1PWSkrKFQiEzbcDAADCkNvtUkJCXM3PN2IWAAAAnAPlDAAAwCKUMwAAAItYc0LA/PnztXDhQkVHR8vtduudd95xOhIAAECjs6Kcffjhh1q2bJkWLVqkuLg4ffvtt05HAgAAcIQVuzVffvllPfLII4qLqzpzoW3btg4nAgAAcIYVK2dFRUVav369Zs6cqZMnT2rYsGG66667Lvh9ajstFQAAoClolHKWnZ2tffv2nfW5goIC+f1+7d+/X6+88opKS0t1991364orrtBNN910QV+H65wBAADbnes6Z41SzhYvXl6zoDYAAAxpSURBVFzr8506ddLAgQPldruVkJCgtLQ0bdiw4YLLGQAAQFNnxTFnAwcO1KpVqyRJR48e1bp163TNNdc4nAoAAKDxWXH7puPHj+t3v/udNm7cKEkaNGiQRo4cecHvw25NAABgu3Pt1rSinNUXyhkAALCdFcecNRa32+V0BAAAgFqdq6+E1coZAABAU2fFCQEAAACoQjkDAACwCOUMAADAIpQzAAAAi1DOAAAALEI5AwAAsAjlDAAAwCKUMwAAAItQzgAAACxCOQMAALAI5QwRr1+/ftq6davTMQBEoOeff14nT56s8+fm5ubWcyLYgHIG1KCystLpCADC3AsvvKBTp06d9Tm2QZEryukAwBdffKHp06eroqJCkjRmzBhddNFFevrpp3X06FHFxsbqt7/9rW644QZ98803uvPOO3XXXXdp1apVOn78uJ555hm99tprWr9+vZo3b65Zs2apXbt2NX69zz77TJMmTZIk3XTTTTLGBJ/r16+fMjIytGbNGiUmJuq3v/2tnnrqKf3973+XJA0aNEj/9m//Jknavn27fvOb3+jYsWO65pprtHv3bj344IPq27evXn75ZS1dulR+v1/NmjXTxIkTlZSU1FA/QiBiNfb2o6ioSE8//bSKi4slSSNGjFB2drZ27dqlCRMm6PDhw4qKitLjjz+uXr16SZK6du2qxx9/XMuXL5fP59OYMWPUv3//4HZo2LBhcrvdmj9/vqZOnSqPx6MdO3aooqJC77zzjmbPnq13331XkvSDH/xATzzxhFq2bHlGttmzZ+vDDz+U3+9X+/btNWXKlFq/F1jMAA4qLS01aWlpZt26dcYYYyorK01xcbHp3bu3KSgoMMYYk5+fb3r37m1OnDhh9uzZYxITE83KlSuNMcbMmTPHdO/e3WzcuNEYY8yTTz5pZsyYUePXO3HihElPTzdr1qwxxhizdOlSk5iYaLZs2WKMMaZv377mySefDL5++vTpZsyYMSYQCJiysjKTkZFhPv74Y2OMMdnZ2ebtt982xhizYcMGc80115gVK1YYY4wpKSkJvkd+fr4ZMmRIqD8qAN/T2NuPU6dOmdtuu8289957wccOHz5sjDEmJyfHvP7668YYY7Zt22Z+9KMfBbcDiYmJZv78+cYYYz777DOTnp4e/PzExERTXl4enMeOHWuys7NNRUWFMcaYjz/+2AwYMMCUlZWZQCBgRo8ebaZPn26MMeaPf/yjmTZtmjHGmLfffts88cQTxu/3G2OMWbhwofmP//iPC/6Zwg7s1oSjvvzyS1155ZXq1q2bJMnj8aikpETR0dFKTU2VJKWlpSk6Olo7duyQJMXGxqpPnz6SpOuuu04dOnQIrkpdd9112r17d41f7x//+IdatGihHj16SJIyMjLUqlWraq8ZPHhw8OPCwkINGTJELpdLcXFxGjBggAoLC1VeXq6tW7cqMzNTUtVvs127dg1+3ldffaWf/exnGjhwoH7/+99r06ZNofyYAJxFY28/duzYocrKSv30pz8NPhYfH6/y8nJt2rRJd955pyTpqquuUlJSkr788svg6zIyMiRJycnJOnTokE6cOFHj17n99tsVGxsrqWoblJGRobi4OLlcLt11110qLCw843NWrFihgoICZWdna9CgQXrllVe0d+/e2n+AsBa7NdHkxMTEBD92u93VZo/HI7/ff0Hv53K5qs2nN4p1+VxJOnnypEaNGqUFCxbouuuu08GDB4O7NwA4q763H+erWbNmwa8hVR1Pdvqx77uQbdBpxhg9+OCDysnJqXtIWIOVMzgqOTlZRUVF+uKLLyRJfr9fCQkJOnXqlNasWSOp6jfHyspKXXHFFSF/vX/5l3/R8ePH9dlnn0mSli1bpn/+8581vj41NVVvvvmmjDEqLy/Xe++9p7S0NMXFxenqq6/WkiVLJElff/118IzPkydPqrKyUh07dpQkvfLKKyHnBnCmxt5+XHHFFYqKitL7778ffKy0tFRxcXFKSkrS4sWLJVUdl7Z582YlJyef8z1btmyp8vLyGp9PTU3V+++/r/LychljtGjRIqWlpZ3xun79+umVV17RkSNHJFVthzZv3nyh3yIswcoZHOX1evX8889r2rRpOnr0qNxut8aOHas//vGP1Q7onTlzZrXfcOsqJiZGM2bMqHZCQKdOnWp8/UMPPaQpU6YEd19mZWUFV8Fyc3M1fvx4zZ49W4mJiUpMTFSrVq0UFxenxx57TDk5OfJ6verfv3/IuQGcqbG3H1FRUZo1a5YmT56sWbNmyeVyacSIERo8eLCeeeYZTZgwQfPmzVNUVJSmT5+uNm3anPM9R4wYoXvvvVfNmzfX/Pnzz3i+d+/e2rJli4YNGyZJuv766/Xggw+e8brBgwfL5/PpnnvukVS1knb33XfrmmuuCfG7hhNcxnznVDUA562iokKxsbFyuVzavn27fv7zn2vZsmVq3bq109EAAE0YK2dAHZ0+hf/07zdTpkyhmAEAQsbKGcLSG2+8oQULFpzx+LRp07jeGIBasf2A0yhnAAAAFuFsTQAAAItQzgAAACxCOQMAALAI5QyAtfr166eCgoI6f/64ceP07LPP1mOi+mNzNgDOopwBaJIqKyudjgAADYJyBsBKo0eP1r59+/TAAw/oxhtv1Jw5c9S1a1e98cYb6tOnj37xi19Ikh577DH17NlT3bt3189+9jNt27ZNkvTf//3fysvL03/913/pxhtv1AMPPCBJmj17tm699VbdeOONysjI0PLly4Nf86233tKwYcM0depUpaSk6JZbbtHnn3+ut956S71791ZqamrwFj1S1S1ycnNz1adPH6WlpWnChAk6fvy4JGnt2rXq1auXXn75ZaWmpio9PV1vvvlmrdmKior085//XCkpKRowYIA++uijhv9BA7CPAQBL9e3b1+Tn5xtjjNmzZ49JTEw0o0ePNhUVFebYsWPGGGPeeOMNU1ZWZk6cOGGeeuopk5WVFfz8sWPHmhkzZlR7z/fee88cOHDA+P1+s3TpUvPDH/7QHDx40BhjzJtvvmmSkpLMokWLTGVlpZkxY4bp3bu3mThxojlx4oRZtWqVSU5ONuXl5cYYY55++mlz//33m9LSUlNWVmbuv/9+88wzzxhjjFmzZo1JSkoyzz33nDl58qT5+OOPzQ033GB8Pt9Zs508edLceuut5s9//rM5ceKEKSgoMMnJyaaoqKiBfroAbMXKGYAm5dFHH1VsbKyaN28uScrJyVFcXJxiYmL06KOPavPmzSorK6vx83/605+qffv2crvdysjIUJcuXbRhw4bg8507d9add94pj8ejjIwM7d+/Xw8//LBiYmKUnp6umJgY7d69W8YYvf766xo/fry8Xq/i4uJ0//33a+nSpcH3ioqK0sMPP6zo6Gj17t1bsbGx2rFjx1lzrV+/XkePHtXIkSMVExOj1NRU9e3bt9r7AYgM3L4JQJPSoUOH4Md+v1/PPvusli1bpsOHD8vtrvp9s7S0VK1atTrr57/99tuaO3eu9u7dK0k6evSoSktLg88nJCQEPz5dANu2bRt8rFmzZqqoqNDhw4d17Ngx3XHHHcHnjDEKBALB2ev1KirqfzezLVq00NGjR8+a69ChQ+rQoUPwe5CkTp066eDBg7X8NACEI8oZgCbF5XIFP87Ly9NHH32kuXPnqnPnziorK9NNN90UvN/pd18rSXv37tUTTzyhefPm6cYbb5TH49GgQYPqlCM+Pl7NmzfX0qVL1b59+5C+D0m6+OKLdeDAAQUCgWBB279/vy6//PI65QPQdLFbE4C12rZtqz179tT4fEVFhWJiYhQfH69jx45pxowZ1Z5PSEjQN998E5yPHTsml8ulNm3aSJLefPPN4AkEF8rtdmvIkCGaOnWqSkpKJEkHDx7UqlWrzuvzv5/thhtuUPPmzfWXv/xFp06d0tq1a7VixQplZGTUKR+ApotyBsBaI0eO1J///GelpKTogw8+OOP5wYMHq1OnTvrxj3+sAQMGKDk5udrzOTk52r59u1JSUvTQQw/pqquu0ogRIzRs2DClpaVp69at6tatW53zjR49Wl26dNFdd92lbt266V//9V9rPKbs+76fLSYmRi+++KI+/fRT3XzzzZo0aZKmT5+uK6+8ss75ADRN3PgcAADAIqycAQAAWIRyBgAAYBHKGQAAgEUoZwAAABahnAEAAFiEcgYAAGARyhkAAIBFKGcAAAAWoZwBAABY5P8DA3WvPUgB9jMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KbXSuyvbqdTE" + }, + "source": [ + "# **Desafios - Aula 2**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X_Lg2XTu20ND" + }, + "source": [ + "## **Desafio 01: Ordenar o gráfico countplot**" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 419 + }, + "id": "Ip2zBJG3GDt0", + "outputId": "9a9d352c-d41b-4db3-c7a5-052318fba424" + }, + "source": [ + "top_compostos = dados.query('composto in @cod_compostos')\n", + "top_compostos" + ], + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idtratamentotempodosecompostog-0g-1g-2g-3g-4g-5g-6g-7g-8g-9g-10g-11g-12g-13g-14g-15g-16g-17g-18g-19g-20g-21g-22g-23g-24g-25g-26g-27g-28g-29g-30g-31g-32g-33g-34...c-60c-61c-62c-63c-64c-65c-66c-67c-68c-69c-70c-71c-72c-73c-74c-75c-76c-77c-78c-79c-80c-81c-82c-83c-84c-85c-86c-87c-88c-89c-90c-91c-92c-93c-94c-95c-96c-97c-98c-99
7id_0020d0484com_droga48D18b87a7a830.27110.5133-0.13272.59500.69800.5846-0.2633-2.14900.48811.4750-0.0488-0.05610.16410.1749-0.3464-0.18110.56851.29701.0510-0.95850.7911-0.29912.7420-0.5979-1.02400.72680.1590-1.97301.1340-2.57200.20680.9992-0.19580.22621.0140...-0.2623-0.5500-0.05300.2077-0.08250.21560.81421.09901.08600.4011-0.13420.4653-0.11040.39351.2370-0.50720.03510.5084-0.12480.43510.13890.67260.60700.3431-0.41160.11940.34200.13310.85410.62820.3230-0.41400.25320.05130.86001.42500.66330.4562-0.96220.0260
16id_002fb9c19com_droga48D187d7143668.73800.19142.4380-0.29303.20101.49105.3920-1.0420-8.4860-2.5790-6.74703.6150-1.45100.6909-0.7623-2.9400-9.2850-6.7110-0.41951.1600-1.31801.3660-1.4020-2.62200.7204-2.5930-4.0630-0.8282-3.50000.9206-5.14509.8040-2.6840-2.4390-0.1427...-10.0000-9.5910-10.0000-10.0000-8.5110-10.0000-10.0000-10.0000-10.0000-8.8870-10.0000-10.0000-10.0000-10.0000-4.9020-9.9840-5.5520-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.7960-8.1770-9.8990-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-9.9840-6.7840
25id_0054388eccom_controle48D1cacb2b860-0.6696-0.2718-1.2230-0.6226-0.72200.15880.77850.7062-0.79511.37700.2856-0.83310.38791.3290-0.47460.0857-0.2745-0.10930.26030.7386-0.6665-1.6520-0.92620.00001.6310-0.29330.2043-2.20700.1383-0.49660.6922-0.40770.2303-0.0456-0.7447...0.6976-0.01780.37680.4318-0.10510.3933-0.31890.4128-0.2116-1.04100.77980.15791.72501.44900.9117-0.0754-0.83960.76401.20801.18900.21140.63350.3265-0.10560.54780.74771.23400.5035-0.65910.30230.61710.64050.54290.35621.32900.55730.88370.55340.89761.0050
38id_0079af0fbcom_controle24D1cacb2b860-0.1636-1.8230-0.52110.3054-1.12800.60410.3856-0.1670-0.54000.2721-0.24790.0761-0.40542.9760-0.76790.69950.07520.59430.42660.00001.0410-0.11310.6593-0.68900.5115-0.2512-0.8775-1.38100.1419-0.03630.25592.52900.28531.4690-0.3626...-0.34200.2815-0.7493-0.27010.12050.23960.3506-0.92330.2490-0.08240.48411.1940-1.1650-0.48531.1080-0.59790.74380.2050-0.2761-0.17480.3385-0.3500-0.0309-0.0409-0.07350.2732-1.21000.00890.03170.4721-0.3880-0.6828-0.6594-0.20430.3571-0.13190.21870.07370.6498-1.4820
40id_007bfbb91com_controle24D2cacb2b860-1.3200-1.7340-0.07411.5440-1.8290-0.09510.3829-1.8700-0.03242.7670-0.0438-0.01470.12760.2968-0.0704-0.37672.57900.4069-0.3868-0.27821.8180-2.9390-0.1150-0.8009-1.44400.5412-0.0804-0.44442.92302.8270-0.34371.6570-1.92000.34421.7160...0.40090.76490.27890.44650.94920.63851.5510-0.12200.66880.43960.69470.97611.24301.4770-0.00811.00401.4420-0.34820.32971.20700.05240.53460.76430.40670.38170.45660.77360.53160.27900.97350.74121.03400.73931.10200.37860.2636-0.57510.33620.85430.9180
......................................................................................................................................................................................................................................................
23793id_ffd26f361com_controle48D2cacb2b8600.60080.2781-0.3319-0.87820.92810.75350.59711.6350-0.31460.4984-1.18900.3772-0.81960.1083-2.03500.41350.7586-0.4024-0.04490.33350.23580.7919-0.87750.42321.8460-2.09400.1438-0.66040.72430.0338-0.0182-0.20220.88270.3147-0.9263...0.19341.2240-0.11780.1459-0.12420.3106-0.79590.56810.36630.4874-0.05480.18101.34701.6210-0.82600.33770.32640.92410.30121.2980-0.27890.7019-0.35280.73831.03000.65271.6750-0.50460.29420.29501.24700.9569-0.2065-0.49180.78630.05040.88130.7757-0.52720.7082
23802id_fff3976bdcom_droga24D187d7143663.28902.12700.97702.04902.3170-0.5355-0.6357-6.9060-4.4830-2.8400-5.33100.6547-2.20803.60300.6380-2.1280-3.1680-4.2180-0.31700.2140-1.7660-1.9700-1.4820-1.3710-0.2628-0.5276-2.4160-0.4638-3.8630-0.8880-1.98502.0530-1.4700-3.32201.8800...-9.9170-4.0200-6.7560-9.9170-4.1240-8.5110-5.7500-8.4760-6.9470-4.7650-9.7690-5.7900-9.9170-5.7450-2.3570-9.1190-4.5980-8.7760-7.7980-4.1620-6.1510-5.7400-6.8700-9.1000-3.3360-6.6420-2.2750-3.4720-6.2670-6.3980-8.6300-8.1490-6.2900-8.0970-8.7330-2.3780-8.4480-4.4550-5.7930-3.7000
23805id_fff6df1c5com_droga48D25628cb3ee1.7380-1.2900-0.4533-1.1640-0.4841-0.2392-0.1774-1.3980-0.40590.15530.1083-0.8020-0.5039-0.7167-0.5016-0.9369-0.5864-0.10090.89870.3389-1.3460-0.5087-0.0892-0.65590.0864-0.62510.2471-0.4523-0.03891.03400.0796-0.2560-0.7851-0.1687-1.2890...0.28660.3854-0.49860.28830.58430.0907-0.93030.19810.65150.28770.4389-0.38590.5203-1.10702.38700.1820-0.6434-0.9722-0.4200-0.56931.07001.1110-0.5117-1.21300.37690.52961.04000.05871.0150-0.76690.28650.5974-0.27270.11881.0770-1.02500.15160.4503-0.6312-0.8302
23811id_fffc1c3f4com_controle48D2cacb2b8600.39420.37560.3109-0.73890.5505-0.0159-0.25410.1745-0.03400.4865-0.18540.07160.1729-0.04340.1542-0.2192-0.0302-0.42180.4057-0.53720.1521-0.26510.2310-0.81010.49430.6905-0.3720-1.41100.45161.2300-0.1949-1.3280-0.4276-0.0040-0.3086...0.68450.71270.72940.4718-0.20200.27830.49340.41440.54491.4690-0.61420.60680.34340.9880-0.0468-0.1882-0.0087-0.03560.57180.49710.10570.21110.69920.07080.61690.22480.59940.26890.03051.23200.54090.37550.73430.28070.41160.64220.22560.75920.66560.3808
23812id_fffcb9e7ccom_droga24D18b87a7a830.66600.23240.43920.20440.8531-0.03430.03230.04630.4299-0.79850.57420.14212.27000.20460.5363-1.73300.14500.60970.20240.9865-0.78050.96080.34402.76500.49250.66980.2374-0.33720.8771-2.6560-0.2000-0.20430.6797-0.0248-0.0927...0.3360-0.61360.50110.92610.44190.02950.42200.4677-0.11840.45240.41350.1356-0.58010.04111.02401.0340-0.0270-0.41940.7403-0.6793-0.14230.73070.7946-0.06500.90380.23240.96761.09400.42900.5187-0.11050.4258-0.20120.15061.52300.71010.17320.7015-0.62900.0740
\n", + "

3235 rows × 877 columns

\n", + "
" + ], + "text/plain": [ + " id tratamento tempo dose ... c-96 c-97 c-98 c-99\n", + "7 id_0020d0484 com_droga 48 D1 ... 0.6633 0.4562 -0.9622 0.0260\n", + "16 id_002fb9c19 com_droga 48 D1 ... -9.9840 -9.9840 -9.9840 -6.7840\n", + "25 id_0054388ec com_controle 48 D1 ... 0.8837 0.5534 0.8976 1.0050\n", + "38 id_0079af0fb com_controle 24 D1 ... 0.2187 0.0737 0.6498 -1.4820\n", + "40 id_007bfbb91 com_controle 24 D2 ... -0.5751 0.3362 0.8543 0.9180\n", + "... ... ... ... ... ... ... ... ... ...\n", + "23793 id_ffd26f361 com_controle 48 D2 ... 0.8813 0.7757 -0.5272 0.7082\n", + "23802 id_fff3976bd com_droga 24 D1 ... -8.4480 -4.4550 -5.7930 -3.7000\n", + "23805 id_fff6df1c5 com_droga 48 D2 ... 0.1516 0.4503 -0.6312 -0.8302\n", + "23811 id_fffc1c3f4 com_controle 48 D2 ... 0.2256 0.7592 0.6656 0.3808\n", + "23812 id_fffcb9e7c com_droga 24 D1 ... 0.1732 0.7015 -0.6290 0.0740\n", + "\n", + "[3235 rows x 877 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 194 + }, + "id": "T65e69uHGVNq", + "outputId": "fb65766e-a845-433a-cd6d-65ad37244e1a" + }, + "source": [ + "contagem_top_compostos = top_compostos['composto'].value_counts().to_frame()\n", + "contagem_top_compostos" + ], + "execution_count": 24, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
composto
cacb2b8601866
87d714366718
9f80f3f77246
8b87a7a83203
5628cb3ee202
\n", + "
" + ], + "text/plain": [ + " composto\n", + "cacb2b860 1866\n", + "87d714366 718\n", + "9f80f3f77 246\n", + "8b87a7a83 203\n", + "5628cb3ee 202" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 523 + }, + "id": "asJVRq8pGp4F", + "outputId": "8462a18b-0ba3-4e2b-9482-6f600bab7f19" + }, + "source": [ + "plt.figure(figsize=(10, 8))\n", + "ax = sns.countplot(x = 'composto', data=top_compostos, order = contagem_top_compostos.index)\n", + "ax.set_title('Top 5 compostos', fontsize = 18)\n", + "ax.set_xlabel('Id do Composto', fontsize = 14)\n", + "ax.set_ylabel('Frequência', fontsize = 14)\n", + "plt.show()" + ], + "execution_count": 25, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAH6CAYAAACOO9H6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde1hVZf7//xegGw+oCB5CqSxHCEWHFG2qIU0pD4mmjiOhVJZmZU7qF/tophRiCpqfTpaVfuyg6dSYg5h5KDMzJw+ZJZlpnkrFRFAEEZC9798f/NwjgcA2Tkufj+vyutz3vQ7vvRZ77de+19pruxljjAAAAGBZ7tVdAAAAAP4YAh0AAIDFEegAAAAsjkAHAABgcQQ6AAAAiyPQAQAAWByBDgAAwOJqVXcBAKwhMDCw3NN+9tln8vf3r8Rq/mvixIlavnx5iX0vvfSSevXqVSV1XIm2bNmirVu36oEHHlDDhg2ruxwApSDQASiXxMTEIo+/+eYb/fOf/9SQIUPUqVOnIn0+Pj5VWZqk4vVJUocOHaq8jivJ1q1b9eqrr2rAgAEEOqCGI9ABKJf+/fsXeWy32/XPf/5TISEhxfqqQ02oAQCqC9fQAahQOTk5euGFFxQeHq7g4GDdfvvteuqpp3T06NEi023ZskWBgYH66KOP9N5776lnz55q3769evbsqffee8/l9RpjlJ2dLYfDcVl1Hz58WJMmTdIdd9yh4OBg/fWvf9Vjjz2mlJSUItN9+umnioyMVEhIiG6++WZFRkbq008/Lba87t27Kzo6Wnv27NGDDz6om2++WbfeeqtmzpypgoIC5eXlKSEhQWFhYWrfvr2GDh2q/fv3F1nGRx99pMDAQG3evFmvvPKK7rzzTgUHBysiIkIff/xxic+jvPXt2LFDI0aM0O2336727dsrLCxMI0eO1M6dOyUVnsp+9dVXJUk9evRQYGCgAgMD9corrziXceTIEU2YMEG33XabgoODFR4erjlz5ujcuXNF1nX69Gk9//zzCg8PV/v27XXLLbdo4MCBmj9/fjn2DIDyYIQOQIU5f/68Hn74Ye3YsUM9e/bU8OHDdfjwYS1ZskRfffWVli1bpmuuuabIPIsWLVJaWpqGDBkiLy8vrVy5UvHx8crMzNQTTzxR7nV36tRJZ8+eVe3atdW5c2eNHTtWf/7zn8s1765du/Tggw+qoKBAf/vb39SmTRtlZmZq69at+vbbbxUcHCxJWrx4seLi4nTjjTfq8ccflyQtX75co0ePVlxcnIYMGVJkucePH9fw4cPVp08f9ezZU1999ZUWLlwoDw8P/fzzz8rNzdUjjzyiU6dO6f/+7//0+OOP65NPPpG7e9HP2rNnz1ZOTo7uu+8+SYVBb/z48crLy9PAgQOd05W3vgMHDuihhx5SkyZNdP/998vX11fp6en65ptvtGfPHoWEhGjIkCHKzs7WunXrNGnSJDVu3FjSf6+lPHr0qAYPHqysrCxFRUXp+uuv19atW/XGG29ox44devvtt1WrVuFbzJNPPqnt27crMjJSgYGBys3N1f79+7V161aNGDGi3PsYQCkMAFyGZcuWmYCAALNs2TJn2z//+U8TEBBgEhISikz7+eefm4CAABMTE+Ns+/rrr01AQIAJCQkxqampzva8vDwzaNAg07Zt2yLtlzJr1izz/PPPm6SkJLNu3TrzyiuvmNDQUNOuXTvz1VdflTm/w+Ew99xzjwkODjY//vhjsX673W6MMeb06dMmJCTEhIeHm6ysLGd/VlaW6dGjhwkJCTGZmZnO9jvvvNMEBASYVatWFVnegAEDTGBgoHn00UeNw+Fwtr/zzjsmICDAbNy40dl2YRt369bNnDlzxtl+5swZ061bN9O5c2dz7tw5l+u7sK7vvvuu1G3z8ssvm4CAAPPrr78W6xs/frwJCAgwGzZsKNI+c+ZMExAQYD744ANnrQEBASY2NrbUdQH4YzjlCqDCrFu3Tu7u7ho1alSR9m7duikoKEifffZZsVOiERERRUbtbDabc7Rs/fr1Za4zJiZGkyZNUr9+/RQeHq4nnnhCH374oWrVqqVnn322zPl//PFH7du3TwMHDtRNN91UrP/CaNlXX32lnJwcRUdHy8vLy9nv5eWl6Oho5eTkaPPmzUXmbd68uXr37l2krWPHjjLGKDo6Wm5ubs720NBQSYWnfn/vvvvuU4MGDZyPGzRooMjISGVmZmrLli0u13dhWZ999pny8vLK3Ea/53A4tH79erVt21Zdu3Yt0jdq1Ci5u7s7T/N6enrKZrPp+++/15EjR1xeF4DyIdABqDBHjhxRs2bN1KhRo2J9f/rTn3T27FmdOnWqSHvr1q1LnFaSfv3118uqo1WrVurdu7cOHz6sgwcPljrtoUOHJElt27YtdboLYaRNmzbF+i60/b7ekm7dcmHb/L7vwrdIT58+XWyeG2+8sVjbhe12oS5X6rvnnnt02223ad68eerSpYvuv/9+vfnmm8Wuc7yUjIwM5eTkOPfTxby9vdW0aVPnumw2m55++mnt3btXPXr00D333KNp06bpP//5T7nWBaB8CHQArkgtW7aUpGIBsip5eHhcsu/318ldYIyprHKcbDabFi5cqA8//FCPPPKIPDw89PLLL6t3795at25dha/vvvvu0/r16xUfH6+2bdtqzZo1evDBBzVu3LgKXxdwtSLQAagw1157rU6cOKEzZ84U69u/f7+8vLycF9df3P57P//8s3N5l+vCyFuTJk1Kne6GG26QVHjqtTQXatm3b1+xvoqotzQHDhwo1nZhu10Y6buc+jp06KDRo0dr4cKFWrdunerWrasXX3zR2X/xKeGL+fj4qH79+s7lXiwzM1NpaWnF1tWsWTMNHjxYs2bN0hdffKG+fftq1apV+v777y/5vAGUH4EOQIUJDw+Xw+HQm2++WaT9iy++0O7du9W9e/diI1PJyck6fvy483F+fr7efvtteXh46M477yx1fTk5OSVeA7Z7926tXr1arVu31nXXXVfqMm666Sa1adNGy5YtKzEMXRgxu/3221WvXj0tWrRI2dnZzv7s7GwtWrRI9erV0+23317qui7XkiVLlJWV5XyclZWlpUuXqmHDhurSpYvL9WVkZBRbxzXXXCMfHx9lZmY62+rVqydJRdqkwtHFO++8U7t379bGjRuL9L355ptyOBwKDw+XJJ07d67YbUw8PDyc35b9/bIBXB5uWwKgwgwYMEDLly/XW2+9paNHjyo0NFS//PKL3n//fTVp0kTjx48vNs8NN9ygwYMHKzIyUvXr19fKlSu1a9cuPf744/Lz8yt1fYcPH9bIkSPVo0cPtWrVSnXr1tWePXu0bNkyeXh4KC4ursya3dzc9Pzzz+vBBx/U4MGDnbctOXPmjLZt26awsDBFR0erYcOGiomJUVxcnP7+979rwIABkgpvC3L48GHFxcUV+eJCRWrcuLEGDx7svEXJRx99pGPHjik+Pl5169aVJJfqe/311/XVV1+pW7du8vf3lzFGn3/+uQ4cOFDkNiIXbvsye/ZsRUREyNPTU23atFFAQIDGjx+vzZs3a/To0YqKitJ1112n7du3a9WqVercubNz/YcOHdKwYcN01113qU2bNmrYsKEOHDigJUuWyN/f3/llEAB/DIEOQIWpXbu2FixYoNdff12rVq3SunXr1KBBA/Xq1Utjx44tMaANGzbMOYp07NgxtWjRQk8//bQeeOCBMtfXpEkT3XrrrdqyZYuSk5OVl5enpk2bqk+fPnrkkUdK/MJFSTp06KB//etfeu211/TJJ59o6dKl8vb2VocOHdSxY0fndEOHDlWzZs20YMECzZ07V1LhCN/cuXOdI1KVISYmRtu3b9f777+vkydP6oYbbnCGrIuVt77w8HClpaVp9erVOnnypOrUqaPrr79e8fHx+tvf/uacrlOnToqJidHSpUs1ZcoUFRQU6IknnlBAQIBatmypDz74QC+//LJWrFihrKwsNW/eXKNGjdJjjz3mvAfdNddco0GDBmnLli369NNPlZ+fr+bNm2vw4MEaOXKkM5AC+GPcTFVcgQsAv7Nlyxbdf//9mjFjRpGb4+K/PvroI02aNEnvvvuubrnlluouB0ANxjV0AAAAFkegAwAAsDgCHQAAgMVxDR0AAIDFMUIHAABgcVf9bUtOnTorh4NBSgAAUHO5u7upceP6l+y/6gOdw2EIdAAAwNI45QoAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLq1XdBVhFg4Z1VMezdnWXccXLzTuvrDO51V0GAACWQqArpzqetRX11OLqLuOK937iUGWJQAcAgCs45QoAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFlerKleWkJCgNWvW6OjRo0pOTlZAQICOHDmi0aNHO6fJyspSdna2tm7dKknq3r27bDabPD09JUkxMTEKCwuTJO3cuVNTp05VXl6eWrZsqVmzZsnX17cqnxIAAEC1q9JA16NHD91///0aOnSos83f319JSUnOx9OnT5fdbi8y38svv6yAgIAibQ6HQxMmTNCMGTMUGhqq1157TbNnz9aMGTMq90kAAADUMFV6yjU0NFR+fn6X7M/Pz1dycrIGDRpU5rJSUlLk6emp0NBQSVJkZKRWr15dYbUCAABYRZWO0JVl/fr1at68udq1a1ekPSYmRsYYderUSePHj1fDhg2VmpqqFi1aOKfx8fGRw+HQ6dOn5e3tXe51+vp6VVj9qBhNmzao7hIAALCUGhXoli1bVmx0bvHixfLz81N+fr6mT5+uuLg4zZ49u8LWmZ6eLYfDlDkdIaPqpKVlVXcJAADUKO7ubqUOQtWYb7n+9ttv2rZtmyIiIoq0XzhFa7PZFBUVpR07djjbjx075pwuIyND7u7uLo3OAQAAXAlqTKBbvny5unbtqsaNGzvbcnJylJVVOFpjjNGqVasUFBQkSQoODlZubq62b98uSVq6dKl69epV9YUDAABUsyo95RofH6+1a9fq5MmTGj58uLy9vfXxxx9LKgx0kydPLjJ9enq6xowZI7vdLofDodatWys2NlaS5O7ursTERMXGxha5bQkAAMDVxs0YU/YFZFcwV66hi3pqcRVUdHV7P3Eo19ABAPA7lrmGDgAAAJeHQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFlelgS4hIUHdu3dXYGCg9u7d62zv3r27evXqpf79+6t///768ssvnX07d+5Uv3791LNnTz300ENKT08vVx8AAMDVokoDXY8ePbR48WK1bNmyWN/LL7+spKQkJSUlKSwsTJLkcDg0YcIETZ06VWvWrFFoaKhmz55dZh8AAMDVpEoDXWhoqPz8/Mo9fUpKijw9PRUaGipJioyM1OrVq8vsAwAAuJrUqu4CLoiJiZExRp06ddL48ePVsGFDpaamqkWLFs5pfHx85HA4dPr06VL7vL29y71eX1+vCn0e+OOaNm1Q3SUAAGApNSLQLV68WH5+fsrPz9f06dMVFxdXZadP09Oz5XCYMqcjZFSdtLSs6i4BAIAaxd3drdRBqBrxLdcLp2FtNpuioqK0Y8cOZ/uxY8ec02VkZMjd3V3e3t6l9gEAAFxNqj3Q5eTkKCurcETGGKNVq1YpKChIkhQcHKzc3Fxt375dkrR06VL16tWrzD4AAICrSZWeco2Pj9fatWt18uRJDR8+XN7e3po3b57GjBkju90uh8Oh1q1bKzY2VpLk7u6uxMRExcbGKi8vTy1bttSsWbPK7AMAALiauBljyr6A7ArmyjV0UU8troKKrm7vJw7lGjoAAH7HEtfQAQAA4PIR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFkegAwAAsDgCHQAAgMUR6AAAACyOQAcAAGBxBDoAAACLI9ABAABYHIEOAADA4gh0AAAAFlerKleWkJCgNWvW6OjRo0pOTlZAQIBOnTqlp556Sr/88otsNpuuv/56xcXFycfHR5IUGBiogIAAubsXZs/ExEQFBgZKktavX6/ExETZ7Xa1a9dOM2bMUN26davyKQEAAFS7Kh2h69GjhxYvXqyWLVs629zc3DRixAitWbNGycnJuvbaazV79uwi8y1dulRJSUlKSkpyhrmzZ89qypQpmjdvntatW6f69etrwYIFVfl0AAAAaoQqDXShoaHy8/Mr0ubt7a1bbrnF+TgkJETHjh0rc1kbN25UcHCwWrVqJUmKjIzUJ598UqH1AgAAWEGVnnIti8Ph0JIlS9S9e/ci7dHR0bLb7brjjjs0ZswY2Ww2paamqkWLFs5pWrRoodTUVJfX6evr9YfrRsVq2rRBdZcAAICl1KhAN23aNNWrV0/Dhg1ztm3YsEF+fn7Kzs7WhAkTNHfuXI0bN67C1pmeni2Hw5Q5HSGj6qSlZVV3CQAA1Cju7m6lDkLVmG+5JiQk6PDhw3rxxRedX4CQ5DxF6+XlpcGDB2vHjh3O9otPzR47dqzY6VwAAICrQY0IdHPmzFFKSormzp0rm83mbM/MzFRubq4kqaCgQGvWrFFQUJAkKSwsTLt27dKhQ4ckFX5xonfv3lVeOwAAQHWr0lOu8fHxWrt2rU6ePKnhw4fL29tbL774ot544w21atVKkZGRkiR/f3/NnTtXBw4c0NSpU+Xm5qaCggLdfPPNevLJJyUVjtjFxcVp1KhRcjgcCgoK0uTJk6vy6QAAANQIbsaYsi8gu4K5cg1d1FOLq6Ciq9v7iUO5hg4AgN+xzDV0AAAAuDwEOgAAAIsj0AEAAFgcgQ4AAMDiCHQAAAAWR6ADAACwOAIdAACAxRHoAAAALI5ABwAAYHEEOgAAAIsj0AEAAFgcgQ4AAMDiCHQAAAAWR6ADAACwOAIdAACAxRHoAAAALI5ABwAAYHEEOgAAAIsj0AEAAFgcgQ4AAMDiark6Q2ZmpjZu3KjU1FTl5+cX6XviiScqrDAAAACUj0uBbufOnRo1apRq166tU6dOqXnz5jpx4oRsNptatmxJoAMAAKgGLp1yTUxMVEREhL788kvZbDa988472rBhg4KDgzVy5MjKqhEAAAClcCnQ/fTTTxo6dKjc3Nzk4eGh/Px8NWnSRDExMXr11Vcrq0YAAACUwqVAV7t2bef/fX19dfToUUlS/fr1deLEiYqtDAAAAOXi0jV07dq1065du3TDDTfolltu0Ysvvqj09HStWLFCgYGBlVUjAAAASuHSCN3YsWPVrFkz5/99fHw0bdo0ZWZmKi4urlIKBAAAQOlcGqFr37698/8+Pj6aP39+hRcEAAAA13BjYQAAAIsrc4QuIiJCixYtUqNGjRQREVHqtMnJyRVWGAAAAMqnzEDXs2dP2Ww25/8BAABQs5QZ6C7+9Qd+CQIAAKDmcekaun379mnPnj3F2vfs2aOff/65wooCAABA+bkU6KZMmaJ9+/YVa9+/f7+mTJlSYUUBAACg/Fz+6a8OHToUa2/fvr327t1bYUUBAACg/FwKdB4eHsrKyirWnpmZKWNMhRUFAACA8nMp0HXu3Fnz5s2T3W53thUUFGjevHnq3LlzhRcHAACAsrn0SxETJkxQVFSU7rrrLnXq1EmS9M033ygnJ0eLFy+ulAIBAABQOpdG6G688UatWLFCERERyszMVGZmpiIiIpSUlKTWrVtXVo0AAAAohUsjdJLUrFkzjRs3rjJqAQAAwGVwOdCdO3dOP/74ozIyMuRwOIr03X333RVWGAAAAMrHpUC3efNmjR8/XqdPny7W5+bmph9//LHCCgMAAED5uBTopk+frm7dumncuHFq3rx5ZdUEAAAAF7gU6I4eParXX3+dMAcAAFCDuPQt144dO+rgwYOVVQsAAAAug0sjdJGRkUpISNCJEycUEBCgWrWKzt6uXbsKLQ4AAABlcynQ/eMf/5AkTZkypVhfeb4UkZCQoDVr1ujo0aNKTk5WQECAJOngwYOaOHGiTp8+LW9vbyUkJKhVq1Z/qA8AAOBq4VKg++yzz/7Qynr06KH7779fQ4cOLdIeGxurqKgo9e/fX0lJSZo6darefffdP9QHAABwtXDpGrqWLVuW+q8soaGh8vPzK9KWnp6u3bt3q2/fvpKkvn37avfu3crIyLjsPgAAgKuJyzcW/uKLL/T+++/r119/1YIFC+Tn56cPP/xQ/v7+uvXWW10uIDU1Vc2bN5eHh4ckycPDQ82aNVNqaqqMMZfV5+PjU+71+/p6uVwzKlfTpg2quwQAACylXIFu+/btCg0N1YoVKxQbG6vBgwfrP//5jwoKCiRJdrtd8+fPv6xAV93S07PlcJgypyNkVJ20tKzqLgEAgBrF3d2t1EGoUk+55uXlKT4+Xq+//rok6a233lJ8fLyefvpp58iYJIWEhFz2r0T4+fnpt99+k91ul1QYDk+cOCE/P7/L7gMAALialBro5s+fryNHjmjBggWSpF9++UUhISHFpqtXr56ys7MvqwBfX18FBQVp5cqVkqSVK1cqKChIPj4+l90HAABwNSk10PXr109nzpxRYmKiJKlZs2Y6dOhQsem2bdum6667rsyVxcfH64477tDx48c1fPhw3XPPPZKkZ599VosWLVLPnj21aNEiPffcc855LrcPAADgauFmjCn1AjJjjN555x09+OCDeuutt/TRRx8pPj5eI0aM0BtvvKGjR48qISFBY8aMKXY7Eitw5Rq6qKcWV0FFV7f3E4dyDR0AAL9T1jV0ZX4pws3NTQ8++KAkaeTIkcrOztZDDz2kvLw83X///bLZbHrooYcsGeYAAACuBC7ftmTcuHF69NFH9fPPP8sYo9atW6t+/fqVURsAAADKweVAJ0l169ZV+/btK7oWAAAAXAaXAt2jjz5aav+8efP+UDEAAABwnUuBrnHjxkUenz9/Xj/99JNSU1N11113VWhhAAAAKB+XAt2MGTNKbJ85c6a8vPgJLQAAgOpQ6n3oymvIkCFavJhbegAAAFSHCgl0Bw8erIjFAAAA4DK4dMo1Pj6+yGNjjNLS0rRx40YNGjSoQgsDAABA+bgU6H766acij93d3eXj46NJkyYR6AAAAKqJS4Huvffeq6w6AAAAcJkq5Bo6AAAAVB+XRuiio6Pl5uZWrmnffffdyyoIAAAArnEp0LVu3VrJyclq0qSJ/vznP0uSvv/+e508eVJ9+/aVh4dHpRQJAACAS3Mp0NlsNg0YMECTJ08uMlI3ffp0GWP0zDPPVHiBAAAAKJ1L19AlJSVp6NChxU67RkVFacWKFRVaGAAAAMrHpUBnjNHevXuLtZfUBgAAgKrh0inXQYMG6ZlnntHhw4ed19B99913mj9/vgYOHFgpBQIAAKB0LgW6CRMmyMfHR++++67mzJkjSWratKlGjhyphx56qFIKBAAAQOlcCnTu7u4aOXKkRo4cqezsbEmSl5dXpRQGAACA8rmsGwvv2rVLGzdulLt74ew5OTkqKCio0MIAAABQPi6N0J08eVKPP/64vv/+e7m5uWnt2rWqV6+eZs6cKZvNxm1LAAAAqoFLI3QzZsyQr6+vtmzZojp16jjbe/Xqpa+++qrCiwMAAEDZXBqh+89//qO3335bjRo1KtJ+7bXXKjU1tUILAwAAQPm4NEKXm5ur2rVrF2s/deqUPD09K6woAAAAlJ9Lga5z585avnx5kTa73a633npLf/nLXyq0MAAAAJSPy/ehGzZsmHbt2qXz588rISFB+/btU3Z2tpYsWVJZNQIAAKAULgW6P/3pT0pOTtaSJUtks9mUl5enXr16aejQoWrWrFll1QgAAIBSlDvQnT9/XlFRUUpISNA//vGPyqwJAAAALij3NXS1a9fWkSNH5ObmVpn1AAAAwEUufSni3nvv1QcffFBZtQAAAOAyuHQN3blz55ScnKzNmzerXbt2qlevXpF+fikCAACg6pUr0O3Zs0dt2rTR/v371bZtW0nSr7/+WmQaTsUCAABUj3IFugEDBmjTpk167733JEmPPPKI4uPj+WYrAABADVCua+iMMUUeb9++XXl5eZVSEAAAAFzj0pciLvh9wAMAAED1KVegc3Nz4xo5AACAGqpc19AZYzRhwgTVrl1bkpSfn68pU6aoTp06RaabN29exVcIAACAUpX7SxEX69evX6UUAwAAANeVK9DNmDGjsusAAADAZbqsL0UAAACg5iDQAQAAWByBDgAAwOIIdAAAABZHoAMAALA4Ah0AAChTjSYAACAASURBVIDFEegAAAAsrlz3oasKR44c0ejRo52Ps7KylJ2dra1bt6p79+6y2Wzy9PSUJMXExCgsLEyStHPnTk2dOlV5eXlq2bKlZs2aJV9f32p5DgAAANWhxgQ6f39/JSUlOR9Pnz5ddrvd+fjll19WQEBAkXkcDocmTJigGTNmKDQ0VK+99ppmz57NjZABAMBVpUaecs3Pz1dycrIGDRpU6nQpKSny9PRUaGioJCkyMlKrV6+uihIBAABqjBozQnex9evXq3nz5mrXrp2zLSYmRsYYderUSePHj1fDhg2VmpqqFi1aOKfx8fGRw+HQ6dOn5e3tXa51+fp6VXj9+GOaNm1Q3SUAAGApNTLQLVu2rMjo3OLFi+Xn56f8/HxNnz5dcXFxmj17doWsKz09Ww6HKXM6QkbVSUvLqu4SAACoUdzd3UodhKpxp1x/++03bdu2TREREc42Pz8/SZLNZlNUVJR27NjhbD927JhzuoyMDLm7u5d7dA4AAOBKUOMC3fLly9W1a1c1btxYkpSTk6OsrMIRG2OMVq1apaCgIElScHCwcnNztX37dknS0qVL1atXr+opHAAAoJrUuFOuy5cv1+TJk52P09PTNWbMGNntdjkcDrVu3VqxsbGSJHd3dyUmJio2NrbIbUsAAACuJm7GmLIvILuCuXINXdRTi6ugoqvb+4lDuYYOAIDfsdw1dAAAAHBNjTvlClSGxo1sqmXzrO4yrmgF+Xk6lZlf3WUAwFWJQIerQi2bp75JHFHdZVzROj01XxKBDgCqA6dcAQAALI5ABwAAYHEEOgAAAIsj0AEAAFgcgQ4AAMDiCHQAAAAWR6ADAACwOAIdAACAxRHoAAAALI5ABwAAYHEEOgAAAIsj0AEAAFgcgQ4AAMDiCHQAAAAWR6ADAACwOAIdAACAxRHoAAAALI5ABwAAYHEEOgAAAIsj0AEAAFgcgQ4AAMDiCHQAAAAWR6ADAACwOAIdAACAxRHoAAAALI5ABwAAYHEEOgAAAIsj0AEAAFgcgQ4AAMDiCHQAAAAWR6ADAACwOAIdAACAxRHoAAAALI5ABwAAYHEEOgAAAIsj0AEAAFgcgQ4AAMDiCHQAAAAWR6ADAACwOAIdAACAxRHoAAAALI5ABwAAYHEEOgAAAIurVd0FXKx79+6y2Wzy9PSUJMXExCgsLEw7d+7U1KlTlZeXp5YtW2rWrFny9fWVpFL7AAAArgY1boTu5ZdfVlJSkpKSkhQWFiaHw6EJEyZo6tSpWrNmjUJDQzV79mxJKrUPAADgalHjAt3vpaSkyNPTU6GhoZKkyMhIrV69usw+AACAq0WNOuUqFZ5mNcaoU6dOGj9+vFJTU9WiRQtnv4+PjxwOh06fPl1qn7e3d7nW5+vrVeHPAX9M06YNqrsEXCb2HQBUjxoV6BYvXiw/Pz/l5+dr+vTpiouL01133VWp60xPz5bDYcqcjjeqqpOWllXhy2T/VY3K2HcAAMnd3a3UQagadcrVz89PkmSz2RQVFaUdO3bIz89Px44dc06TkZEhd3d3eXt7l9oHAABwtagxgS4nJ0dZWYWf7o0xWrVqlYKCghQcHKzc3Fxt375dkrR06VL16tVLkkrtAwAAuFrUmFOu6enpGjNmjOx2uxwOh1q3bq3Y2Fi5u7srMTFRsbGxRW5NIqnUPgAAgKtFjQl01157rf7973+X2NexY0clJye73AcAAHA1qDGnXAEAAHB5CHQAAAAWR6ADAACwOAIdAACAxRHoAAAALI5ABwAAYHEEOgAAAIsj0AEAAFgcgQ4AAMDiCHQAAAAWR6ADAACwOAIdAACAxRHoAAAALI5ABwAAYHEEOgAAAIsj0AEAAFgcgQ4AAMDiCHQAAAAWR6ADAACwOAIdAACAxRHoAAAALI5ABwAAYHEEOgAAAIsj0AEAAFgcgQ4AAMDiCHQAAAAWR6ADAACwOAIdAACAxRHoAAAALI5ABwAAYHEEOgAAAIsj0AEAAFgcgQ4AAMDiCHQAAAAWR6ADAACwOAIdAACAxRHoAAAALI5ABwAAYHEEOgAAAIsj0AEAAFgcgQ4AAMDiCHQAAAAWR6ADAACwOAIdAACAxRHoAAAALI5ABwAAYHEEOgAAAIurVd0FXHDq1Ck99dRT+uWXX2Sz2XT99dcrLi5OPj4+CgwMVEBAgNzdC/NnYmKiAgMDJUnr169XYmKi7Ha72rVrpxkzZqhu3brV+VQAAACqVI0ZoXNzc9OIESO0Zs0aJScn69prr9Xs2bOd/UuXLlVSUpKSkpKcYe7s2bOaMmWK5s2bp3Xr1ql+/fpasGBBdT0FAACAalFjAp23t7duueUW5+OQkBAdO3as1Hk2btyo4OBgtWrVSpIUGRmpTz75pDLLBAAAqHFqzCnXizkcDi1ZskTdu3d3tkVHR8tut+uOO+7QmDFjZLPZlJqaqhYtWjinadGihVJTU11al6+vV4XVjYrRtGmD6i4Bl4l9BwDVo0YGumnTpqlevXoaNmyYJGnDhg3y8/NTdna2JkyYoLlz52rcuHEVsq709Gw5HKbM6XijqjppaVkVvkz2X9WojH0nSQ0becrTZquUZaNQXn6+zmTmVXcZAC7B3d2t1EGoGhfoEhISdPjwYc2bN8/5JQg/Pz9JkpeXlwYPHqyFCxc627ds2eKc99ixY85pAVw5PG02Pbjwyeou44r29vCXJBHoAKuqMdfQSdKcOXOUkpKiuXPnyvb/fxrPzMxUbm6uJKmgoEBr1qxRUFCQJCksLEy7du3SoUOHJBV+caJ3797VUjsAAEB1qTEjdPv27dMbb7yhVq1aKTIyUpLk7++vESNGaOrUqXJzc1NBQYFuvvlmPflk4Sd1Ly8vxcXFadSoUXI4HAoKCtLkyZOr82kAAABUuRoT6Nq0aaOffvqpxL7k5ORLzhceHq7w8PDKKgsAAKDGq1GnXAEAAOA6Ah0AAIDFEegAAAAsjkAHAABgcTXmSxEAgCuPdwObatfxrO4yrmjnc/N0Oiu/UpbdqGFd2TyJCpUpP69AmWfO/eHlsJcAAJWmdh1Prbp/eHWXcUXr8+5CqZICnc2zlp6f/K9KWTYKPT39bxWyHE65AgAAWByBDgAAwOIIdAAAABZHoAMAALA4Ah0AAIDFEegAAAAsjkAHAABgcQQ6AAAAiyPQAQAAWByBDgAAwOIIdAAAABZHoAMAALA4Ah0AAIDFEegAAAAsjkAHAABgcQQ6AAAAiyPQAQAAWByBDgAAwOIIdAAAABZHoAMAALA4Ah0AAIDFEegAAAAsjkAHAABgcQQ6AAAAiyPQAQAAWByBDgAAwOIIdAAAABZHoAMAALA4Ah0AAIDFEegAAAAsjkAHAABgcQQ6AAAAiyPQAQAAWByBDgAAwOIIdAAAABZHoAMAALA4Ah0AAIDFEegAAAAsjkAHAABgcQQ6AAAAi7N8oDt48KCGDBminj17asiQITp06FB1lwQAAFClLB/oYmNjFRUVpTVr1igqKkpTp06t7pIAAACqVK3qLuCPSE9P1+7du7Vw4UJJUt++fTVt2jRlZGTIx8enXMtwd3cr9/qaNK5/WXXCNa7sE1fYGvpWynLxX5W17ySpiVf5XtO4fJW1/+o24bVX2SrztdfIu16lLRuFyrP/yprGzRhjKqqgqpaSkqL/+Z//0ccff+xs69Onj2bNmqV27dpVY2UAAABVx/KnXAEAAK52lg50fn5++u2332S32yVJdrtdJ06ckJ+fXzVXBgAAUHUsHeh8fX0VFBSklStXSpJWrlypoKCgcl8/BwAAcCWw9DV0krR//35NnDhRZ86cUcOGDZWQkKAbb7yxussCAACoMpYPdAAAAFc7S59yBQAAAIEOAADA8gh0AAAAFkegAwAAsDgCHQAAgMVZ+rdcr0aBgYHasWOH6tcv+ruyp06d0lNPPaVffvlFNptN119/veLi4uTj46MjR45o0KBB2rJlS4nL/Ne//qV33nlH7u7u8vDw0NNPP63Q0FBJ0unTpxUXF6cffvhBtWrVUu/evfXEE09Iknbu3KmpU6cqLy9PLVu21KxZs+Tre+X9ZuPnn3+ul156ScYYGWP0xBNPqG3btho9erRzmqysLGVnZ2vr1q0lLuPCfjt16lSp8yUkJGjNmjU6evSokpOTFRAQUGxZr776ql555RVnv8Ph0H333adz585Jkpo2barnnntO/v7+kkrfh6X1Xak2bNigl156SQUFBWrUqJFmzJiha6+9Vp9++qleeOEFeXp6as6cOTp8+HCx/X733XdLkg4ePKiJEyfq9OnT8vb2VkJCglq1aiVJxZYze/ZsHTlyRO7u7qpXr56mTJmioKCgEqcdN26cs86L/zaOHDni0t/blaKk197dd999yeNgafNc7jZcvXq1Xn/9defj48ePq3Pnznr11VdLne/cuXN65pln9NNPP8kYozZt2ig+Pl5eXl7auHGjZs+eLTc3NxUUFCg8PFxjx46Vm1vl/R5rdejevbtsNps8PT0lSTExMQoLC7vkcefgwYOaOnWq0tLSVKtWLbVv316xsbGqU6eOJGnevHlasWKFatWqpfr16ysuLk5t2rS55PpLe+8r67hpSQaWEhAQYLKzs4u1nzp1ynz99dfOxzNnzjSTJk0yxhjz66+/mi5dupS4vIyMDHPzzTebtLQ0Y4wxn376qendu7ezf9SoUWbhwoXOxydOnDDGGGO32014eLjZtm2bMcaYuXPnmokTJ/6xJ1cDORwOExoaan766SdjjDE//vijCQkJMXa7vch08fHx5rnnnrvkci61334/37Zt28yxY8fMnXfe6VznxVJSUszDDz9crP/MmTPO/7/99ttm9OjRzseX2odl9V2JTp8+bbp06WIOHDhgjDHm3//+t3nooYeMMcY8/PDDZtWqVcaYsvd7dHS0+fe//+1cRnR0tHMdFy/HmKL7Zt26debee++95LQXK+1vqqy/tytBafvgUq+n8r5ejbn8bdi/f3/zySeflDndwoULzZgxY4zD4TAOh8OMGTPGvPnmm8YYY7Kzs01BQYExxpj8/HwzaNAg8+mnn7pcS013qePYpY47v/76q/nhhx+MMYXvMU8++aR59dVXjTHG7N6923Tr1s2cPXvWGGPMO++8Y0aMGFHq+kt77zOm9OOmFXHKtYp8++23uu+++9SvXz/169dPmzZtUkJCggYNGqR+/frpgQce0NGjR53Tf/755xo4cKD69eune++9V3v27HH2LViwQP3791fPnj21Zs0aSZK3t7duueUW5zQhISE6duxYkRpmzpypiIgIRUREaPv27ZLk/BR79uxZSYWfWq+55hpJ0qFDh7R371498MADzmU0bdpUkpSSkiJPT0/nSF5kZKRWr15dYdurJnF3d1dWVpakwu3TrFkzubv/96WTn5+v5ORkDRo0yNm2du1a9erVS/3799fcuXNLXG5J84WGhl7yp+vy8/MVFxenZ599tlhfgwYNnP/Pzs521lfaPiyt70p1+PBhNWnSRDfccIMkqWvXrtq0aZMmTZqkb775RrNnz1Z0dLSkS+/39PR07d69W3379pUk9e3bV7t371ZGRoaef/75Ysv5/b65MApT0rQXlPS3UZ6+K01pr72SjoNlzXNBSdvw//2//6eBAwcqIiJCo0ePVmZmZrF6fvjhBx0/flzdu3eXJKWlpSk6OloDBw7UPffco8TEROe0bm5uys3N1fnz53X+/Hnl5OQ4j63169eXh4eHJCkvL0/nz58vVuOVqrTjjr+/v9q2bSupcD926NDB+T7m5uam8+fPKzc3V1LR9yqp8EzThffXQYMG6eTJk86+kt77pEsfNyXpiy++UGRkpAYOHKghQ4Zo586dzr7ly5dr8ODBGjhwoO6//34dOHCgQrbNH1bdifJqcOrUKXPbbbeZb775xhhjTEFBgTl9+rRJT093TvPBBx+YsWPHGmOMOXDggLntttvMwYMHjTHG5OXlmaysLGNM4UjPK6+8YowxZv/+/aZLly7m5MmTRdZnt9vNAw88YN555x1jTOGnlICAALN8+XJjjDFff/21CQsLM3l5ecYYY1asWGFuvvlm07VrVxMWFmYOHTpkjCkcTYiMjDSTJk0y9957rxkxYoTZu3evMcaY1atXm5EjRxZZb4cOHcypU6cqZqPVIJs3bzZdunQx3bp1M507dzbffvttkf5PPvnE9OvXz/k4LS3NdOnSxezfv98YY8ybb75Z4ojC7+e7WEmfbBMTE82iRYsu2T9ixAhz2223mXvuucccP37cGFP6Piyt70p15swZ06VLF/Pdd98ZY4x59913TUBAgElJSTHDhg0z69evd057qf2+a9cu06dPnyLL7d27t0lJSTHGmGLLMcaYp59+2nTt2tXccccdRbZxSdMaU/rfRml9V5pL7YPSjoNlvV6NKXkbXnw8njNnjpk1a1ax+Z577jkTHx/vfJybm+t8Xefn55vo6GjzxRdfOPvGjh1rQkNDTWhoqPP4fsH3339v+vbta9q3b2+ef/5543A4XN4+Nd2dd95pIiIiTN++fU1sbKzJzMws93Hn3Llzpk+fPkVGLufPn2/+/Oc/m7/+9a+mT58+JiMjwxhT+J4WHh7uHOnLzs42ubm5Zb73GVPycfPw4cPm73//u/N9d+/evaZr167GmMKzKCNHjnQuY8OGDWbIkCEVvOUuz9XxkaCa7dy5U61bt1bHjh0lSR4eHmrUqJE2btyov//97+rbt68WLFigH3/8UZK0efNm3XHHHc5rcmw2m7y8vJzLGzx4sCTpxhtvVNu2bYt8cpCkadOmqV69eho2bJizrXbt2urXr58k6ZZbblGdOnV04MABZWdna/HixfrXv/6lDRs2aOLEiXriiSdkjJHD4dB3332ngQMHOj+RPPbYY5W2nWqigoICvfHGG3rttdf0+eef6/XXX9fYsWOdI5qStGzZsiKf9L/77ju1bdvW+RN0Q4YMKXHZv5+vNN9++61SUlIUFRV1yWneeustffnll7rnnnuc1/yUtg+vxv3boEED/e///q9mzJihgQMHKj09XQ0bNnSOllxQnv3uiunTp2vDhg0aN25ckVGcSyntb8OVvxsrK2sflHQcLO9+K2kbJiUlOUfoVq5c6TweX5Cfn6+VK1cWmc9utysxMVH9+vXTwIEDtW/fPufZlM2bN0uSNm3apE2bNun8+fNasGCBc9727dsrOTlZGzZs0A8//FBk5OhKsXjxYq1YsULLli2TMUZxcXHlOu4UFBRo3Lhx+stf/qIePXpIko4eParPPvtMa9eu1ZdffqkBAwZo4sSJkgqvi+3fv79zpK9+/frO6/Yu9d53QUnHzS+//FK//PKLhg4dqv79+ysmJkYFBQU6efKk1q9frz179mjw4MHq37+/XnjhBR0/frxyN2Q5EeiqydGjRzVjxgy98MILWrlypZ5//nnl5+f/4eUmJCTo8OHDevHFF8s1hL9p0yY1aNDAGT769OmjX375RadOnZKfn5/8/Pycp1XvvvtupaWlKSMjQ35+fkVO6WZkZMjd3V3e3t5/+DnUJD/++KNOnDihTp06SZI6deqkunXrav/+/ZKk3377Tdu2bVNERIRLy3V1vm3btmn//v3q0aOHunfvruPHj+vhhx/Wpk2bikzn7u6uv/3tb0pKSpKkMvfhpfquZLfddpuWLFmijz76SMOGDVNubq6uu+66ItOUtt/9/Pz022+/yW63Syp8Uz9x4sQlT5Vf7N5779WWLVt06tSpS05T2t/G5f69WVFZr73Lnaekbbh9+3YtWbJE8+fPV3JyssaOHVvseLxu3Tr5+/vrpptucrYtXLhQZ86c0Ycffqjk5GSFh4crLy9PkrR06VLddddd8vT0lKenp/r06VPixfk+Pj664447rshLVi68Jmw2m6KiorRjx44yjzt2u10xMTFq1KiRnnnmGeeyVq9erYCAADVr1kzSf19LFeH3x01JCgsLU1JSkvPfpk2b1KRJExljNGjQIGf7ihUrtGHDhgqp448i0FWBkJAQ7d+/X99++62kwj/Y1NRU1a5dW02bNpXD4dDSpUud099+++3auHGjDh06JKnwk2F2drazf9myZZIKr0XYvXu3QkJCJElz5sxRSkqK5s6dK5vNVqSG8+fPKzk5WVLhwSs3N1c33nij/P39tXv3bqWnp0uSvv76a3l5ealx48YKDg5WvXr1tG/fPkmFoaJRo0bOvtzcXOenyqVLl6pXr14Vvemq3TXXXKPjx487P9Ht379f6enpzgCwfPlyde3aVY0bN3bOExISot27dzv334cfflhsuSXNV5pHHnlEmzZt0vr167V+/Xpdc801WrBggf76178qIyOjSAhbvXq1AgMDJanMfXipvitZWlqapMIRyjlz5igyMlL16tUrMk1p+93X11dBQUFauXKlJGnlypUKCgqSj49PsXWdPXtWqampzsfr169Xo0aNSv3gU9rfhqt/N1ZW1muvpONgWfNIJW/DM2fOyMvLS97e3srPz3cu+2IljeplZWWpadOm8vT01G+//abPPvvM2efv769NmzY5z3Z8+eWXzm9kHjx4UA6HQ5KUk5OjjRs3lviNdivLyclxXstojNGqVasUFBRU6nHH4XBo4sSJ8vDw0PTp04t869ff31/ffPONcnJyJBVe43Zhe3br1k1JSUnO6+bOnj3rDNaXeu8r7bh5++2368svv3TWKEnff/+9pMJv7iYlJTlH5ex2u1JSUip4610ebltSBby9vfXKK69o5syZysnJkbu7u/7nf/5HvXr1Up8+fdS4cWN17drVGY5atWqladOmady4cbLb7fLw8NDMmTOdf2x2u1333nuvzp07p7i4OPn6+mrfvn1644031KpVK0VGRkoqfAFcuCDf29tbe/bs0fz58yUVhj+bzabg4GCNGDFCw4YNU+3atWWz2fTSSy8VuXB70qRJys/PV926dfXqq6/Kzc1Nbm5uSkxMVGxsbJHbllxpmjZtqmeffVZPPvlkkW1y4Q15+fLlmjx5cpF5fH19NW3aND366KOqU6eO81YXFytpPkmKj4/X2rVrdfLkSQ0fPlze3t76+OOPS60xLS1NkyZN0vnz5yWpyL5wc3O75D688Fwu1XelevHFF7Vjxw6dP39et99+u2JiYopNU9Z+f/bZZzVx4kS99tpratiwoRISEkpc17lz5/Tkk0/q3Llzcnd3V6NGjTRv3rxSt/Gl/jbK6rvSlLUPSjoOSip1HqnkbRgWFqYVK1aoZ8+eaty4sUJDQ7Vr1y5nf2pqqnbs2KEXX3yxyHzR0dF68skn1bdvXzVv3ly33nqrs2/06NGaOnWq88szN910k/PU4meffably5fLw8NDDodD4eHhzlPIV4r09HSNGTNGdrtdDodDrVu3VmxsbKnHpC+++EIrVqxQQECABg4cKEnq2LGjYmNjdffddztP1dpsNjVs2FAzZsyQVHgq9ZFHHtHw4cPl5uYmm82mefPmSbr0e19px81WrVpp1qxZmjx5svOLLR07dlSHDh3UuXNnjR07Vo899pjsdrvOnz+vXr16KTg4uKo3cTFuxhhT3UUAAADg8nHKFQAAwOIIdAAAABZHoAMAALA4Ah0AAIDFEegAAAAsjkAHoEaLi4sr9lunZdm1a5cCAwN15MiRSqoKAGoWAh2AajNx4kSNGjWqusu4JGOMPvzwQw0ZMkQ333yzOnbsqAEDBuitt94qcrNvq4qOjlZcXFx1lwGgAnBjYQC4hAkTJmjt2rUaNWqUJk+eLB8fH/38889atGiRfH19nTc/BYDqxggdgBrDbrcrISFBnTt3VufOnTV9+nTnb6aWZuPGjerVq5fat2+vqKgo58+uXWzt2rWKiIhQcHCwunbtqtdff12l3Vd91apVSk5O1uzZszV69Gh16NBB/v7+6tatm+bPn6/w8HBJhT8hNnfuXHXt2lXBwcGKiIjQp59+6lzOkSNHFBgYqI8//ljDhg1Thw4ddO+992rPnj3au3evIiMjFRISovvuu0+//vqrc75XXnlFff+/9u4upKk3jgP419GoYO4melHLVoNprHzbXStYhCObIghBxMkLzSFFFM4yVpAWIywc6FGptAVRZM5M1GgTigivWrNcgURsS9aQaS/QyyrL83QRnX/nn1PJv38d/D5Xnt/zep5d7Mdzdnzy8+F0OmEwGJCRkYH9+/dLjiuabmwAaGxsxLZt27Bx40bo9XocPXoUwM/d0YcPH+LatWtIS0uTPKL2eDzYtWsXNm3ahM2bN/9nZ00TQuYOJXSEkAXD4XCgvb0dNTU1aGtrgyAI4jmMsYyMjODAgQPQ6/Xo6uoCx3F/HEP37NkzHDp0CLm5uejp6YHFYsHFixdx9erVmP329PRApVJNenQbACiVSgDAlStXcOnSJVRWVooHtB88eBBDQ0OS+g0NDSgrK8OtW7eQmJgIi8WC06dP4/Dhw3A6nfj69StsNpukTTgcRnd3N5qbm3H58mUMDw/DarWK5dON7Xa74XA4cPLkSfT19eH8+fPIyMgAABw/fhzZ2dkoKipCf38/+vv7kZSUhEgkgrKyMmzYsAFdXV2w2Wy4ffs27Hb7lJ8DIWSeMUIImSdVVVXMbDaL13q9njU3N4vXExMTzGg0Mo7jYvZRV1fHjEYjEwRBjDU1NTGNRsNCoRBjjLGKigq2d+9eSbuGhga2devWmP3m5eWx8vLyae9hy5YtjOd5SYzjOGaxWBhjjIVCIabRaNj169fF8nv37jGNRsPcbrcYu3nzJsvKypLMLz09nYXDYTHm8XiYRqNhwWBwRmM7HA5mNBrZ+Pj4pHPnOI7V1NRIYna7neXm5rKJiQnJ3LRaLYtGo9OuByFkftAOHSFkQfjw4QPGxsaQlZUlxmQymbijFIvf70dmZqbkwPvs7GxJnUAggJycHElMp9MhEonEfLmB/F2IHwAAA3pJREFUzeCY648fP2J0dBQ6nU4Sz8nJgd/vl8TS0tLEv38dJK/RaCSxaDSKz58/i7GVK1ciOTlZvM7MzIRMJoPf75/R2Dt27MD4+Di2b98Oq9WKO3fuTPvo9Nd6ymT/fD3odDp8+/YNw8PDU7YlhMwfSugIIWQSKpUKgUDgr9v/nmACwKJFi/4omywmCMJfj/nvvpKSkuByuXDq1CkoFArU1taiqKgI0Wh0Vv0SQhYeSugIIQtCYmIili9fjsHBQTHGGIPP55uynVqtxuDgoGRH7cmTJ5I669evx8DAgCTm9XqxatUqKBSKSfstKCjAy5cv0dfXN2n5+/fvoVAosGLFCni9XknZwMAA1Gr1lPOeiUgkgpGREfHa5/NBEASo1eoZj7148WIYDAZYrVZ0dHTgxYsX4lrI5fI/Xjr5tZ6/J5ZerxdyuRypqamzvidCyNyghI4QsmAUFxejtbUVLpcLgUAANpsNY2NjU7bZvXs3wuEwbDYbAoEAXC4X2traJHVKSkrg8XjA8zyCwSC6u7vhcDiwb9++mP3m5eVh586dqKysRFNTE3w+H8LhMB48eACz2Sy+TVpaWgqHw4He3l4Eg0HU19fj0aNHKC0tnfV6LFmyBFVVVRgaGsLjx49RXV0Ng8EAlUo1o7E7OzvhdDrx/PlzhEIhdHZ2Qi6XY+3atQCAlJQUPH36FK9evcLbt28hCAL27NmD0dFRVFdXw+/34/79+6irqwPHcVi6dOms74kQMjfo/9ARQhaMkpISvH79GidOnAAAFBYWoqCgYMpHn8nJyWhsbMSZM2dw48YNaLVaWCwWHDlyRKyj1WpRX18Pnudx4cIFLFu2DGazGRzHxew3ISEBdrsd7e3t6OjoQGtrKxISEpCamgqTySS+/VpcXIxPnz7h3LlzePPmDdatWwee55Genj7r9UhJSYHJZEJ5eTnevXsHvV4veRN2urGVSiVaWlpQW1uL79+/Q61Wg+d5rFmzBsDP9T527BhMJhO+fPmCu3fvYvXq1WhpacHZs2dRWFgIpVKJ/Px8VFRUzPp+CCFzJ4HN5Je/hBBC/lc8z8PtdqO3t3e+p0IIiQP0yJUQQgghJM5RQkcIIYQQEufokSshhBBCSJyjHTpCCCGEkDhHCR0hhBBCSJyjhI4QQgghJM5RQkcIIYQQEucooSOEEEIIiXM/AK8iDQmZvtrxAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aRdNRT3u6Rda" + }, + "source": [ + "## **Desafio 02: Melhorar a visualização alterando tamanho da fonte...**" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 525 + }, + "id": "WL8FxZ3MEL7k", + "outputId": "f4004965-4174-4064-b6bd-85c066c26bdd" + }, + "source": [ + "plt.figure(figsize=(10, 8))\n", + "ax = sns.countplot(x = 'composto',\n", + " data=dados.query('composto in @cod_compostos'),\n", + " order = contagem_top_compostos.index,\n", + " palette=\"flare\")\n", + "for p in ax.patches:\n", + " height = p.get_height()\n", + " ax.text(p.get_x() + p.get_width()/2.,\n", + " height + 10, '{:1.2f}'.format(height),\n", + " ha = 'center')\n", + "ax.set_title('Top 5 compostos', fontsize = 22)\n", + "ax.set_xlabel('Id do Composto', fontsize = 14)\n", + "ax.set_ylabel('Frequência', fontsize = 14)\n", + "plt.show()" + ], + "execution_count": 26, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAH8CAYAAABYYjLnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVxVdf7H8fe9yEXABUE0wB29ilpulDWmTqi5pJljJeM2ajrVFJWmTmbuOoRaOZVFmZWWaTlpSKlYmpqNuaZpuaBpKmIiCC5swr2/P/x5xxuIXGU78no+Hj4e3O/3e875nHt41Jvv2Ux2u90uAAAAGJa5tAsAAADAzSHQAQAAGByBDgAAwOAIdAAAAAZHoAMAADA4Ah0AAIDBVSjtAgAUv8aNG7u8TJ8+ffTyyy8XQzWFt2XLFg0ePLjAMZ9++qlatmxZQhUBQNlEoAPKgT59+uRpS0pK0qZNm+Tl5aWuXbvm6W/Tpk1JlFYo1atXV/v27fPt8/X1LeFqkJ8XXnhBy5cvV2RkpP7yl7+UdjlAuUOgA8qB/GbatmzZok2bNqlatWqlPhN3PQ0aNCjzNQJAaeIaOgAAAINjhg5AvuLj4zVv3jxt2bJFycnJ8vb21h133KGBAweqY8eOecZffcotJCREb7zxhnbs2KGMjAw1bNhQAwYMUN++fUthT/Ky2+1atWqVli1bpp9//lnnz59XtWrV1KBBA3Xu3FmDBg1yGn/p0iV9+umniomJ0eHDh5WTk6OgoCB16tRJjz32mKpVq+Y0/sSJE+rUqZOCgoL0zTffaMGCBfrPf/6j48ePy8fHR927d9dzzz0nT09PpaWl6c0339TatWt1+vRpBQYG6q9//auGDh2ap+5BgwZp69atWrhwoex2u6Kjo/Xzzz8rJydHTZo00fDhw9WpU6d89zk9PV0LFizQqlWrdOzYMUlS3bp11b17d/3tb3+Tp6dnnmU2bdqkhQsXas+ePTp37py8vb3l6+urVq1aaeDAgWrWrJljX68YN26cxo0b5/j8x1Owrv5eZWVlOeo+evSoLl26JB8fHwUFBenuu+/WP/7xD3l4eOS7z0B54jZ58uTJpV0EgJKXkJCg5cuXq0qVKvrb3/7m1Ld27VoNHTpUv/zyiwICAtS2bVtZLBZt2bJFK1asUG5uru6++26nZb755hvt379f/v7+mjZtmrKyshQaGqqqVavqp59+0jfffKO0tDR16NDB5Ro9PDyUmpqq2NhY/fDDD/r9998VEBCQbwi5nuzsbEVERCg6OloJCQlq0qSJWrVqJQ8PD8XHxysuLk4RERGO8VlZWXrssce0ePFinTt3TnfddZcaNWqko0eP6rvvvtOqVasUFhamqlWrOpY5d+6cFi5cqCpVqmj37t369NNPFRISorp16+rYsWPasmWLfv75Z3Xo0EH9+vXTL7/8ohYtWsjPz0/79+/Xxo0b5e7urtDQUKfaly9froSEBFWqVEnTpk2Tp6enWrduLYvFoh9//FFfffWVKlWqpFatWjktl5KSogEDBuirr75STk6O7rnnHtWpU0f79+/Xhg0btH79enXv3l0VK1Z0LLNs2TI988wzOn78uBo3bqxWrVqpevXqysjI0KZNm1SrVi21adNGOTk5SklJUXp6utLS0tS6dWvdfffdCgkJUUhIiO655x4FBgZKcv33ymazafjw4Vq6dKkyMzMVGhqqpk2bqmLFijp+/Lg2bNigAQMGyNvb2+XfA+CWYwdQLv3www92q9Vqv++++5zaT58+bW/durXdarXa33///TzLtGjRwm61Wu0bN2506vvnP/9pt1qtdqvVap82bZo9JyfH0bdr1y57q1at7Far1b5+/XqXa8zvX4sWLewLFy50eb+nT59ut1qt9vvvv99+6NAhp76cnBz7N99849QWFRVlt1qt9m7dutlPnTrlaM/IyLBHRETYrVar/dFHH3Va5vjx4446u3bt6rTcyZMn7XfddZfdarXae/bsaY+IiLBnZmY6+r/99lu71Wq1t2rVyp6enu603oEDBzrW+9577zn1rV271t60aVN7SEiIfd++fU59zzzzjN1qtdr79+9vT0tLc7Snpqba+/XrZ7darfaRI0c6LRMWFma3Wq32HTt25PkOExMT7fHx8U5tV47/559/nme83X5jv1dbt261W61We58+fewXL150WsZms9m3b9+e5zsCyiuuoQPg5LPPPtOFCxfUunXrPKf92rZtq4EDB0qS3n///XyXr1mzpsaOHSs3NzdHW4sWLTRkyBBJ0ocffljoWipXrqwhQ4Zo0aJF+v7777Vz504tX75cjzzyiLKysjR9+nQtXbq00OtLTk7W4sWLZTab9eabbyo4ONip383Nzen0YWZmphYvXixJeumll1SzZk1HX8WKFTV58mR5eXlp165d2rFjR77b/ONyAQEBevDBByVdnoGcPHmy0ynDP//5z2rcuLEuXryovXv35rvO5s2b67HHHnNqCwsLU8+ePZWbm6uPP/7Y0Z6QkKC4uDiZzWZNmzZNVapUcfRVrVpV06dPl9ls1qpVq5SYmOj0XVWpUkWtW7fOs/3bbrtNDRs2zLe2a7mR36szZ85IunzHtZeXl9MyJpNJbdq0uaFZWuBWRKAD4GTbtm2S8n/UiSTHdXA7duxQbm5unv6uXbvKYrHkae/du7djuZycnELV0rRpU40bN06hoaGqXr26vL291bRpU02fPl0vvviiJGn27NnKzs4u1Pp++OEHXbp0SS1btlSjRo2uO37v3r1KT09XjRo11K5duzz9vr6+CgsLkyRt3bo1T7+7u7vuueeePO1169aVdDmY5ffYlXr16kmSTp8+nW9dvXr1yrf9ynd8dS3bt2+X3W5XixYt1KBBgzzLNGzYUC1atJDNZnMce0m6/fbbde7cOY0dO1a//PKL7HZ7vtssrBv5vWrWrJnc3Nz0n//8R4sWLXIEPAB5EegAOPn9998lSbVq1cq3PygoSGazWVlZWUpNTc3Tf63lAgICClzOVQMGDFC1atWUmpqq3bt3F2qZhIQESco32OTnSqC61j5d3Xfle7ta9erVnWYqr7gy23Tbbbflu84r/VlZWQVu84+CgoIkSadOnXK0Xe94Xt139T5MnjxZtWvXVkxMjPr06aM777xTw4YN07x585SUlHTNdV3Ljfxe1alTR+PGjdOlS5c0depUtWvXTp07d9aYMWO0evXqfP+gAMorAh2AfJlMptIuoUBms9kxk5VfmMrPje7TjS5nNhf8n9jr9RclV/chODhYq1atUnR0tIYMGaL69etry5Ytmj17trp06aKNGzeWSB2DBg3St99+q8mTJ6tXr16y2WxasWKFnn32WfXt21cXLly4oTqAWw2BDoCTK9d7HT9+PN/+hIQE2Ww2eXh4ON3ZeXV/fhITEx3L+fj4FEmtZ8+elaQ811ddy5W7LY8cOVKo8TVq1JB0+TEk13Kl7+rr5Irbtb7jK+1X13K94yldex/c3d113333ady4cVq6dKn++9//avDgwcrIyND48eNdqvlmfq/8/f3117/+VbNnz9a6desUExMjq9Wqffv26d1333WpDuBWRaAD4OTOO++UJH3xxRf59i9btkzS5QvVK1TI+yjLuLi4fK9pi42NlSS1bt063+VctX//fh09elQmk0nNmzcv1DJ333233N3d9eOPP+rw4cPXHd+8eXN5eXnp999/1+bNm/P0nz17VuvWrZMk3XXXXa7twE248l1eq/3qWkJDQ2UymbR79+58g+zhw4e1e/dumc1mx7G/lqpVq2rs2LEym806ffq0UlJSHH3u7u6SdM3ToDf7e3W1Jk2aON7xu3///gLHAuUFgQ6Ak0cffVTe3t7asWOHFi5c6NS3bds2xx2U+T34Vrp8/dYrr7wim83maPvpp5/0wQcfSJLjf8SFsXDhQscs3NV+/PFHPfPMM5KkHj16OGbSrsfPz0/h4eGy2WyKiIjIE3Byc3MdAU26fCdreHi4JGnGjBlONylkZWVp8uTJSk9PV8uWLUv03bd79uzJc7fwhg0btGLFCrm5uTnuGJUuX5t2//33y2azaeLEiTp//ryj79y5c5o4caJsNpu6d++ugIAASVJGRoY++OADp8B29XZsNpsqVaqkypUrO9qvzMBdKyjfyO/V5s2btWHDhjw30eTm5jpO+V6ZdQXKO94UAcCJv7+/Zs6cqZEjR2rGjBlaunSprFarTp8+re3bt8tms+nJJ5+85gOCw8PD9cknn+jbb79V8+bNlZKSom3btiknJ0f9+/d33BVaGK+//rqioqLUpEkT1apVS3a7Xb/99psOHDggu92u1q1ba+rUqS7t39ixY3Xs2DFt2LBBPXv2VMuWLXXbbbcpOTlZBw8eVHJysg4cOOAY/9xzz2nv3r3aunWrunbtqrZt26pixYravn27kpKSFBgYqNmzZ7tUw80aNGiQoqKitGzZMjVq1EgnT57Uzp07JUljxoxRSEiI0/jJkyfryJEj2rp1qzp37uyYwduyZYvS0tLUpEkTTZw40TH+0qVLevnllzVr1ixZrVbVrVtXZrNZx44d0969e2UymTR69GjHrJwkderUSXPnztWCBQsUHx+vmjVrymQyqW/fvmrduvUN/V4dOHBAkZGRqly5spo2bSp/f39lZmZq9+7dSkpKkr+/v0aMGFGcXzVgGAQ6AHl07txZn3/+uebNm6cffvhBcXFx8vb2Vrt27TRo0KB8X9F0RYsWLfToo4/qjTfe0KZNm5SZmSmr1ar+/fvr4YcfdqmOJ554Qtu3b9ehQ4d09OhRZWZmqmrVqmrXrp0eeOAB9e7dO9+7SAtisVgUHR2t2NhYLVu2TPv27dPu3bvl6+urxo0bq3Pnzk7jPTw89P7772vJkiWKiYnRli1bHK/+6t27t4YPH57n1V/FrUuXLgoLC1N0dLTWr1+v3NxctWrVSsOHD89Tv3T58SpLlixxvELryuxW3bp1NWzYMA0ePNjpOkQvLy9NnjxZW7du1b59+7Rp0ybl5OSoZs2a6tmzpwYPHqwWLVo4bSMkJESvvfaa3n//fe3cuVPp6emSLp9CvfIsO1d/r8LCwnT+/Hlt27ZNx44d048//igvLy8FBgYqPDxc/fv3z/exL0B5ZLLf7MOFAEDO73K9+t2dKDpXv8u1bdu2pV0OgDKEa+gAAAAMjkAHAABgcAQ6AAAAg+MaOgAAAINjhg4AAMDgyv1jS86evSibjUlKAABQdpnNJlWr5n3N/nIf6Gw2O4EOAAAYGqdcAQAADI5ABwAAYHAEOgAAAIMj0AEAABgcgQ4AAMDgCHQAAAAGR6ADAAAwOAIdAACAwRHoStnnn3+qxx4bpPvuu0czZkx26lu79msNGPCwunTpoIEDH9HGjeud+hMSTmjs2OfUpUsHPfBAJ7311r+d+r/5Jk4DBjyszp3v1aOP9tbu3T9es45PP12kBx/sqvvv76h//WuKsrOzHX2JiScVEfG4OnVqp/79+2rbti03vd8AAKDoEOhKWfXq/vrb3x7TAw886NSelHRa06ZN0NNPj9SaNRv0j388qylTxuvs2RRJ0qVLlzRy5FNq3TpUK1bEadmylbr//h6O5bdt+0Fvv/2Gxo2bpDVrNmru3HkKDAzKt4YtWzbr448XaM6ct/Sf/8Tq5MkEzZ//jqN/8uTxsloba+XKtfr73/+hCRP+qbNnzxbDtwEAAG4Ega6UdewYpg4d/qwqVao6tZ8+fVqVKlXWPfe0k8lk0p/+dK88PT2VkHBCkrRyZayqV/dXePhAeXp6ysPDQw0bNnIsP3/+uxo6dLiaN79dZrNZ/v415O9fI98aVq36Uj179laDBsGqUqWKhgwZrlWrvpQkHTv2mw4e3K/HHntcHh4V9ec/d1KDBg21YcPaYvpGAACAqwh0ZVSTJiGqV6++Nm3aoNzcXG3cuF7u7hYFB18ObT//vEcBAQF6/vln9MADnfT003/X4cOHJEm5ubnav/8XnT2bqn79HlKfPj306qtRysrKzHdbR4786hQGGza0KiUlWWlpqTpy5FcFBgbJy8v7qv5GOnLk12LcewAA4AoCXRnl5uambt16aMqUlxQW9idNmTJeY8a8KE9PT0mXT8l+880aPfxwP33xxWr96U/36oUXntelS5d09myKcnJytH79Ws2d+54++OATxccf0Icfzs93WxkZ6fL2ruT4XKnS5Z/T09Pz9EmSt3clpaenF9OeAwAAVxHoyqht27borbfe0BtvvKNvv92sN998V1FR0xQff0CS5OHhoTvuaKl77mknd3d3/fWvg3TuXKqOHj0ii8VDkvTww/1UvXp1+fj4qF+/Afrhh+/z3Zanp5cuXrzo+Hzx4gVJkpeXlzw9vZSeftFpfHr6RXl5eRXHbgMAgBtAoCuj4uMPqkWLVmrSpKnMZrNCQpqpadPm2rZtqyQpOLiRTCZTvstWqVJFNWrUdGq71lhJql+/gQ4dOuj4fOhQvHx9/VS1qo/q12+gkycTnELdoUPxql+/wc3sHgAAKEIEulKWk5OjrKws2Ww22Wy5ysrKUk5OjkJCmuqnn350zMgdPLhfu3fvclzr1rVrd/388x5t27ZFubm5+uyzT1S1qo/q1asvSerRo5c+//wznT2bonPnzunTTz/Rn/7UPt8aunV7QF99tUJHjvyq8+fPa8GC+erevackqU6dumrY0Kr335+nrKwsbdjwrQ4fjlfHjp1K4NsBAACFYbLb7fbSLqI0JSdfkM1Wel/B/Pnv6IMP5jm1DR06Qo899rg+//xTffbZYqWkpMjHp5r+8pdH9Ne/DnSM27Bhnd5663WdPXtWVmtjjRr1TzVoECzpclCcM2e2vvlmtSwWD4WFddaTTz4jDw8PnTp1SoMGPaKPPlqq2267TZK0ZMnHWrRoobKysvTnP4dp9Ohxslgski4/h27GjMn65ZefVbNmTY0a9U/deWfbEvqGAACA2WySn1+la/YT6Eo50AEAAFzP9QJdhRKsxdCqVfVQhf+fsULxycnO1tm0rNIuAwAAQyHQFVIFi0UH54wr7TJuedbnIiUR6AAAcAU3RQAAABgcgQ4AAMDgCHQAAAAGR6ADAAAwOAIdAACAwRHoAAAADI5ABwAAYHAEOgAAAIMj0AEAABgcgQ4AAMDgCHQAAAAGR6ADAAAwOAIdAACAwRHoAAAADI5ABwAAYHAEOgAAAIMj0AEAABgcgQ4AAMDgCHQAAAAGR6ADAAAwOAIdAACAwVUoyY1FRUUpLi5OCQkJio2NldVq1YkTJ/TUU085xpw/f14XLlzQ1q1bJUlhYWGyWCzy8PCQJI0ePVrt27eXJO3atUsTJ05UVlaWgoKCNGvWLPn5+ZXkLgEAAJS6Eg10nTp10uDBgzVgwABHW61atRQTE+P4PGPGDOXm5jot9/rrr8tqtTq12Ww2jRkzRpGRkQoNDdVbb72l2bNnKzIysnh3AgAAoIwp0VOuoaGhCggIuGZ/dna2YmNj1bdv3+uua+/evfLw8FBoaKgkKTw8XKtXry6yWgEAAIyiRGformfdunWqWbOmmjVr5tQ+evRo2e12tWnTRqNGjVKVKlWUmJiowMBAxxhfX1/ZbDalpqbKx8en0Nv086tUZPWjaPj7Vy7tEgAAMJQyFeg+//zzPLNzixYtUkBAgLKzszVjxgxNnTpVs2fPLrJtJidfkM1mv+44QkbJSUo6X9olAABQppjNpgInocrMXa6///67tm3bpl69ejm1XzlFa7FY1L9/f+3cudPRfvLkSce4lJQUmc1ml2bnAAAAbgVlJtAtX75cHTt2VLVq1Rxt6enpOn/+8myN3W7XypUrFRISIklq3ry5MjMztX37dknSkiVL1K1bt5IvHAAAoJSV6CnX6dOna82aNTpz5oyGDh0qHx8fffXVV5IuB7rx48c7jU9OTlZERIRyc3Nls9kUHBysSZMmSZLMZrNmzpypSZMmOT22BAAAoLwx2e32619Adgtz5Rq6g3PGlUBF5Zv1uUiuoQMA4A8Mcw0dAAAAbgyBDgAAwOAIdAAAAAZHoAMAADA4Ah0AAIDBEegAAAAMjkAHAABgcAQ6AAAAgyPQAQAAGByBDgAAwOAIdAAAAAZHoAMAADA4Ah0AAIDBEegAAAAMjkAHAABgcAQ6AAAAgyPQAQAAGByBDgAAwOAIdAAAAAZHoAMAADA4Ah0AAIDBEegAAAAMjkAHAABgcAQ6AAAAgyPQAQAAGByBDgAAwOAIdAAAAAZHoAMAADA4Ah0AAIDBEegAAAAMjkAHAABgcAQ6AAAAgyPQAQAAGByBDgAAwOAIdAAAAAZHoAMAADA4Ah0AAIDBEegAAAAMjkAHAABgcAQ6AAAAgyPQAQAAGByBDgAAwOAIdAAAAAZHoAMAADA4Ah0AAIDBEegAAAAMrkQDXVRUlMLCwtS4cWMdPHjQ0R4WFqZu3bqpd+/e6t27t7777jtH365du/Tggw+qa9euGjZsmJKTkwvVBwAAUF6UaKDr1KmTFi1apKCgoDx9r7/+umJiYhQTE6P27dtLkmw2m8aMGaOJEycqLi5OoaGhmj179nX7AAAAypMSDXShoaEKCAgo9Pi9e/fKw8NDoaGhkqTw8HCtXr36un0AAADlSYXSLuCK0aNHy263q02bNho1apSqVKmixMREBQYGOsb4+vrKZrMpNTW1wD4fH59Cb9fPr1KR7gdunr9/5dIuAQAAQykTgW7RokUKCAhQdna2ZsyYoalTp5bY6dPk5Auy2ezXHUfIKDlJSedLuwQAAMoUs9lU4CRUmbjL9cppWIvFov79+2vnzp2O9pMnTzrGpaSkyGw2y8fHp8A+AACA8qTUA116errOn788I2O327Vy5UqFhIRIkpo3b67MzExt375dkrRkyRJ169btun0AAADlSYmecp0+fbrWrFmjM2fOaOjQofLx8VF0dLQiIiKUm5srm82m4OBgTZo0SZJkNps1c+ZMTZo0SVlZWQoKCtKsWbOu2wcAAFCemOx2+/UvILuFuXIN3cE540qgovLN+lwk19ABAPAHhriGDgAAADeOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMLgKJbmxqKgoxcXFKSEhQbGxsbJarTp79qzGjh2rY8eOyWKxqG7dupo6dap8fX0lSY0bN5bVapXZfDl7zpw5U40bN5YkrVu3TjNnzlRubq6aNWumyMhIeXp6luQuAQAAlLoSnaHr1KmTFi1apKCgIEebyWTS8OHDFRcXp9jYWNWuXVuzZ892Wm7JkiWKiYlRTEyMI8xdvHhREyZMUHR0tL7++mt5e3tr/vz5Jbk7AAAAZUKJBrrQ0FAFBAQ4tfn4+Kht27aOzy1bttTJkyevu66NGzeqefPmqlevniQpPDxcq1atKtJ6AQAAjKBET7lej81m0+LFixUWFubUPmjQIOXm5qpDhw6KiIiQxWJRYmKiAgMDHWMCAwOVmJjo8jb9/CrddN0oWv7+lUu7BAAADKVMBbpp06bJy8tLAwcOdLStX79eAQEBunDhgsaMGaO5c+dq5MiRRbbN5OQLstns1x1HyCg5SUnnS7sEAADKFLPZVOAkVJm5yzUqKkq//fab5syZ47gBQpLjFG2lSpX0yCOPaOfOnY72q0/Nnjx5Ms/pXAAAgPKgTAS6V199VXv37tXcuXNlsVgc7WlpacrMzJQk5eTkKC4uTiEhIZKk9u3ba8+ePTp69KikyzdOdO/evcRrBwAAKG0lesp1+vTpWrNmjc6cOaOhQ4fKx8dHc+bM0TvvvKN69eopPDxcklSrVi3NnTtXv/76qyZOnCiTyaScnBy1atVKzz77rKTLM3ZTp07V448/LpvNppCQEI0fP74kdwcAAKBMMNnt9utfQHYLc+UauoNzxpVAReWb9blIrqEDAOAPDHMNHQAAAG4MgQ4AAMDgCHQAAAAGR6ADAAAwOAIdAACAwRHoAAAADI5ABwAAYHAEOgAAAIMj0AEAABgcgQ4AAMDgCHQAAAAGR6ADAAAwOAIdAACAwRHoAAAADI5ABwAAYHAEOgAAAIMj0AEAABgcgQ4AAMDgCHQAAAAGR6ADAAAwuAquLpCWlqaNGzcqMTFR2dnZTn1PP/10kRUGAACAwnEp0O3atUuPP/643N3ddfbsWdWsWVOnT5+WxWJRUFAQgQ4AAKAUuHTKdebMmerVq5e+++47WSwWLViwQOvXr1fz5s01YsSI4qoRAAAABXAp0B04cEADBgyQyWSSm5ubsrOzVb16dY0ePVpvvvlmcdUIAACAArgU6Nzd3R0/+/n5KSEhQZLk7e2t06dPF21lAAAAKBSXrqFr1qyZ9uzZo/r166tt27aaM2eOkpOTtWLFCjVu3Li4agQAAEABXJqhe+6551SjRg3Hz76+vpo2bZrS0tI0derUYikQAAAABXNphu722293/Ozr66v33nuvyAsCAACAa3iwMAAAgMFdd4auV69e+vjjj1W1alX16tWrwLGxsbFFVhgAAAAK57qBrmvXrrJYLI6fAQAAULZcN9Bd/fYH3gQBAABQ9rh0DV18fLz279+fp33//v06dOhQkRUFAACAwnMp0E2YMEHx8fF52g8fPqwJEyYUWVEAAAAoPJdf/XXHHXfkab/99tt18ODBIisKAAAAhedSoHNzc9P58+fztKelpclutxdZUQAAACg8lwLdnXfeqejoaOXm5jracnJyFB0drTvvvLPIiwMAAMD1ufSmiDFjxjXJumUAACAASURBVKh///7q0qWL2rRpI0nasWOH0tPTtWjRomIpEAAAAAVzaYauQYMGWrFihXr16qW0tDSlpaWpV69eiomJUXBwcHHVCAAAgAK4NEMnSTVq1NDIkSOLoxYAAADcAJcDXUZGhvbt26eUlBTZbDanvvvvv7/ICgMAAEDhuBTo/vvf/2rUqFFKTU3N02cymbRv374iKwwAAACF41KgmzFjhv785z9r5MiRqlmzZnHVBAAAABe4FOgSEhL09ttvE+YAAADKEJfucm3durWOHDlSXLUAAADgBrg0QxceHq6oqCidPn1aVqtVFSo4L96sWbMiLQ4AAADX51Kge+aZZyRJEyZMyNNXmJsioqKiFBcXp4SEBMXGxspqtUqSjhw5ohdeeEGpqany8fFRVFSU6tWrd1N9AAAA5YVLgW7t2rU3tbFOnTpp8ODBGjBggFP7pEmT1L9/f/Xu3VsxMTGaOHGiFi5ceFN9AAAA5YVL19AFBQUV+O96QkNDFRAQ4NSWnJysX375RT179pQk9ezZU7/88otSUlJuuA8AAKA8cfnBwhs2bNAnn3yi48ePa/78+QoICNDSpUtVq1Yt3XPPPS4XkJiYqJo1a8rNzU2S5Obmpho1aigxMVF2u/2G+nx9fQu9fT+/Si7XjOLl71+5tEsAAMBQChXotm/frtDQUK1YsUKTJk3SI488os2bNysnJ0eSlJubq/fee++GAl1pS06+IJvNft1xhIySk5R0vrRLAACgTDGbTQVOQhV4yjUrK0vTp0/X22+/LUmaN2+epk+frhdffNExMyZJLVu2vOG3RAQEBOj3339Xbm6upMvh8PTp0woICLjhPgAAgPKkwED33nvv6cSJE5o/f74k6dixY2rZsmWecV5eXrpw4cINFeDn56eQkBB9+eWXkqQvv/xSISEh8vX1veE+AACA8qTAQPfggw/q3LlzmjlzpiSpRo0aOnr0aJ5x27ZtU506da67senTp6tDhw46deqUhg4dqgceeECSNHnyZH388cfq2rWrPv74Y02ZMsWxzI32AQAAlBcmu91e4AVkdrtdCxYs0JAhQzRv3jwtW7ZM06dP1/Dhw/XOO+8oISFBUVFRioiIyPM4EiNw5Rq6g3PGlUBF5Zv1uUiuoQMA4A+udw3ddW+KMJlMGjJkiCRpxIgRunDhgoYNG6asrCwNHjxYFotFw4YNM2SYAwAAuBW4/NiSkSNH6oknntChQ4dkt9sVHBwsb2/v4qgNAAAAheByoJMkT09P3X777UVdCwAAAG6AS4HuiSeeKLA/Ojr6pooBAACA61wKdNWqVXP6fOnSJR04cECJiYnq0qVLkRYGAACAwnEp0EVGRubb/vLLL6tSJV6hBQAAUBoKfA5dYfXr10+LFi0qilUBAADARUUS6I4cOVIUqwEAAMANcOmU6/Tp050+2+12JSUlaePGjerbt2+RFgYAAIDCcSnQHThwwOmz2WyWr6+vxo0bR6ADAAAoJS4Fuo8++qi46gAAAMANKpJr6AAAAFB6XJqhGzRokEwmU6HGLly48IYKAgAAgGtcCnTBwcGKjY1V9erV1aJFC0nSTz/9pDNnzqhnz55yc3MrliIBAABwbS4FOovFoj59+mj8+PFOM3UzZsyQ3W7XSy+9VOQFAgAAoGAuXUMXExOjAQMG5Dnt2r9/f61YsaJICwMAAEDhuBTo7Ha7Dh48mKc9vzYAAACUDJdOufbt21cvvfSSfvvtN8c1dLt379Z7772nv/zlL8VSIAAAAArmUqAbM2aMfH19tXDhQr366quSJH9/f40YMULDhg0rlgIBAABQMJcCndls1ogRIzRixAhduHBBklSpUqViKQwAAACFc0MPFt6zZ482btwos/ny4unp6crJySnSwgAAAFA4Ls3QnTlzRv/4xz/0008/yWQyac2aNfLy8tLLL78si8XCY0sAAABKgUszdJGRkfLz89OWLVtUsWJFR3u3bt30/fffF3lxAAAAuD6XZug2b96sDz/8UFWrVnVqr127thITE4u0MAAAABSOSzN0mZmZcnd3z9N+9uxZeXh4FFlRAAAAKDyXAt2dd96p5cuXO7Xl5uZq3rx5uvvuu4u0MAAAABSOy8+hGzhwoPbs2aNLly4pKipK8fHxunDhghYvXlxcNQIAAKAALgW6hg0bKjY2VosXL5bFYlFWVpa6deumAQMGqEaNGsVVIwAAAApQ6EB36dIl9e/fX1FRUXrmmWeKsyYAAAC4oNDX0Lm7u+vEiRMymUzFWQ8AAABc5NJNEQ899JA+++yz4qoFAAAAN8Cla+gyMjIUGxur//73v2rWrJm8vLyc+nlTBAAAQMkrVKDbv3+/GjVqpMOHD6tp06aSpOPHjzuN4VQsAABA6ShUoOvTp482bdqkjz76SJL097//XdOnT+fOVgAAgDKgUNfQ2e12p8/bt29XVlZWsRQEAAAA17h0U8QVfwx4AAAAKD2FCnQmk4lr5AAAAMqoQl1DZ7fbNWbMGLm7u0uSsrOzNWHCBFWsWNFpXHR0dNFXCAAAgAIV+qaIqz344IPFUgwAAABcV6hAFxkZWdx1AAAA4Abd0E0RAAAAKDsIdAAAAAZHoAMAADA4Ah0AAIDBEegAAAAMjkAHAABgcIV6bAmA6+vSpb3T56ysLPXp87BGjhyrS5cuacqU8dq/f59OnUrU669Hq3XrUMfY7Oxs/fvfs7Vx43rl5OTo9ttbaMyYcfL3r5HvtuLjDygycpp+++2I6tatr3HjJqhRo8aSLj8I/O2339CXX8ZIknr27K0nn4zgbS8AcAsrM4HuxIkTeuqppxyfz58/rwsXLmjr1q0KCwuTxWKRh4eHJGn06NFq3/7y/zx37dqliRMnKisrS0FBQZo1a5b8/PxKZR9Qvn399XeOn9PT09W7d1fdd19nR9sdd7TUI4/018SJ/8yz7NKli7V37x4tWLBY3t6VNHPmDL322iz961+z8oy9dOmSXnjheT366F/Vp88jiolZphdeeF5LliyXu7u7YmKW6bvv1uvDDz+RyWTSyJFPKTAwUA899HDx7DgAoNSVmVOutWrVUkxMjONfp06d1LNnT0f/66+/7ui7EuZsNpvGjBmjiRMnKi4uTqGhoZo9e3Zp7QLgsGHDOvn4+KpFi1aSJHd3dz36aH+1aNFSZrNbnvGJiSfVtu3d8vX1k4eHhzp1ul9HjhzOd90//rhDubm5evTR/rJYLHrkkXDZ7Xbt2LFNkrR69VcKDx+oGjVqyt+/hsLDB2jlyi+Lb2cBAKWuzAS6q2VnZys2NlZ9+/YtcNzevXvl4eGh0NDLp67Cw8O1evXqkigRKNCqVV+qW7cehT7N2bNnb+3Zs1tnziQpMzNTa9as0t13t8t37JEjhxUc3Mhp3Q0bNtKRI786+hs2tF7VZ3X0AQBuTWXmlOvV1q1bp5o1a6pZs2aOttGjR8tut6tNmzYaNWqUqlSposTERAUGBjrG+Pr6ymazKTU1VT4+PoXalp9fpSKvHzfH379yaZdwUxISErRr107NnPlyvvtiNpvk4+Pl1FexYlPVrl1LDz3UXW5ubrJarZoxY6p8fPIubzLlys/Px2l5X18fmUw58vevrIyMDNWuXcPRf/FiTWVkpKt69UpcRwcAt6gyGeg+//xzp9m5RYsWKSAgQNnZ2ZoxY4amTp1aZKdWk5MvyGazX3ec0UOGkSQlnS/tEm7KJ598pjvuaKmKFX3y3Rebza7U1HSnvqlTJygjI0MrV65VxYqe+uSThRoyZJjmzVuQZ3m73U0pKalOy6ekpKlu3QpKSjovT09PnThxWlWqXL6h4vjx0/L09NKZMxeKYW8BACXBbDYVOAlV5k65/v7779q2bZt69erlaAsICJAkWSwW9e/fXzt37nS0nzx50jEuJSVFZrO50LNzQHFYvXqlunV7wKVl4uMPqEePnqpSpaosFov69u2nfft+Vmpqap6x9esH6/DhQ7Lb//eHyOHD8apfv4Gj/9CheEffoUMHHX0AgFtTmQt0y5cvV8eOHVWtWjVJl+8WPH/+8kyE3W7XypUrFRISIklq3ry5MjMztX37dknSkiVL1K1bt9IpHJD+/zq40woL65ynLzs7W1lZWZKknJwcZWVlOUJZSEgzrV79lS5cuKCcnBwtX75U1av75/vHSatWbWQ2m7V06RJlZ2fr888/lSS1aXOnJKlbtx769NNFSko6rTNnkrRkySL16NEzz3oAALeOMnfKdfny5Ro/frzjc3JysiIiIpSbmyubzabg4GBNmjRJkmQ2mzVz5kxNmjTJ6bElQGlZtepLdex4n7y8vPP09e/fV6dOJUqSRo16WpK0dOkKBQQE6qmnntWcObMVHt5HOTmXVL9+sNMjS55//hm1aNFSgwcPk7u7uyIjZ+vll6crOvpN1atXT5GRs+Xu7i5J6t27r06eTNDgweGSpF69eqt374JvMAIAGJvJfvV5m3LIlWvoDs4ZVwIVlW/W5yINfw0dAABFzXDX0AEAAMA1Ze6UK1AcqlXxUAUPS2mXcUvLycrW2XNZpV0GAJRLBDqUCxU8LPrxmYjSLuOW1ur1NyQR6ACgNHDKFQAAwOAIdAAAAAZHoAMAADA4Ah0AAIDBEegAAAAMjkAHAABgcAQ6AAAAgyPQAQAAGByBDgAAwOAIdAAAAAZHoAMAADA4Ah0AAIDBEegAAAAMjkAHAABgcAQ6AAAAgyPQAQAAGByBDgAAwOAIdAAAAAZHoAMAADA4Ah0AAIDBEegAAAAMjkAHAABgcAQ6AAAAgyPQAQAAGByBDgAAwOAIdAAAAAZHoAMAADA4Ah0AAIDBEegAAAAMjkAHAABgcAQ6AAAAgyPQAQAAGByBDgAAwOAIdAAAAAZHoAMAADA4Ah0AAIDBEegAAAAMjkAHAABgcAQ6AAAAgyPQAQAAGByBDgAAwOAIdAAAAAZHoAMAADC4CqVdwNXCwsJksVjk4eEhSRo9erTat2+vXbt2aeLEicrKylJQUJBmzZolPz8/SSqwDwAAoDwoczN0r7/+umJiYhQTE6P27dvLZrNpzJgxmjhxouLi4hQaGqrZs2dLUoF9AAAA5UWZC3R/tHfvXnl4eCg0NFSSFB4ertWrV1+3DwAAoLwoU6dcpcunWe12u9q0aaNRo0YpMTFRgYGBjn5fX1/ZbDalpqYW2Ofj41Oo7fn5VSryfcDN8fevXNol4AZx7ACgdJSpQLdo0SIFBAQoOztbM2bM0NSpU9WlS5di3WZy8gXZbPbrjuN/VCUnKel8ka+T41cyiuPYAQAks9lU4CRUmTrlGhAQIEmyWCzq37+/du7cqYCAAJ08edIxJiUlRWazWT4+PgX2AQAAlBdlJtClp6fr/PnLf93b7XatXLlSISEhat68uTIzM7V9+3ZJ0pIlS9StWzdJKrAPAACgvCgzp1yTk5MVERGh3Nxc2Ww2BQcHa9KkSTKbzZo5c6YmTZrk9GgSSQX2AQAAlBdlJtDVrl1bX3zxRb59rVu3VmxsrMt9AAAA5UGZOeUKAACAG0OgAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AMq97OxsRUZOVd++PdWlSwcNGdJfmzd/n2fcBx/M0733hmrbti1O7du2bdGwYQPUufO96tOnh9au/fqa21qzZrX69u2pzp3v1bhxz+vcuTRH37lzaRo3brQ6d75Xffv21Jo1q4tuJwHc0gh0AMq93Nxc1ahRU2+++a7i4tZrxIgnNXHiOCUmnnSMSUg4oW+//UZ+ftWdlj1y5FdNmfKSRoz4h1avXq8PP/xETZqE5LudX389rFmz/qUJE6ZqxYo18vCoqFdeednR/8orUXJ3d9eKFWs0ceJ0vfJKpH799XDx7DSAWwqBDkC55+npqccee1wBAYEym81q1669AgMDdeDAPseYV16J0pNPRsjd3d1p2QUL5qt377/onnvaqUKFCqpa1UdBQbXy3c7XX69Wu3bt1bJla3l5eWnEiCe1YcO3Sk+/qIyMDG3YsE7Dhz8hLy8vtWjRUvfe20FxcSuLdd8B3BoIdADwBykpyTp+/Jjq1w+WJK1b940sFnfdc8+9ecb+/PNeSdLgwf3Uu3dXTZ06wek06tWOHDmshg0bOT4HBdWSu7u7jh07puPHf5Obm5vq1Knr6A8OturIkV+LctcA3KIIdABwlZycHE2ZMkHduj2gunXrKT39ot59d66efXZ0vuOTkn5XXNxKTZ8+U4sXL1dWVqZee21WvmMzMjJUqVIlpzZv70qOGTpvb+e+SpUu9wHA9RDoAOD/2Ww2TZs2Qe7uFTRq1D8lSfPnv6uuXXsoICAw32U8PDzUo0cv1alTV15eXho0aFi+N1RIl0/tXrzoHNAuXrwoLy/v/++7kG8fAFxPhdIuAADKArvdrpdfnqaUlBTNnv1vVahw+T+PO3ZsU1LS71q+/D+SpNTUs5o4cZwGDBisgQOHKDi4kUwmk2M9V//8R/XrB+vQoXjH54SEE7p0KVt16tSRyWRWbm6ujh8/ptq160iSDh06qPr1GxTH7gK4xZSZQHf27FmNHTtWx44dk8ViUd26dTV16lT5+vqqcePGslqtMpsvTyjOnDlTjRs3liStW7dOM2fOVG5urpo1a6bIyEh5enqW5q4AMKDZsyN19OgRzZnzljw8Kjra//3vt5STk+P4PGLE3/T00yN1991/kiT16NFLCxbM1/33d5efX3V9/PGHatcu77V2ktSlSzc98cQw7d79o6zWJpo//x117HifYxauY8f79N570XrhhQmKjz+gTZs26O233y/GvQZwqygzp1xNJpOGDx+uuLg4xcbGqnbt2po9e7ajf8mSJYqJiVFMTIwjzF28eFETJkxQdHS0vv76a3l7e2v+/PmltQsADOrUqUTFxCzToUMH1bt3V3Xp0l5durTXmjWrVLWqj/z8qjv+mc1mVa5cWV5eXpKknj17q1u3B/T440P08MM9ZbG469lnxzjW3aVLe+3e/aMkqUGDYI0ePU5TprykXr26KD39op5//gXH2Oeff0HZ2Vnq1auLJk8er+efH6cGDYJL9ssAYEgmu91uL+0i8hMXF6fFixfrww8/VOPGjbVz5055eztfS7Jq1Sp98cUXeueddyRJe/bs0QsvvKCvvvqq0NtJTr4gm+36X4G/f2UdnDPOtZ2Ay6zPRSop6XyRr9ffv7J+fCaiyNeL/2n1+hvFcuwAAJLZbJKfX6Vr9peZU65Xs9lsWrx4scLCwhxtgwYNUm5urjp06KCIiAhZLBYlJiYqMPB/FyoHBgYqMTHRpW0V9OWgdPj7Vy7tEnCDOHYoDdnZ2Zo8ebI2b96s1NRU1alTR6NGjVLHjh0lSZs3b9aUKVOUmJioO+64Qy+//LKCgoIkXb6E56uvvtL58+dVtWpV9evXT0888cQ1txUbG6tXX31VZ8+e1Z/+9Cf961//ko+PjyQpNTVV48eP1/fff69q1app1KhR6tWrV/F/AQZ3M8cvKipKa9euVVJSkmrWrKknnnhCDz300DW3dSsfvzIZ6KZNmyYvLy8NHDhQkrR+/XoFBATowoULGjNmjObOnauRI0cWybZcmaFDySiuGToUv+KaofOp7CH3ipZiWTcuu5SZrdTzWaVdxg3JyMhQlSq++ve/o1Wz5m3avPl7Pfvsc1q4cIk8Pb301FNP6Z//nKB27drrvfei9fTTz+jddz+UJHXq1F3h4UPk6emppKTTGjnyaVWvHqCOHcPybOfXXw9rwoSJmjVrjqzWJpo5c4ZefPElTZkSKUmaNGmC7HaTYmLiFB9/UGPHPqsaNWpz2vw6bub42e1u+te/XlHt2nW0b98vev75CFWpUl23394iz3aMfvwMN0MXFRWl3377TdHR0Y6bIAICAiRdfibTI488og8++MDRvmXL/96pePLkScdYALcO94oWrfjLs6Vdxi3twWX/lgwa6K686eOKq9/0kZaWpvr1gxUW1lmSNGzY3/XAA531229HVbduPdWpU89pXWazSSdOHM93O1e/6UOSRox4UgMGPKz09IsymczasGGdFi78NM+bPp58kss9CnIzx+/q5Zo1a64WLVpq7949+Qa6W/34lZmbIiTp1Vdf1d69ezV37lxZLJf/Gk9LS1NmZqakyw/8jIuLU0jI5fcktm/fXnv27NHRo0clXb5xonv37qVSOwCgbLj6TR9Hjvzq9HYOT09PBQUF6ciR/70j96OPPlSXLu3Vp08PZWRkqkuXbvmulzd9lAxXj98VWVmZ2r//l2s+6udWP35lZoYuPj5e77zzjurVq6fw8HBJUq1atTR8+HBNnDhRJpNJOTk5atWqlZ599vJf6pUqVdLUqVP1+OOPy2azKSQkROPHjy/N3QAAlKI/vukjIyNdPj7VnMZcfgNHuuPzoEFDNHDg3xQff0Dffbchz9s8rijoTR9ubm686aMI3Mjxu2LWrEgFB1vVtu09+a77Vj9+ZSbQNWrUSAcOHMi3LzY29prLde7cWZ07dy6usgAABpHfmz48Pb2u8XYOL6c2k8kkq7WJtmz5QfPnv6OIiFF51l/Qmz7MZhNv+rhJN3P85s79t3799bDeeCP6mg/3vtWPX5k65QoAwI24+k0fM2bMdLzpo379Bjp8+KBjXEZGhhISTqh+/fwvdM/NzVFCwol8+wp600ft2nUdb/q4gjd9FN7NHL/589/RDz98r9deezPPLNvVbvXjR6ADABjelTd9REW95vSmjw4d7tOvvx7W+vVrlZWVpQ8+mKfg4EaqW7eebDabvvjic507d052u12//LJXy5cvVZs2d+W7jS5duun777/T7t0/KiMjw+lNH56eno43fWRkZOinn3Zp06YN6tq1R0l9BYZ2I8dPkj766AN9/fVqzZnzlqpW9SlwG7f68SuzDxYuKTxYuGzhwcLGVZwPFvb3r8xdrsXswWX/NuyDoU+dStTDD/eSxWKRm5ubo33MmBd1//3dtW3bFr322kydOnVKTZs20/jxkxUQECibzabRo5/Vvn0/Kyfnkvz8/NWjR08NGjTUcdquS5f2mj37dbVo0UqStGbNakVHv6Fz59IUGnqXXnxxkqpUqSpJOncuTZGRU7Vt2xZVqVJVTzwRofvvz/8GC/zPjR4/Sbr33lC5u7s7ZvQkadCgoRo8eJikW+v4Xe+xJQQ6Al2ZQqAzLgKdsRk50AHlgeGeQwcAuHVUrewhCw+FLlbZmdlKK6ZnCFapZJGHp0exrBuXZWVk6dyF7JteD4EOAFBsLBUterUTs6vFadTa4nsotIenh/5x1+PXH4gb9tbWd6QiCHTcFAEAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAyOQAcAAGBwBDoAAACDI9ABAAAYHIEOAADA4Ah0AAAABkegAwAAMDgCHQAAgMER6AAAAAzO8IHuyJEj6tevn7p27ap+/frp6NGjpV0SAABAiTJ8oJs06f/au/OgKK48DuBfQMADASWoRGKIVEAUERHJroigIkHuwBqRBa14Z9ESI4l4rCiKigerATxR15SWrqgooAJRRKQsEwQvxGsHRCByCBhE7pnf/kHR64SZAU+E/D5VVNH9jn7zXvfr1697poPh4+ODpKQk+Pj4YNWqVR1dJMYYY4yx96pbRxfgTZSXlyMnJwcHDhwAALi4uGDt2rWoqKhA375925WHsrJSu7fXTVP7tcrJXs2rtMmrUGvnPsFe37tqOwDoocvt9669q/bT7M9t9669y2Ovr57OO8ubNWtP+7UVR4mI6G0V6H3Lzs7G0qVLcebMGWGdk5MTNm/ejGHDhnVgyRhjjDHG3p9Of8uVMcYYY+zPrlMP6PT09FBSUgKxWAwAEIvFKC0thZ6eXgeXjDHGGGPs/enUAzodHR2YmJggISEBAJCQkAATE5N2Pz/HGGOMMdYVdOpn6ABAJBIhKCgIVVVV0NTURFhYGAYPHtzRxWKMMcYYe286/YCOMcYYY+zPrlPfcmWMMcYYYzygY4wxxhjr9HhAxxhjjDHWyfGAjjHGGGOsk+MBHWOMMcZYJ9ep3+X6Z2RsbIysrCz06tVLan1lZSV++OEHPH78GGpqavj0008REhKCvn37orCwEF5eXvjll19k5nn8+HEcPHgQysrKUFFRwfLly2FpaQkAePbsGUJCQnDnzh1069YNkydPxoIFCwAAN27cwKpVq1BfX4+BAwdi8+bN0NHpeu/8u3jxIrZv3w4iAhFhwYIFGDp0KPz9/YU4z58/R3V1NX799VeZebS0W2VlpcJ0YWFhSEpKQlFREeLj42FkZNQqr8jISERERAjhEokE06ZNQ21tLQBAV1cXa9asgb6+PgDFbagorKtKTU3F9u3b0dTUBC0tLWzYsAGffPIJzp8/j61bt0JdXR3h4eHIz89v1e4ODg4AgLy8PAQFOjTAqAAAFhBJREFUBeHZs2fQ1tZGWFgYDAwMAKBVPlu2bEFhYSGUlZXRs2dP/POf/4SJiYnMuIsXLxbK+fK+UVhY+Er7W1ch69hzcHCQ2w8qSvO6dZiYmIidO3cKy8XFxRg9ejQiIyMVpqutrcXKlStx//59EBE+//xzrFu3DhoaGkhLS8OWLVugpKSEpqYm2NvbIyAgAEpK7+59rB1hwoQJUFNTg7q6OgAgMDAQNjY2cvudvLw8rFq1CmVlZejWrRuGDx+O4OBgdO/eHQCwa9cuxMXFoVu3bujVqxdCQkLw+eefy92+onNfW/1mp0SsUzEyMqLq6upW6ysrK+nq1avC8saNG2nZsmVERFRQUEBWVlYy86uoqKCRI0dSWVkZERGdP3+eJk+eLITPmzePDhw4ICyXlpYSEZFYLCZ7e3vKyMggIqKoqCgKCgp6sw/3AZJIJGRpaUn3798nIqK7d++Subk5icViqXjr1q2jNWvWyM1HXrv9MV1GRgb99ttvNH78eGGbL8vOzqZZs2a1Cq+qqhL+//e//03+/v7Csrw2bCusK3r27BlZWVlRbm4uERGdOnWKZs6cSUREs2bNorNnzxJR2+3u5+dHp06dEvLw8/MTtvFyPkTSbfPzzz+Th4eH3LgvU7RPtbW/dQWK2kDe8dTe45Xo9evQ3d2dzp0712a8AwcO0MKFC0kikZBEIqGFCxfSnj17iIiourqampqaiIiooaGBvLy86Pz5869clg+dvH5MXr9TUFBAd+7cIaLmc8yiRYsoMjKSiIhycnLIzs6OXrx4QUREBw8epNmzZyvcvqJzH5HifrMz4luu78n169cxbdo0uLm5wc3NDenp6QgLC4OXlxfc3NwwY8YMFBUVCfEvXrwIT09PuLm5wcPDA/fu3RPC9u3bB3d3d3z55ZdISkoCAGhra+OLL74Q4pibm+O3336TKsPGjRvh6uoKV1dXXLt2DQCEq9gXL14AaL5qHTBgAADg0aNHePDgAWbMmCHkoaurCwDIzs6Gurq6MJPn7e2NxMTEt1ZfHxJlZWU8f/4cQHP99OvXD8rK/z90GhoaEB8fDy8vL2FdcnIyHB0d4e7ujqioKJn5ykpnaWkp99V1DQ0NCAkJwerVq1uF9e7dW/i/urpaKJ+iNlQU1lXl5+fjo48+wmeffQYAsLW1RXp6OpYtW4bMzExs2bIFfn5+AOS3e3l5OXJycuDi4gIAcHFxQU5ODioqKrB+/fpW+fyxbVpmYWTFbSFr32hPWFej6NiT1Q+2laaFrDpcsmQJPD094erqCn9/f/z++++tynPnzh0UFxdjwoQJAICysjL4+fnB09MTzs7O2LRpkxBXSUkJdXV1aGxsRGNjI2pqaoS+tVevXlBRUQEA1NfXo7GxsVUZuypF/Y6+vj6GDh0KoLkdzczMhPOYkpISGhsbUVdXB0D6XAU032lqOb96eXnh6dOnQpiscx8gv98EgEuXLsHb2xuenp6YOnUqbty4IYTFxsZiypQp8PT0xPTp05Gbm/tW6uaNdfSI8s+gsrKSxowZQ5mZmURE1NTURM+ePaPy8nIhzrFjxyggIICIiHJzc2nMmDGUl5dHRET19fX0/PlzImqe6YmIiCAiIpFIRFZWVvT06VOp7YnFYpoxYwYdPHiQiJqvUoyMjCg2NpaIiK5evUo2NjZUX19PRERxcXE0cuRIsrW1JRsbG3r06BERNc8meHt707Jly8jDw4Nmz55NDx48ICKixMREmjNnjtR2zczMqLKy8u1U2gfkypUrZGVlRXZ2djR69Gi6fv26VPi5c+fIzc1NWC4rKyMrKysSiURERLRnzx6ZMwp/TPcyWVe2mzZtokOHDskNnz17No0ZM4acnZ2puLiYiBS3oaKwrqqqqoqsrKzo5s2bRET0008/kZGREWVnZ5Ovry+lpKQIceW1++3bt8nJyUkq38mTJ1N2djYRUat8iIiWL19Otra2NG7cOKk6lhWXSPG+oSisq5HXBor6wbaOVyLZdfhyfxweHk6bN29ulW7NmjW0bt06Ybmurk44rhsaGsjPz48uXbokhAUEBJClpSVZWloK/XuLW7dukYuLCw0fPpzWr19PEonklevnQzd+/HhydXUlFxcXCg4Opt9//73d/U5tbS05OTlJzVxGR0fTiBEjaOzYseTk5EQVFRVE1HxOs7e3F2b6qqurqa6urs1zH5HsfjM/P5++/vpr4bz74MEDsrW1JaLmuyhz5swR8khNTaWpU6e+5Zp7PX+OS4IOduPGDRgaGsLCwgIAoKKiAi0tLaSlpeHrr7+Gi4sL9u3bh7t37wIArly5gnHjxgnP5KipqUFDQ0PIb8qUKQCAwYMHY+jQoVJXDgCwdu1a9OzZE76+vsI6VVVVuLm5AQC++OILdO/eHbm5uaiursbhw4dx/PhxpKamIigoCAsWLAARQSKR4ObNm/D09BSuSL799tt3Vk8foqamJuzevRs7duzAxYsXsXPnTgQEBAgzmgBw4sQJqSv9mzdvYujQocIr6KZOnSoz7z+mU+T69evIzs6Gj4+P3Dh79+7F5cuX4ezsLDzzo6gN/4zt27t3b/zrX//Chg0b4OnpifLycmhqagqzJS3a0+6vIjQ0FKmpqVi8eLHULI48ivaNV9lvOrO22kBWP9jedpNVh6dPnxZm6BISEoT+uEVDQwMSEhKk0onFYmzatAlubm7w9PTEw4cPhbspV65cAQCkp6cjPT0djY2N2Ldvn5B2+PDhiI+PR2pqKu7cuSM1c9RVHD58GHFxcThx4gSICCEhIe3qd5qamrB48WL85S9/wcSJEwEARUVFuHDhApKTk3H58mV89dVXCAoKAtD8XKy7u7sw09erVy/huT15574WsvrNy5cv4/Hjx/j73/8Od3d3BAYGoqmpCU+fPkVKSgru3buHKVOmwN3dHVu3bkVxcfG7rch24gFdBykqKsKGDRuwdetWJCQkYP369WhoaHjjfMPCwpCfn49t27a1awo/PT0dvXv3FgYfTk5OePz4MSorK6Gnpwc9PT3htqqDgwPKyspQUVEBPT09qVu6FRUVUFZWhra29ht/hg/J3bt3UVpailGjRgEARo0ahR49ekAkEgEASkpKkJGRAVdX11fK91XTZWRkQCQSYeLEiZgwYQKKi4sxa9YspKenS8VTVlbG3/72N5w+fRoA2mxDeWFd2ZgxY3DkyBGcPHkSvr6+qKurw6BBg6TiKGp3PT09lJSUQCwWA2g+qZeWlsq9Vf4yDw8P/PLLL6isrJQbR9G+8br7W2fU1rH3umlk1eG1a9dw5MgRREdHIz4+HgEBAa36459//hn6+voYMmSIsO7AgQOoqqpCTEwM4uPjYW9vj/r6egDA0aNHMWnSJKirq0NdXR1OTk4yH87v27cvxo0b1yUfWWk5JtTU1ODj44OsrKw2+x2xWIzAwEBoaWlh5cqVQl6JiYkwMjJCv379APz/WHob/thvAoCNjQ1Onz4t/KWnp+Ojjz4CEcHLy0tYHxcXh9TU1LdSjjfFA7r3wNzcHCKRCNevXwfQvMM+efIEqqqq0NXVhUQiwdGjR4X41tbWSEtLw6NHjwA0XxlWV1cL4SdOnADQ/CxCTk4OzM3NAQDh4eHIzs5GVFQU1NTUpMrQ2NiI+Ph4AM2dV11dHQYPHgx9fX3k5OSgvLwcAHD16lVoaGigT58+MDU1Rc+ePfHw4UMAzYMKLS0tIayurk64qjx69CgcHR3fdtV1uAEDBqC4uFi4ohOJRCgvLxcGALGxsbC1tUWfPn2ENObm5sjJyRHaLyYmplW+stIpMnfuXKSnpyMlJQUpKSkYMGAA9u3bh7Fjx6KiokJqEJaYmAhjY2MAaLMN5YV1ZWVlZQCaZyjDw8Ph7e2Nnj17SsVR1O46OjowMTFBQkICACAhIQEmJibo27dvq229ePECT548EZZTUlKgpaWl8MJH0b7xqvtNZ9bWsSerH2wrDSC7DquqqqChoQFtbW00NDQIeb9M1qze8+fPoaurC3V1dZSUlODChQtCmL6+PtLT04W7HZcvXxa+kZmXlweJRAIAqKmpQVpamsxvtHdmNTU1wrOMRISzZ8/CxMREYb8jkUgQFBQEFRUVhIaGSn3rV19fH5mZmaipqQHQ/IxbS33a2dnh9OnTwnNzL168EAbW8s59ivpNa2trXL58WSgjANy6dQtA8zd3T58+LczKicViZGdnv+Xaez38syXvgba2NiIiIrBx40bU1NRAWVkZS5cuhaOjI5ycnNCnTx/Y2toKgyMDAwOsXbsWixcvhlgshoqKCjZu3CjsbGKxGB4eHqitrUVISAh0dHTw8OFD7N69GwYGBvD29gbQfAC0PJCvra2Ne/fuITo6GkDz4E9NTQ2mpqaYPXs2fH19oaqqCjU1NWzfvl3qwe1ly5ahoaEBPXr0QGRkJJSUlKCkpIRNmzYhODhY6mdLuhpdXV2sXr0aixYtkqqTlhNybGwsVqxYIZVGR0cHa9euxfz589G9e3fhpy5eJisdAKxbtw7Jycl4+vQpvvnmG2hra+PMmTMKy1hWVoZly5ahsbERAKTaQklJSW4btnwWeWFd1bZt25CVlYXGxkZYW1sjMDCwVZy22n316tUICgrCjh07oKmpibCwMJnbqq2txaJFi1BbWwtlZWVoaWlh165dCutY3r7RVlhX01YbyOoHAShMA8iuQxsbG8TFxeHLL79Enz59YGlpidu3bwvhT548QVZWFrZt2yaVzs/PD4sWLYKLiwv69++Pv/71r0KYv78/Vq1aJXx5ZsiQIcKtxQsXLiA2NhYqKiqQSCSwt7cXbiF3FeXl5Vi4cCHEYjEkEgkMDQ0RHByssE+6dOkS4uLiYGRkBE9PTwCAhYUFgoOD4eDgINyqVVNTg6amJjZs2ACg+Vbq3Llz8c0330BJSQlqamrYtWsXAPnnPkX9poGBATZv3owVK1YIX2yxsLCAmZkZRo8ejYCAAHz77bcQi8VobGyEo6MjTE1N33cVt6JERNTRhWCMMcYYY6+Pb7kyxhhjjHVyPKBjjDHGGOvkeEDHGGOMMdbJ8YCOMcYYY6yT4wEdY4wxxlgnxwM6xtgHLSQkpNW7Ttty+/ZtGBsbo7Cw8B2VijHGPiw8oGOMdZigoCDMmzevo4shFxEhJiYGU6dOxciRI2FhYYGvvvoKe/fulfqx787Kz88PISEhHV0MxthbwD8szBhjcnz//fdITk7GvHnzsGLFCvTt2xf//e9/cejQIejo6Ag/fsoYYx2NZ+gYYx8MsViMsLAwjB49GqNHj0ZoaKjwzlRF0tLS4OjoiOHDh8PHx0d47drLkpOT4erqClNTU9ja2mLnzp1Q9LvqZ8+eRXx8PLZs2QJ/f3+YmZlBX18fdnZ2iI6Ohr29PYDmV4hFRUXB1tYWpqamcHV1xfnz54V8CgsLYWxsjDNnzsDX1xdmZmbw8PDAvXv38ODBA3h7e8Pc3BzTpk1DQUGBkC4iIgIuLi6IiYmBnZ0dzMzM8I9//EPqdUVtbRsAIiMjMX78eJiamsLa2ho//PADgObZ0V9//RWHDx+GsbGx1C3qjIwMTJkyBcOHD8eYMWPe2rumGWPvDg/oGGMfjP379+PYsWNYs2YNjh49ColEIryHUZ4nT57A398f1tbWOHXqFHx9fVu9hi47OxuLFi3CpEmTEB8fjyVLlmDPnj04dOiQ3Hzj4+NhYGAg89VtAKCpqQkA+Omnn7Bv3z4EBgYKL2hfuHAh7t69KxX/xx9/xJw5cxAbG4vevXtjyZIlWLt2LQICAhATE4P6+nqEhoZKpSkqKkJcXBx27NiBAwcOID8/H8uXLxfC29p2UlIS9u/fj+DgYCQnJ2PXrl0wMzMDAKxYsQIjR46Ep6cn0tPTkZ6eDj09PZSUlGDOnDkwMTHBqVOnEBoaijNnziA8PFxhOzDGOhgxxlgHWbp0Kc2dO1dYtra2ph07dgjLYrGYHBwcyNfXV24eW7duJQcHB5JIJMK6qKgoMjIyooKCAiIi+u6778jPz08q3Y8//kg2NjZy8508eTLNnz+/zc8wduxYioiIkFrn6+tLS5YsISKigoICMjIyoiNHjgjhKSkpZGRkRElJScK6EydOkLm5uVT5hgwZQkVFRcK6jIwMMjIyory8vHZte//+/eTg4EANDQ0yy+7r60tr1qyRWhceHk6TJk0isVgsVbZhw4ZRTU1Nm/XBGOsYPEPHGPsgPH/+HGVlZTA3NxfWKSsrCzNK8ohEIowYMULqhfcjR46UipObmwsLCwupdaNGjUJJSYncLzdQO15zXV1djdLSUowaNUpqvYWFBUQikdQ6Y2Nj4f+WF8kbGRlJraupqUFtba2wrn///vj444+F5REjRkBZWRkikahd23Z0dERDQwMmTpyI5cuX49y5c23eOm2pT2Xl/58eRo0ahcbGRuTn5ytMyxjrODygY4wxGQwMDJCbm/va6V8eYAJAt27dWoXJWieRSF57m3/MS09PD4mJiQgJCYGGhgbCwsLg6emJmpqaN8qXMfbh4QEdY+yD0Lt3b+jq6uLmzZvCOiLCrVu3FKYzNDTEzZs3pWbUbty4IRVn8ODByMrKklqXmZmJAQMGQENDQ2a+rq6uePToEZKTk2WGV1VVQUNDA/369UNmZqZUWFZWFgwNDRWWuz1KSkrw5MkTYfnWrVuQSCQwNDRs97bV1dVhZ2eH5cuX4/jx43j48KFQF6qqqq2+dNJSny8PLDMzM6GqqopBgwa98WdijL0bPKBjjH0wpk+fjujoaCQmJiI3NxehoaEoKytTmMbb2xtFRUUIDQ1Fbm4uEhMTcfToUak4M2fOREZGBiIiIpCXl4e4uDjs378fs2fPlpvv5MmT4eTkhMDAQERFReHWrVsoKipCWloa5s6dK3ybdNasWdi/fz8SEhKQl5eH7du349q1a5g1a9Yb10f37t2xdOlS3L17F9evX8fq1athZ2cHAwODdm375MmTiImJwf3791FQUICTJ09CVVUVn376KQBg4MCBuH37NgoLC1FRUQGJRAIfHx+UlpZi9erVEIlESE1NxdatW+Hr64sePXq88WdijL0b/Dt0jLEPxsyZM/H06VOsXLkSAODu7g5XV1eFtz4//vhjREZGYsOGDfjPf/6DYcOGYcmSJfj++++FOMOGDcP27dsRERGB3bt3Q0dHB3PnzoWvr6/cfJWUlBAeHo5jx47h+PHjiI6OhpKSEgYNGgRnZ2fh26/Tp0/HixcvsHnzZpSXl+Ozzz5DREQEhgwZ8sb1MXDgQDg7O2P+/PmorKyEtbW11Ddh29q2pqYm9u7di7CwMDQ1NcHQ0BARERH45JNPADTXd1BQEJydnVFXV4cLFy5AX18fe/fuxaZNm+Du7g5NTU24uLjgu+++e+PPwxh7d5SoPU/+MsYYe68iIiKQlJSEhISEji4KY6wT4FuujDHGGGOdHA/oGGOMMcY6Ob7lyhhjjDHWyfEMHWOMMcZYJ8cDOsYYY4yxTo4HdIwxxhhjnRwP6BhjjDHGOjke0DHGGGOMdXL/A2gkw/Ff+TysAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nXefaxUi6ROc" + }, + "source": [ + "## **Desafio 03: Plotar os histogramas com seaborn**" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 469 + }, + "id": "cOViDLJQXiw1", + "outputId": "8f388ede-5850-4ca4-e5ae-788c3ffbccb8" + }, + "source": [ + "# Criação do Canva:\n", + "fig, axs = plt.subplots(figsize = (26, 7), ncols = 2)\n", + "\n", + "#Plot do Gene 'g-0':\n", + "ax1 = sns.histplot(data = dados['g-0'], ax = axs[0])\n", + "ax1.set_title('Distribuição de Frequência da Expressão do Gene \"g-0\"', fontsize = 18)\n", + "ax1.set_xlabel('Id do Composto', fontsize = 14)\n", + "ax1.set_ylabel('Frequência', fontsize = 14)\n", + "\n", + "#Plot do Gene 'g-19':\n", + "ax2 = sns.histplot(data = dados['g-19'], ax = axs[1])\n", + "ax2.set_title('Distribuição de Frequência da Expressão do Gene \"g-19\"', fontsize = 18)\n", + "ax2.set_xlabel('Id do Composto', fontsize = 14)\n", + "ax2.set_ylabel('Frequência', fontsize = 14)\n", + "\n", + "plt.show()" + ], + "execution_count": 27, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABfEAAAHECAYAAACZXGDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhTZfr/8U+SLkBbLIUWGEFAtLUsArIp4Ggr2kFaioCUxQVFB74uAyIjOIOCOiplERWGYRMcZV9lk0VZVAYUdcYFi7JDQaTQUpqCdD2/P/wlEpIuKWmTlvfrunoRzpLnztPT5Nx3nvMck2EYhgAAAAAAAAAAgM8xezsAAAAAAAAAAADgGkV8AAAAAAAAAAB8FEV8AAAAAAAAAAB8FEV8AAAAAAAAAAB8FEV8AAAAAAAAAAB8FEV8AAAAAAAAAAB8FEV8APAAq9WqadOm6bPPPvN2KAAAAAAqAXIIAEBpUcSHV6xcuVJRUVH64osvvNpmecZxpc/9zTff6Pbbb1dsbKw2btyob775Ru3bt/dwlMU7fvy4oqKiNHXq1ApttzJ64YUX9OGHH2rYsGE6evRohbUbGxurBx98sMLamzp1qqKionT8+PEKa/Nqd/ToUcXFxalTp05auHCh0tLSFBUVJavVWqFxREVFafTo0RXaJgAAlyKHKBk5ROVCDoHyQg4BVD1+3g4AldsXX3yhhx56yP5/s9ms4OBg1a1bV82bN1f37t11++23y2QyeazNqVOnKjo6Wl27dvXYc/qid999V1FRUWrWrJn+/ve/68KFC/rzn//s7bA84vLj5nJLlixR69atKzCiK7Ns2TLt2bNHy5Yt0/vvv69nn31WixYtkr+/v7dDqzRGjx6tVatWFbm+T58+evXVVyswIt+xdOlSBQcHq2fPnpo2bZpeeeUVxcfHKyQkxNuheUxOTo6WL1+uTZs2ad++fbJarapevboaNWqkW2+9Vb169VLTpk29HWapRUVF6amnntLTTz+t0aNHa/fu3dq6dWu5tHXo0CFNmjRJX375pfLy8tSsWTM9/fTTuu222xy2mzp1qqZNm6affvpJx48f11133aXXX39dvXr1Kpe4AKA45BDlhxyCHOJqQg5RNHIIcoiifPfdd1qzZo327Nmjn376SRcuXCg2Lzh27Jjeeust7dq1S1lZWapfv74SEhI0ZMgQBQYGOmwbGxurDh06aPz48Q75BzyDIj48Ij4+Xn/84x9lGIbOnz+vw4cPa8uWLfrggw/UqVMnvfXWW6pZs6Z9+8TERHXv3r1MJyjTpk3Tfffd5/YJ+JW0WRZX2t7zzz+voKAgBQcH64knnlB2drbq1Knj4Si9y3bcXO66667zQjRlU1hYqKysLM2YMUO1atXS008/rZo1a+rQoUOKiooq9/Y3btxY7m1UpHHjxqlGjRpOyxs1auSFaHzDo48+qscff1yhoaF67LHHdPbsWUVERHg7LI9JTU3VkCFDdPDgQXXo0EGDBg1SeHi4Lly4oL1792rFihWaO3eutm/frrp163o7XJ9y7Ngx9e/fXxaLRY899piCg4O1bNkyPfbYY5o9e7Y6derk7RABoFjkEJ5vjxyiciCH8CxyCGfkEOQQRfnkk0+0YMECXX/99YqKitL//ve/Irc9ePCg+vXrp/z8fA0cOFANGjTQN998o+nTp+vbb7/VnDlzPPqFO4pHER8e0axZMyUmJjose/755zVx4kTNmzdPI0aM0Jw5c+zrLBaLLBZLhcSWnZ2t4ODgCm1TuvLXeOkHTbVq1VStWjVPhOVTXB03xSkoKFBubq6qV69ejlG5x2w2a/Dgwfb/m0wmDRo0qMLaDwgIqLC2KkJcXJzCwsK8HYadLxxztWvXtj/29/evUiffFy9e1J///GelpqZq2rRpuvvuu522ycnJ0bvvvlvxwVUCkydPVlZWllauXKno6GhJUs+ePRUfH6+XXnpJGzdu5KQagE8jh3BGDlEycogrRw5RvnzhmCOHIIcoSv/+/TV48GDVqFFDGzduLLaIP3nyZFmtVi1cuFC33HKLJKlfv35q0qSJ3njjDa1Zs8at92NcGebER7mxWCwaPXq02rZtq88++0xfffWVfZ2ruR5zcnI0depUxcXFqVWrVmrXrp0SEhKUnJws6fe5FSVp1apVioqKsv/Y2OZb27Vrl/r37682bdro//7v/4ps06agoEBTp05VTEyMWrRooYSEBK1fv95pu6Lmc3Nnrszc3FzNnj1biYmJatWqldq2batevXpp/vz59m1OnTql8ePHKzExUe3bt1fLli117733atasWSooKHBqPyMjQy+99JLuuOMOtWjRQnfccYdeeuklnT171mnbonz11Vfq16+fbr75ZnXq1Ekvv/yyLly44HJbwzC0cOFC9erVS61atVKbNm304IMP6vPPPy91eyWx9d/OnTv1z3/+U127dtXNN9+sDRs2uB1DTk6OkpOT1aVLF918883q06ePduzYodGjRzuNdClqfsgvvvhCUVFRWrlypcPy3NxczZgxQ927d1fLli3Vrl07DR06VCkpKUXuv2LFCnXv3l0tWrRQTEyMZs+e7bIPUlJS9Je//EWdOnWy/15HjBihY8eOFRvvjh07NHz4cN111126+eab1a5dOz366KPavXt3MT3uqLCwUDNnzlRsbKxatmyp+Ph4rVmzxuW2Bw8e1Lhx49S9e3e1adNGrVq1Uq9evbRs2bJSt1da2dnZuvvuu9WlSxelp6c7rHvjjTcUFRWl5cuX25fZ+ueHH37QQw89pDZt2qhDhw4aNWqU0/6ePOY++OAD9enTR+3atVPr1q1111136dlnn1VGRoZ9m/379+svf/mLbr/9drVo0UKdO3fWgw8+qO3btzu83ilTpuj+++9Xx44d1aJFC919992aNGmSfv31V6d2L1y4oMmTJ6tr167253zuued04sSJUvfx/v37NXjwYLVu3VodOnTQs88+69RXNvn5+Zo1a5buvfdetWzZUh07dtSTTz5Z6ksmly1bpkOHDmnw4MEuT74lKTAwUEOGDHEaQWO1WjVx4kTdfffdatGihW699VaNGDFCqampDtvZfq+7du3SO++8Y++buLi4Ii+/3rlzpx599FG1a9dOLVu2VEJCghYtWlSq11RamzZtUo8ePdSyZUvdeeedmjZtmnbu3OnyfcaVCxcuaOvWrerQoYO9gC9JQUFB6tOnj44cOaLvv//eozEDQEUghyCHuBLkEOQQrpBDkEPYXO05hCTVqVPH5ZUrrnzxxRdq3LixvYBvc99990lSqduEZzASH+WuT58++vrrr/XJJ5+oXbt2RW730ksvacWKFerZs6fatGmjgoICHTlyxH4CGxYWpgkTJui5555Tu3bt1LdvX5fPs2fPHm3atEl9+/a1v7GUZNKkSbpw4YL69+8v6bc3ohEjRignJ8ej8wXn5uZq8ODB2r17t7p06aIePXooMDBQ+/bt0+bNm/XAAw9Ikn766Sdt3rxZd999t6677jrl5eXps88+0+TJk3X8+HG9/PLL9ue0Wq3q37+/jh49qt69e6tZs2bau3evFi1apM8//1zLli1TcHBwsXF9++23euSRRxQUFKTHH39cISEh+vDDDzVq1CiX2//1r3/V+vXrFRcXp169eik3N1dr167Vo48+qqlTp+quu+4qVX/8+uuvDick0m+jQi6NNzk5Wfn5+erbt6+CgoLUpEkTt2MYMWKEPv74Y8XExOj222/XsWPH9PTTT6tBgwalirMoeXl5Gjx4sP73v/8pMTFRAwcOVHZ2tpYuXar+/ftr/vz5atmypcM+ixcv1pkzZ9SnTx/VrFlTa9as0aRJk1SvXj0lJCTYt9u2bZuefvpp1ahRQ3369FGjRo10+vRp7dixQ/v27Sv2cuFVq1bp3Llz6tmzp+rVq6dTp05p2bJlGjRokN57771i/w5tXn/9db333ntq3769Bg0apPT0dL388stq2LCh07a7d+/WV199pTvvvFMNGjTQr7/+qo0bN2rMmDHKyMjQkCFDSt2n586dc7k8ODjYfmy88cYb6t+/v0aNGqXZs2fLZDJp165dmj17trp3764+ffo47PvLL79o0KBBuueeexQXF6eUlBStWLFCe/bs0fLly51GyFzpMffBBx9o1KhRateunf7yl7+oWrVqOnnypD755BOlp6crLCxMZ8+e1cMPPyzpt5EMf/jDH3T27Fnt2bNH3377re68805JvyXjy5cv1z333KP4+Hj5+flp9+7dmjNnjvbu3at33nnHHrftePzvf/+ruLg4PfLIIzp69KgWLVqk//znP1qxYoXq1atXbP+npqZq4MCBys3N1cCBA1W/fn1t27ZNjz32mMvtR44cqQ0bNqhz587q37+/zpw5owULFqhfv35asGCBmjVrVmx7mzZtkiSn31lJrFar+vXrp59//lm9e/fWjTfeqNOnT2vhwoW6//77tWLFCl177bUO+0yZMkUXL15UUlKSAgICtGjRIo0ePVrXXXed2rZta99uyZIlGjt2rFq3bq2hQ4eqevXq2rlzp8aNG6djx44V+b7ojg8//FAjRozQddddp6eeekoWi0UffPCBW3Ne/vTTT8rNzXU5969t2ffff6+bb775iuMFAG8gh/gdOYQjcghyiMuRQ5BDlAY5hPuKuqLEtuy7776TYRhc/VtRDOAKfP7550ZkZKQxZ86cIrfZs2ePERkZaTz11FP2ZStWrDAiIyONzz//3L6sffv2xmOPPVZim5GRkcaoUaOKXBcZGWn85z//cVrnqk3bsjvvvNPIysqyL8/KyjLuvPNOo3379savv/5aYtvFPfely2bNmmVERkYakydPdnqOgoIC++Nff/3VKCwsdNpm5MiRxk033WScOnXKvuyNN94wIiMjjfnz5ztsO3/+fCMyMtKYMmWK0/NcLikpyWjevLlx6NAh+7KcnByjd+/eRmRkpPH222/bl2/evNmIjIw0Fi9e7PAceXl5xn333WfExMS4jP1StuPG1c/w4cMNw/i9/+655x7jwoULDvu7E8Nnn33m8vf20Ucf2du8VExMjPHAAw8UGfOKFSvsy+bNm2dERkYan376qcO2VqvVuOOOOxyex7Z/586dHY61CxcuGB07djT69u3rtOzWW281fvnlF6dYLj1WXMV7/vx5p31Onz5tdOjQoVR/YwcPHjSioqKMhx56yMjPz7cv37NnjxEVFWVERkYaqampxbZXUFBgPPDAA8Ytt9xi5ObmltjmqFGjijwmIiMjjQ0bNjhsP3fuXPt7z5kzZ4zOnTsbsbGxhtVqddguJibGiIyMNObNm+ew3Pa7mzlzpn2Zp465J5980mjTpo2Rl5dX5Ov9+OOPjcjISGP9+vXF9ktOTo7L/psyZYoRGRlpfPvtt/ZlS5YsMSIjI43k5GSHbbdt22ZERkYaI0eOLLYtwzCMESNGGJGRkcauXbvsywoLC40nnnjC6e9ox44dRmRkpDFs2DCHv/m9e/ca0dHRRv/+/Utsr0OHDsYtt9zitDw/P99IT093+Ln0vfiVV14xWrZsaezdu9dhv+PHjxtt2rRxiNP2e01MTDRycnLsy3/55RejefPmxjPPPGNfdurUKaNFixbGiBEjnGJ65ZVXjJtuusk4duxYia+rOHl5eUaXLl2M2267zcjMzLQvz87ONmJjY53eZ4qyceNGIzIy0liwYIHTuv379xf5WQMAvoAcouTnJodwRg5BDnE5cgjXyCHIIUprw4YNxe573333GS1btjTS0tIcll/6Xnj27Fm320XZMJ0Oyp1tRER2dnaJ2x04cED79u27ovZuuukmt2/m179/f4e7tIeEhKhfv346d+6cy0tny2rt2rW65ppr9OSTTzqtM5t//3OsVq2a/ZvM3NxcZWZmKiMjQ126dFFhYaH27Nlj3/ajjz5SWFiYkpKSHJ4vKSlJYWFh+vjjj4uNKT09Xf/73/8UGxtrHy0g/TaaxdW8jGvWrFFQUJC6du2qjIwM+09WVpZiY2N14sQJHTlypDTdoaSkJM2bN8/hx3bpsk3//v2dvvl1Jwbb6790zklJ6tq1q8PrLYs1a9bo+uuvV/PmzR3iyM3NVadOnfT111/r4sWLDvv07t3b4VirXr26Wrdu7dBnO3bs0NmzZ/XII4+4vAnPpceKK5deGnf+/HmdPXtWZrNZrVq10nfffVfi69qyZYsMw9AjjzziMCdr8+bN1blz52Lby8nJ0dmzZ5WZmanOnTsrOztbhw4dKrFNm6lTpzodE/PmzVP79u0dths0aJDuuOMOTZkyRUOGDFFmZqamTJnicsRYcHCwBgwY4LBswIABCg4O1kcffeS0/ZUecyEhIbp48aK2b98uwzBcvk7bMfDZZ58V+94YEBBgv7Fdfn6+zp07p4yMDPt73Lfffmvf9qOPPpLZbHYatXTnnXcqOjpaW7ZsUWFhYZFtFRYWauvWrfbLSm1MJpPLUTS2vhs6dKjDyIubbrpJMTEx+vrrr51GyV3ONt/w5Q4ePKjbbrvN4WfBggWSfrskee3atWrfvr0iIiIcfh+2v6cdO3Y4PeeAAQMc5n+tW7eumjRp4vC3t2nTJuXm5qpPnz4Oz5uRkaHY2FgVFhZq586dxb6mkvzwww9KS0vTfffdp2uuuca+PCgoSP369Sv189guhXY1p21gYKDDNgBQGZFD/I4cwhE5BDnE5cghHJFDkEN4yiOPPKKcnBw98cQT2r17t06cOKEPP/xQ48aNsx9jl79fofwwnQ7Kne3DpaTLMf/2t7/pueeeU0JCgho2bKiOHTsqJiZGsbGxJZ5wXKpx48Zux3j99dc7LWvatKmk3+bR9JSjR48qOjraXmApim2OuNWrV+vo0aNOH+JZWVn2x8ePH1eLFi3k5+f45+zn56fGjRs7zat4Odvcb6764IYbbnBadvDgQZ0/f77YJCc9Pb1UJ7eNGjUqMVly9TzuxJCamiqz2ezyuGjatKkOHz5cYpxFOXjwoC5evKjbbrutyG3Onj2r+vXr2//v6vLb0NBQZWZm2v9vOyEo6TLCohw7dkxTpkzRjh07HI4VSaW6zK24Y6Jp06ZOJzfnz5/XtGnTtGHDBp08edJpn8tjKE67du1KdVMqk8mk8ePHKy4uTt9//72eeeaZIqcNadiwoVOhMyAgQA0bNnSa+1C68mNuyJAh+vLLL/Xkk08qNDRUHTp00B//+Ed169bN/j7YoUMH9ezZUytXrtTatWvVokULderUSffee6/T392CBQu0ePFiHThwwOkE+tJLh48fP66IiAiHkzqbG264QXv37tXZs2cdbnJ1efwXLlwo9XvB8ePHZTab7e+Vl2//8ccf6/jx48X+PoODg10mIA0aNNC8efMkST/++KN9XmPpt/l7MzMztWPHjiL/9lx9Zri6jDs0NNRhrs+DBw9KUrE3ljtz5kyR60rD9pni6ji7fFlBQYFTElOtWjWFhITYk8Tc3Fyn58nJyZEkn7qBHwC4ixzid+QQjsghfkMO8TtyCHIIiRzCprgcwl0JCQnKzMzUW2+9Zb+Phr+/v4YOHart27fr+++/L/FzGp5DER/lznZzkpJOyLp27aqtW7fqk08+0ZdffqmdO3dq+fLlateunebNm+dytKEr3ihauLpR1JUYP3683n//fd17770aOnSowsLC5O/vrx9++EGTJk0q9pvw8mYYhsLCwjR58uQit7nxxhs91l61atW8HoPk+ndsGIYiIyP1/PPPF7nf5Scfl45KKQ/nz5/XwIED9euvv+rhhx9WZGSkgoKCZDabNXPmTI/eOMzm2Wef1fbt29W3b1+1b99eoaGhslgs+uSTT/Tuu++W2/H61Vdf2U/u9+7d67HnvdJjrnHjxvrwww+1a9cu7dq1S7t379aYMWP09ttva8GCBfa5SJOTkzV48GB9+umn+uqrrzRv3jzNmDFDf/vb3+xz286bN0/jx49Xly5d9NBDDykiIkL+/v46deqURo8eXeQoncrixhtv1JdffqnU1FSHE+QaNWrYk53L/2Zsr7lTp056/PHHS91WaQo5tudOTk5WRESEy21cnciXl5MnTzrND3zfffdp/Pjx9vhOnTrltJ9tmatReABQWZBDuI8c4nfkEO4hh7hy5BAVhxyieMXlEGXx4IMPKikpyX5PrhtvvFE1a9bUggULFB4eThG/AlHER7mz3eX9jjvuKHHb0NBQJSYmKjExUYZhaNKkSZozZ462bNmibt26lVuMri7Vs32beumoh8tHO9i4+ibelcaNG+vQoUPKzc0tNqFYvXq12rdvrylTpjgsP3r0qNO2DRs21OHDh5Wfn+8wkiY/P19Hjhwp8cPC9vpc9cGBAwecljVq1EhHjhxRq1atFBQUVOxzlxd3YmjYsKEKCwt15MgRp5Ny2+/4Uu78jhs1aqSzZ8/q1ltvdWukV0lsyerevXvVpUsXt/bdtWuX0tLS9Nprr6l3794O6958881SPYftmDl06JDTza8u77OsrCxt375diYmJDjdLk3TFlwwW5+eff9aYMWMUGRmpzp07a968eVq6dKnLm9WlpqY6/c3l5uYqNTXV5YgRV9w97gMCAnTHHXfY3/c++eQT/fnPf9a8efM0duxY+3aRkZGKjIzUY489pqysLN1///2aPHmyBg4cKJPJpNWrV+vaa6/V7NmzHY6xTz/91KnNhg0b6rPPPlNWVpZq1qzpsO7gwYMKDg5WrVq1iow5LCxMNWrUKPV7ge1v6+DBg7rpppuc2pNcjxq7VFxcnL788kstX75czzzzTLHbXhpnzZo1lZ2d7fa0ByWxjbarVauWx5/bxnazLFcj+C5fFh4ebh9NZGNLDCIjIxUQEKBvvvnG6Xlsy1q0aOGRmAHAG8ghfkcO4RnkEEUjhyCHIIcou8qUQ5RVQECAww23v//+e2VkZLh9c2FcGebER7kpKChQcnKyvv76a91xxx0Od+52ta2rS/ZslwJeerlXjRo1XJ4gXYlFixbJarXa/2+1WrV48WLVrFlTHTp0sC9v3LixvvnmG4d5hs+dO6eVK1eWqp2EhASdO3dO06dPd1p36bfhZrPZ6dvxCxcu6N1333Xazza/3rJlyxyWL126VBkZGeratWuxMdWpU0etW7fW1q1bHd78c3NzXbbXs2dPFRYW6o033nD5fFd6mVhpuBOD7Rvod955x2Gbjz/+2OUHYOPGjXX48GGH0a25ubn2ufQuj+P06dNOH5Cu4nBH586dVatWLc2bN09paWlO64sbOWEbcXD5Njt27HCY+7A4sbGxMplMmjdvnsPooR9++MHppNp2Unh5e2lpaU7HpKcUFBTo2WefVU5OjqZMmaKRI0eqTZs2eu2111wmVdnZ2Vq4cKHDsoULFyo7O7vEvw8bd445V3M4Xv5elpmZ6TS6qGbNmmrQoIF+/fVX+3QoZrNZJpPJoX/z8/M1e/Zspza6du2qwsJCzZo1y2H5J598opSUlBKnFbBYLIqJidGePXscRlsZhqE5c+a4bE+SZs2a5RDfvn37tHXrVrVt27bEy5rvv/9+XX/99XrnnXdczi1qa/9SZrNZCQkJ+u6777Rx40aX+6SnpxfbblG6deumgIAATZ061eXcjlar1eX0Ne5o0aKFwsPDtWrVKofPtvPnz2vx4sUO2wYGBqpTp04OP7bLkoOCghQTE6Pdu3frxx9/dHie5cuXq3HjxkVeHg4Avowcwhk5hGeQQ5BDkEOQQ1ztOYQn5OTk6LXXXlNAQIAeffRRjz0vSsZIfHhESkqKVq9eLem3N5HDhw9ry5YtOnHihLp06VLs5WO2fbp06aLY2Fg1a9ZMYWFhOn78uBYtWqRrrrlGMTEx9m1bt26tXbt2adasWfrDH/4gk8mk7t27X1H8tWrV0v33369evXpJklauXKmff/5Z//jHPxwurR04cKD++te/6uGHH1ZiYqKysrK0bNky/eEPf9Dp06dLbOehhx7Stm3b9K9//Uvff/+9unTpooCAAB04cECHDx+2n/DGxcVpyZIlGj58uDp16qQzZ85oxYoVCg0NdXrOxx57TBs3btTLL7+slJQURUdHa+/evVq+fLmaNGni8mYylxs9erQefPBB9e/fXwMHDlRISIg+/PBDl5d//ulPf1KvXr00f/58/fDDD4qJiVGtWrX0yy+/6JtvvtHRo0e1ZcuWEtu8Eu7EcPvttysmJkarVq1SZmambr/9dqWmpmrJkiWKjIx0ugnawIEDtX79eg0aNEj9+vVTXl6eVq9e7fIS64ceekg7d+7UhAkT9Pnnn+vWW29VcHCwfv75Z33++ecKCAjQ+++/7/brq169ul599VUNGzZMCQkJ6tOnjxo1aqSMjAzt2LFDgwYNKvLEsW3btgoPD1dycrJOnDihevXqae/evVq9erXL1+tK06ZNNXDgQM2fP18PP/yw7rnnHqWnp2vBggW66aabHOZIDQ4OVufOnbVmzRpVq1ZNLVu21IkTJ7RkyRI1aNDA7WR506ZNDje5sqldu7Z9RNHUqVP13//+V6+88or9ZGTSpEnq2bOnnnnmGS1fvtxhxMx1112nf/7zn9q/f7+aN2+uH374QStWrND1119vn9evJO4cc4MHD1ZISIjatWun+vXrKysrS6tWrZLJZFJiYqIk6YMPPtC///1vde3aVY0aNZKfn5++/PJL7dixQ926dbNfjvunP/1JkydP1uOPP667775b2dnZWrdundP8tdJvl0iuWrVKs2fP1okTJ9SuXTsdO3ZMCxcuVJ06dTRixIgSX+fw4cP16aefaujQoXrggQdUr149bdu2zWVS0blzZ3Xr1k3r16/XuXPnFBMTo9OnT2vhwoUKDAzUmDFjSmyvWrVqmjVrloYMGaKnnnpKHTp0UJcuXVSnTh37Dc02bNggi8XiMC/sM888o//+978aPny4unXrplatWsnf318///yzPv30UzVv3rxMl4vWq1dP48aN05gxY3TvvfeqR48euvbaa5WRkaF9+/bp448/1vr160scHVQcPz8/jRo1SiNHjtT999+vPn36yGKxaNWqVQoNDdXx48dLNe+s9Ntl6J9//rkeffRRDRo0SB1xnBQAACAASURBVEFBQVq2bJlOnTqlmTNnlvp5AMBbyCHIIcghyCHIIcghyCFK5skc4sSJE/bPXtvVEtu2bdMvv/wiSUpMTLSP/N+/f79Gjx6tmJgY1a1bV+np6Vq1apVSU1P12muvuby3AcoPRXx4xLp167Ru3TqZzWbVqFFD9erVU/v27TVu3Dj98Y9/LHH/atWq6eGHH7bP/3b+/HlFREQoNjZWQ4YMcZjXd+zYsXr55Zc1Y8YMnT9/XpKu+AR85MiR+uqrr7Rw4UKdOXNGTZo00aRJk5SQkOCwXY8ePZSWlqYFCxbo9ddfV8OGDfXEE0/IbDaXaoRCQECA5s6dq7lz52rdunX2D4gWLVrYT/4l6fnnn1dQUJA2btyoLVu2qH79+kpKSlLLli2dbpYSEhKiRYsW6e2339bWrVu1cuVK1a5dW/369dPTTz9dqvnJ2rRpo3nz5mny5MmaNWuWQkJCFBcXp/79+zv1gSS9/vrr6tixo5YuXaqZM2cqLy9P4eHhatasmZ599tkS2/MEd2J488039eabb2rt2rXauXOnIiMjNXXqVK1bt87phLRt27YaP368ZsyYoYkTJyoiIkL9+/dXixYtnPre399fM2fO1MKFC7V69WpNnTpV0m+XqrVs2VL33XdfmV/fXXfdpYULF2rGjBlavny5zp8/rzp16qht27aKiooqcr+aNWtqzpw5mjhxoubPn6/8/Hy1aNFCs2fP1vLly0t1Ai5Jf//731WnTh0tXbpUEyZMUOPGjfXiiy/q6NGjTjc6mzhxoiZPnqytW7dq1apVaty4sZ555hn5+fkVO9enK+PGjXO5/JZbblGXLl30xRdfaObMmerWrZvDZa8NGjTQyy+/rGeeeUbJycl64YUX7Ovq1aunN998U8nJyVq/fr38/f2VkJCgUaNGuTzZL0ppj7n+/ftrw4YNWrJkic6dO6fQ0FBFR0drzJgxuvXWWyVJHTt21N69e7V9+3adPn1aZrNZDRo00KhRo+xzWUq/ncwbhqHly5fr1VdfVXh4uLp166bevXvr3nvvdYjP399f77zzjv71r3/pww8/1EcffaSQkBD96U9/0vDhwx1OYIty3XXXacGCBUpOTtb8+fMVEBCg22+/XRMmTHB5aeikSZPUrFkzrVq1SuPHj1eNGjXUvn17DRs2rNjj9FINGzbUypUrtWLFCm3cuFFz585Vdna2qlevruuuu059+vRRnz59HC5btr3vzZ071/4+abFYVK9ePbVt21b3339/qdp2pXfv3mrcuLHmzp2rJUuWyGq1KjQ0VE2aNNGwYcMUHh5e5ue2SUhIkJ+fn6ZPn663335bderUUZ8+fRQVFaWnnnqqxBsX2jRq1EiLFi3SpEmTNGvWLOXl5alZs2aaM2dOuV3KCwCeRA5BDkEOQQ5BDvEbcghyiJJ4Koc4fvy43nrrLYdlmzdv1ubNmyX99n5mK+LXqlVL9erVs1+lFRwcrHbt2mnixIlc9esFJqOy39ECqMQOHz6sgQMHauPGjU7zz6H8jR49WqtWrbLfOA1VT2xsrK699toyjWYCKtrcuXOVnJysJUuWqHXr1t4OBwDgo8ghvIscouojh0BlQg5x9WBOfMCLmjRpooiICG3YsMHboQAAKkhubq7TVAPnz5/XggULFBoaap//FAAAV8ghAODqQw4BptMBvODkyZNau3atqlWrpiNHjlzxTU4AAJVHamqqHn/8cXXv3l0NGjTQ6dOntWrVKh0/flzjxo1zmI8VAAAbcggAuHqRQ4AiPuAF+fn5ev/995WZmanWrVu7nDMSAFA1hYWFqXXr1lq7dq3S09Pl5+enyMhIPfvss07zlAIAYEMOAQBXL3IIMCc+AAAAAAAAAAA+qkLnxE9OTlZsbKyioqIc7m5++PBhJSUlKS4uTklJSTpy5MgVrwMAAAAAAAAAoLKr0JH4X331la699loNHDhQM2bMUGRkpCTpoYceUu/evZWYmKjVq1drxYoVeu+9965oXWmdPXtehYUld0Ht2sFKT8928xWDfnMffeY++qxs6Df30Wfuo8/cR5+VjTf6zWw2qVatoAptE76vtPmFJ/G+4Xn0qefRp55Hn3oefep59Knn0aflw9v9WlJuUaFz4rdr185pWXp6ulJSUjRv3jxJUnx8vF555RVlZGTIMIwyrQsLCyt1TIWFRqlPsiv6ZLyqoN/cR5+5jz4rG/rNffSZ++gz99FnZUO/wRe4k194ul14Fn3qefSp59Gnnkefeh596nn0afnw5X71+o1tT548qbp168pisUiSLBaLIiIidPLkSRmGUaZ17hTxa9cOLvW24eEhbrwy2NBv7qPP3EeflQ395j76zH30mfvos7Kh3wAAAABURV4v4ntbenp2qb5lCQ8P0enT1gqIqGqh39xHn7mPPisb+s199Jn76DP30Wdl441+M5tNbg0IAQAAAICy8HoRv379+jp16pQKCgpksVhUUFCgtLQ01a9fX4ZhlGkdAAAAAAAAAABVgdnbAdSuXVvR0dFat26dJGndunWKjo5WWFhYmdcBAAAAAAAAAFAVVOhI/H/84x/avHmzzpw5o0ceeUShoaFav369xo0bp9GjR2v69OmqWbOmkpOT7fuUdR0AAAAAAAAAAJVdhRbxx4wZozFjxjgtb9q0qZYtW+Zyn7KuAwAAAAAAAACgsvP6dDoAAAAAAAAAAMA1ivgAAAAAAAAAAPgoivgAAAAAAAAAAPgoivgAAAAAAAAAAPgoivgAAAAAAAAAAPgoivgAAAAAAAAAAPgoivgAAAAAAAAAAPgoivgAAAAAAAAAAPgoP28HAACeYDab7I8LCw0vRgIAAAAAwNXt0hwdwJWjiA+gSli67YAyrTkKDQlU35gbKOQDAAAAAOAFZrNJS7cdkCT9X5/WXo4GqBoo4gOoEjKtOcrIuujtMAAAAAAAuOplWnO8HQJQpTAnPgAAAAAAAAAAPooiPgAAAAAAAAAAPooiPgAAAAAAAAAAPooiPgAAAAAAAAAAPooiPgAAAAAAAAAAPooiPgAAAAAAAAAAPooiPgAAAAAAAAAAPooiPgAAAAAAAAAAPooiPgAAAAAAAAAAPsrP2wEAQGmYzSb748JCw+VyAAAAAAAAoKphJD4An2c2m7R02wHNWvODlm47YC/c25Yv3vyjlyMEAAAVLTk5WbGxsYqKitK+ffvsyw8fPqykpCTFxcUpKSlJR44cueJ1AAAAgDdRxAdQKWRac5SRdVGZ1hyn5VkXcr0UFQAA8Ja77rpLCxYs0LXXXuuwfOzYsRowYIA2bdqkAQMG6MUXX7zidQAAAIA3UcQHAAAAUOm0a9dO9evXd1iWnp6ulJQUxcfHS5Li4+OVkpKijIyMMq8DAAAAvI058QEAAABUCSdPnlTdunVlsVgkSRaLRRERETp58qQMwyjTurCwMLdiqF072LMvqpTCw0O80m5VRp96Hn3qefSp59GnnuHnb7E/pk89jz4tH77crxTxAQAAAMBD0tOzVVhoVGib4eEhOn3aWqFtVnX0qefRp55Hn3oefeoZZrNJ+XkF9v/Tp57FcVo+vN2vZrOp2MEgFPEB+DSz2WS/kS0AAEBx6tevr1OnTqmgoEAWi0UFBQVKS0tT/fr1ZRhGmdYBAAAA3sac+AB8ltls0tJtB7T+86PeDgUAAFQCtWvXVnR0tNatWydJWrdunaKjoxUWFlbmdQAAAIC3MRIfgE/LtOZIFXtFOgAAqAT+8Y9/aPPmzTpz5oweeeQRhYaGav369Ro3bpxGjx6t6dOnq2bNmkpOTrbvU9Z1AAAAgDdRxAdQqZhMsk+vwzQ7AABcvcaMGaMxY8Y4LW/atKmWLVvmcp+yrgMAAAC8iSI+gErlmqBALd6yX5nWHDWs57t3DQcAAAAAAAA8gTnxAVQ6mdYcZWRdlDU719uhAAAAAAAAAOWKIj4AAAAAAAAAAD6K6XQA+IRL57cvLOROtgAAAAAAAIBEER+ADzCbTVq67YAyrTkKDQlU35gbKOQDAAAAAAAAoogPwEfY5rkHAAAAAAAA8DvmxAcAAAAAAAAAwEdRxAcAAAAAAAAAwEdRxAcAAAAAAAAAwEdRxAcAAAAAAAAAwEdxY1sAPsVkksxmk6Tf/wUAAAAAAACuVhTxAfiUa4ICtXjLfmVac9SwXoi3wwEAAAAAAAC8iul0APicTGuOMrIuypqd6+1QAAAAAAAAAK+iiA8AAAAAAAAAgI+iiA8AAAAAAAAAgI+iiA8AAAAAAAAAgI/ixrYAqhSTSTKbTfb/FxYaXowGAAAAAAAAuDIU8QFUKdcEBWrxlv3KtOYoNCRQfWNuoJAPAAAAAACASosiPoAqJ9Oao4ysi94OAwAAAAAAALhizIkPAAAAAAAAAICPoogPAAAAAAAAoMKYzSaH+9kBKB5FfAAAAAAAAAAVwmw2aem2A1q67QCFfKCUmBMfAAAAAAAAQIXJtOZ4OwSgUqGIDwAAAAAAAKDULh1BX1hoeDES4OpAER8AAAAAAABAqdimw8m05ig0JFB9Y26gkA+UM4r4AAAAAAAAAEot05qjjKyL3g4DuGpwY1sAAAAAAAAAAHwURXwAAAAAAAAAAHwURXwAAAAAAAAAAHwUc+IDAAAAAAAAuCJms8nhXwCeQxEfAAAAAAAAQJmZzSYt3XZAmdYcNawX4u1wgCqH6XQAAAAAAAAAXJFMa44ysi7Kmp3r7VCAKociPgAAAAAAAAAAPorpdAAAAAAAAACUK+bMB8qOIj4AAAAAAACAcsOc+cCVYTodAAAAAAAAAOWKOfOBsvOZIv62bdvUs2dPJSYmqkePHtq8ebMk6fDhw0pKSlJcXJySkpJ05MgR+z7FrQMAAAAAAAAAoLLziSK+YRh67rnnNGHCBK1evVoTJkzQqFGjVFhYqLFjx2rAgAHatGmTBgwYoBdffNG+X3HrAAAAAAAAAACo7HyiiC9JZrNZVqtVkmS1WhUREaGzZ88qJSVF8fHxkqT4+HilpKQoIyND6enpRa4DAAAAAAAAAKAq8Ikb25pMJr355pt64oknVKNGDZ0/f16zZs3SyZMnVbduXVksFkmSxWJRRESETp48KcMwilwXFhZW6rZr1w4u9bbh4dx4oyzoN/ddjX3m52+Rv7+fLP5mp8eull36uKj9/fwtbv2NX42uxmPtStFn7qPP3EeflQ39BgAAAKAq8okifn5+vmbOnKnp06erbdu2+vrrrzV8+HBNmDCh3NtOT89WYaFR4nbh4SE6fdpa7vFUNfSb+66mPrPdnT4kKED5eQXKy8tXQV6h02NXyy59LMnl+vw8v1L/jV+NrqZjzVPoM/fRZ+6jz8rGG/1mNpv4shgAAABAufOJIv7evXuVlpamtm3bSpLatm2r6tWrKzAwUKdOnVJBQYEsFosKCgqUlpam+vXryzCMItcBqDwyrTkSNXYAAAAAAADAJZ+YE79evXr65ZdfdOjQIUnSwYMHlZ6erkaNGik6Olrr1q2TJK1bt07R0dEKCwtT7dq1i1wHAAAAAAAAAEBV4BMj8cPDwzVu3DgNGzZMJpNJkvTaa68pNDRU48aN0+jRozV9+nTVrFlTycnJ9v2KWwcAAAAAAAAAQGXnE0V8SerRo4d69OjhtLxp06ZatmyZy32KWwcAAAAAAAAAQGXnE9PpAAAAAAAAAAAAZxTxAQAAAAAAAADwURTxAQAAAAAAAADwUT4zJz6Aq4fZbHL411vtS1JhoeGVGAAAAAAAAIDSoIgPoEKZzSYt3XZAmdYcNawX4tX2Q0MC1TfmBgr5AAAAAABUMJOJQXZAaVHEB1DhMq05ysi6qNDgwHJt59ITgktPBmztAwAAAAAA77gmKFCLt+xnkB1QChTxAVRZthMCSZwMAAAAAADgYxhkB5QORXwAVVqmNcfbIQAAAAAAAABlZvZ2AAAAAAAAAAAAwDWK+AAAAAAAAAAA+CiK+AAAAAAAAAAA+CiK+AAAAAAAAAAA+ChubAsAAAAAAACgWGazyeFfABWHIj4AAAAAAACAIpnNJi3ddkCZ1hw1rBfi7XCAqw5FfABVnsnEiAEAAAAAAK5EpjVHGVkXFRoc6O1QgKsORXwAVd41QYFavGU/IwYAAAAAAKgEbAPwCgsNL0cC+AZubAvgqmAbMWDNzvV2KAAAoAJs27ZNPXv2VGJionr06KHNmzdLkg4fPqykpCTFxcUpKSlJR44cse9T3DoAAODMduW7J696t03ds3TbAa6mB/4/ivgAAAAAqhTDMPTcc89pwoQJWr16tSZMmKBRo0apsLBQY8eO1YABA7Rp0yYNGDBAL774on2/4tYBAABntivf139+1KPPm2nNUaY1x6PPCVRmFPEBAAAAVDlms1lWq1WSZLVaFRERobNnzyolJUXx8fGSpPj4eKWkpCgjI0Pp6elFrgMAAEXLtOZw1TtQzpgTHwAAAECVYjKZ9Oabb+qJJ55QjRo1dP78ec2aNUsnT55U3bp1ZbFYJEkWi0URERE6efKkDMMocl1YWFip265dO7hcXlNJwsO574+n0aeeR596Hn3qefRp0fz8LfL395PF3+z02NUyG1ufFrePn7/F4TPUtr+3Pld9Hcdp+fDlfqWIDwAAAKBKyc/P18yZMzV9+nS1bdtWX3/9tYYPH64JEyaUe9vp6dkVfhO+8PAQnT5trdA2qzr61PPoU8+jTz2PPi2a2WxSfl6B8vLyVZBX6PTY1TKb06etLve/dJ/8PD/7Z6htW8k7n6u+juO0fHi7X81mU7FfWlHEBwAAAFCl7N27V2lpaWrbtq0kqW3btqpevboCAwN16tQpFRQUyGKxqKCgQGlpaapfv74MwyhyHQAAKF+2G+RK4ma2gAvMiQ8AAACgSqlXr55++eUXHTp0SJJ08OBBpaenq1GjRoqOjta6deskSevWrVN0dLTCwsJUu3btItcBAIDyZbtB7qw1P3j8JrlAVcBIfAAAAABVSnh4uMaNG6dhw4bJZPptNN9rr72m0NBQjRs3TqNHj9b06dNVs2ZNJScn2/crbh0AAHDP//8IltlsKtXo+kxrjjKyLio0OLCcIwMqH4r4AAAAAKqcHj16qEePHk7LmzZtqmXLlrncp7h1AADAPdcEBWr2B9/rzNkLaljPd28YClQGTKcDAAAAAAAAwOMys38bXW/NzvV2KEClxkh8ABWCG9QAAAAAAAAA7qOID6Dcmc0mLd12QJnWHC6hAwAAAAAAANzAdDoAKoTtBjVcQgcAAAAAAACUHkV8AAAAAAAAAC6ZzSamxgW8jOl0AAAAAAAAADixTY8bEhTg7VCAqxpFfAAAAAAAAAAuZVpzJMPbUQBXN6bTAQAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEBwAAAAAAAADAR1HEB1CuzGaTzGaTt8MAAAAAAAAAKiU/bwcAoOoym01auu2AQoICvB2KSyaT7F8wFBYaXo4GAAAAAAAAcEYRH0C5yrTmSD5aH78mKFCLt+yXJPWNuYFCPgAAAAAAAHwORXwAV7VMa463QwAAAAAAAACKxJz4AAAAAAAAAAD4KIr4AAAAAAAAAAD4KKbTAQAAAAAAAK5yZrPJ/ph7xgG+hSI+AAAAAAAAcBUzm01auu2AMq05Cg0JVN+YGyjkAz6EIj4AAAAAAABwlcu05igj66K3wwDgAnPiAwAAAAAAAADgoyjiAwAAAAAAAADgoyjiAwAAAAAAAADgoyjiAwAAAAAAAADgoyjiAwAAAAAAAADgo/y8HQAAAAAAAAAAFMdsNtkfFxYaXowEqHgU8QEAAAAAAAD4LLPZpKXbDijTmqPQkED1jbmBQj6uKhTxAQAAAAAAAPgUk+n30fdms0mZ1hxlZF30clSAd1DEBwAAAAAAAOBTrgkK1OIt+5VpzVHDeiHeDgfwKor4ADzu0m/KK4NLv92XmFsPAAAAAHD1unwEvDfZRt+HBgd6NQ7A23ymiJ+Tk6PXXntNu3btUmBgoFq3bq1XXnlFhw8f1ujRo5WZmanQ0FAlJyercePGklTsOgDecek8dZXlm/JLv91nbj0AAAAAwNWMEfCA7zF7OwCbiRMnKjAwUJs2bdLatWs1bNgwSdLYsWM1YMAAbdq0SQMGDNCLL75o36e4dQC8x/ZNuTU719uhlJot5kxrjrdDAQAAAADAqypjXg9UZT5RxD9//rw++OADDRs2TCbTb5fp1KlTR+np6UpJSVF8fLwkKT4+XikpKcrIyCh2HQAAAAAAAAAAVYFPTKeTmpqq0NBQTZs2TV988YWCgoI0bNgwVatWTXXr1pXFYpEkWSwWRURE6OTJkzIMo8h1YWFhpW67du3gUm8bHs4lRGVBv7mvsveZn79F/v5+svib5edvsf976TJPrnfVZlmf38/f4tb7QmVX2Y81b6DP3EefuY8+Kxv6DQAAAEBV5BNF/IKCAqWmpqpZs2YaNWqUvv32Ww0dOlRvvfVWubednp5dqrmvw8NDdPq0tdzjqWroN/dV9j4zm03KzytQXl6+CvIKlZ9XYP/30mWeXC/JY8+fn+dX6veFyq6yH2veQJ+5jz5zH31WNt7oN7PZdFV98QsAAADAO9wu4p87d06ffvqpTp48qdxcx3mxnnrqqTIFUb9+ffn5+dmnxmnVqpVq1aqlatWq6dSpUyooKJDFYlFBQYHS0tJUv359GYZR5DoAAAAAvq88cgsAAACgqnGriP/NN99oyJAh8vf319mzZ1W3bl2lpaUpICBA1157bZlPtMPCwtSxY0f95z//UZcuXXT48GGlp6ercePGio6O1rp165SYmKh169YpOjraPl1OcesAAAAA+K7yyi0AAACAqsatG9tOmDBBCQkJ+uyzzxQQEKB///vf2r59u1q0aKHHH3/8igJ56aWXNHPmTCUkJGjEiBGaMGGCatasqXHjxmn+/PmKi4vT/Pnz9dJLL9n3KW4dAAAAAN9VnrkFAAAAUJW4NRL/p59+0quvviqTySSLxaLc3Fw1bNhQI0eO1MiRI9WjR48yB9KwYUO9//77TsubNm2qZcuWudynuHUAAAAAfFd55hYAAABAVeLWSHx/f3/749q1a+vEiROSpKCgIKWlpXk2MgAAAABVFrkFAAAAUDpujcRv3ry5vv/+ezVp0kQdO3bUm2++qfT0dK1Zs0ZRUVHlFSMAAACAKobcAgAAACgdt0biDx8+XBEREfbHYWFheuWVV3Tu3Dm9/PLL5RIgAAAAgKqH3AIAAAAoHbdG4rds2dL+OCwsTHPmzPF4QAAAAACqPnILAAAAoHTcGokPAAAAAAAAAAAqTokj8RMSEjR//nxdc801SkhIKHbbtWvXeiwwAAAAAFULuQUAAADgvhKL+HFxcQoICLA/BgAAAICyILcAAAAA3FdiEf+pp55y+RgAAAAA3EFuAQAAALjPrTnx9+/frx9//NFp+Y8//qgDBw54LCgAAAAAVRu5BQAAAFA6bhXxX3jhBe3fv99p+cGDB/XCCy94LCgA8BaTSTKbTfYfAABQPso7t8jJydHYsWN1zz33KCEhwf6chw8fVlJSkuLi4pSUlKQjR47Y9yluHQAAAOAtJU6nc6mffvpJN998s9Pyli1bat++fR4LCgC85ZqgQC3esl+Z1hyFhgSqb8wNKiw0vB0WAABVTnnnFhMnTlRgYKA2bdokk8mkM2fOSJLGjh2rAQMGKDExUatXr9aLL76o9957r8R1AAAAgLe4NRLfYrHIarU6LT937pwMgyIXgKoh05qjjKyLyrTmeDsUAACqrPLMLc6fP68PPvhAw4YNk8n025V1derUUXp6ulJSUhQfHy9Jio+PV0pKijIyMopdBwAAAHiTWyPx27dvrxkzZuitt96SxWKRJOXn52vGjBlq3759uQQIAAAAoOopz9wiNTVVoaGhmjZtmr744gsFBQVp2LBhqlatmurWrWtvz2KxKCIiQidPnpRhGEWuCwsLK3XbtWsHX1HsZRUeHuKVdqsy+tTz6FPPo08972ruUz9/i/z9/WTxNzs9drWspPUWf7OUI48+p7+/n/z8LV77vPUVV/NxWp58uV/dKuL/9a9/1YABA3T33Xerbdu2kqSvv/5aFy5c0IIFC8olQAAAAABVT3nmFgUFBUpNTVWzZs00atQoffvttxo6dKjeeustT4RerPT07Aqfii88PESnTztf1YCyo089jz71PPrU867mPjWbTcrPK1BeXr4K8gqdHrtaVtL6grxCSfLoc+bl5Ss/z88rn7e+4mo+TsuTt/vVbDYV++WUW9PpXH/99VqzZo0SEhJ07tw5nTt3TgkJCVq9erWaNm16xcECAAD8v/buPDqqOs///6tuNiAJhCBIWBQFQQQFAY+eVlsWhagsSn9bEMEzh01/arujDCIowmAA6bEBxWbRozJEcFwIdAMKTDuo0wO0CFFaISLNEhYT6lABUlmqfn8wVV0JlVqSqtxbVc/HOR6T+6m69c4lqft5v+uzAEgM0cwtcnJylJyc7F0ap1evXmrZsqWaNGmiEydOqLq6WtKFYv/JkyeVk5OjnJycOtsAAAAAM4U1El+S2rRpo6eeeioasQAAAABIINHKLbKzs3XjjTfqyy+/1C233KKDBw+qpKREnTp1Uvfu3bV+/XqNGDFC69evV/fu3b3L5QRqAwAAAMwSdhH//Pnz2rdvn0pLS+VyuWq0DR48OGKBAQAAAIhv0cwtXn75ZU2bNk15eXlKTk7WvHnz1Lx5c7300kuaDzp9uQAAIABJREFUOnWq3njjDTVv3lx5eXne5wRqAwAA1mCzXVh6RFLCLqmDxBNWEf+rr77S008/LbvdflGbzWbTvn37IhYYAAAAgPgV7dyiY8eOeu+99y463rlzZ61du9bvcwK1AQAAa2iRnqb8LfslSfcN6EIhHwkhrCL+nDlz1L9/fz311FO69NJLoxUTAAAAgDhHbgEAAOrL7nCaHQLQqMIq4h89elRvvvkmnWwAAAAADUJuAQAAAITGCOfBffr00cGDB6MVCwAAAIAEQW4BAAAAhCaskfijR49WXl6eTp48qa5duyo5uebTe/ToEdHgAAAAAMQncgsAAAAgNGEV8R9//HFJ0osvvnhRGxvbAgAAAAgVuQUAAAAQmrCK+Fu2bIlWHAAAAAASCLkFAAAAEJqwivjt27ePVhwAAAAAEgi5BQAAABCasDa2laS//OUveuihh3TXXXepuLhYkrR27Vp9/fXXEQ8OAAAAQPwitwAAAACCC6mIv3PnTknSunXr9OSTT+ryyy/XkSNHVFVVJUmqrq7W8uXLoxclAAAAgLhAbgEAgLUYhk2GYTM7DAABBCziO51OzZ49W2+++aYkadmyZZo9e7amTZumpKQk7+N69+7NxlMAAAAA6kRuAQCA9RiGTWu2HdCG/zlkdigAAgi4Jv7y5ct15MgRrVixQpL0j3/8Q717977occ2aNVNZWVl0IgQAAAAQ88gtAACwJrvDKbnNjgJAIAFH4g8fPlxnzpzRvHnzJElt2rTRzz//fNHjduzYocsuuywqAQIAAACIfeQWAABYh2cJHZbRAWJDwCJ+x44dtWrVKrVp00aSdN9992n27NnatWuXJKm4uFgff/yx5s+fr/vvvz/60QIAAACISeQWAABYg2cJnT+u+45ldIAYEXA5HUmy2Wz6l3/5F0nSpEmTVFZWpvHjx8vpdOrBBx9Uamqqxo8frwceeCDasQIAAACIYeQWAABYg93hVOmZcmVlpJkdCoAQBC3i1/bUU0/p4Ycf1oEDB+R2u9W5c2elp6dHIzYAAAAAcYzcAgAAAAgu7CK+JDVt2lTXXnttpGMBAAAAkGDILQAAAIDAwiriP/zwwwHbly5d2qBgAAAAACQGcgsAAAAgNGEV8Vu2bFnj+8rKSv3www8qLi7WHXfcEdHAAAAAAMQvcgsAAAAgNGEV8efOnev3+KuvvqqMjIyIBAQAAAAg/pFbAAAAAKExInGSUaNGadWqVZE4FQBYhs0mGYZNhmEzOxQAABIGuQUAAABQU702tq3t4MGDkTgNgBjmKXTHU8G7RXqa8rfslyTdN6CLXC63yREBABD/yC0AAACAmsIq4s+ePbvG9263W6dOndIXX3yh3/zmNxENDEDsMAyb1mw7ILvDqY5tM80OJ6LsDqfZIQAAEJfILQAAAIDQhFXE/+GHH2p8bxiGsrOz9a//+q90tIEEZ3c4VXqmXFkZaWaHAgAAYgC5BQAAABCasIr47733XrTiAAAAAJBAyC0AAACA0ERkY1sAAAAAAAAAABB5YY3EHzdunGy20DatfPfdd+sVEAAAAID4R24BAAAAhCasIn7nzp1VUFCgSy65RL169ZIk7dmzR7/88ouGDh2qpKSkqAQJAAAAIL6QWwAAAAChCauIn5qaqnvvvVcvvPBCjVEzc+bMkdvt1vTp0yMeIAAAAID4Q24BAAAAhCasNfE//fRTPfDAAxdNex0zZozWrVsX0cAAAAAAxC9yCwAAACA0YRXx3W63fvzxx4uO+zsGAAAAAHUhtwAAoPEZhk2GEdqeNACsI6zldH7zm99o+vTpOnTokHfdym+//VbLly/XyJEjoxIgAAAAgPhDbgEAQOMyDJvWbDugzPRUs0MBEKawivhTpkxRdna23n33XS1cuFCS1Lp1a02aNEnjx4+PSoAAAAAA4g+5BQAAjc/ucEpus6OIDs8MA5crTn9AJLSwiviGYWjSpEmaNGmSysrKJEkZGRlRCQwAAABA/CK3AAAAkeKZZSBJ9w3oQiEfcSesNfE99u7dqy+++EKGceHp586dU1VVVUQDAwAAABD/yC0AAEAk2B3OCzMNgDgU1kj8X375RY888oj27Nkjm82mzZs3q1mzZnr11VeVmpqq6dOnRytOAAAAAHGE3AIAAAAITVgj8efOnatWrVrpr3/9q5o0aeI9npubqy+//DLiwQGwNs+u9uxsDwAAwkVuAQAAAIQmrJH4X3/9td555x21aNGixvGOHTuquLg4ooEBsDbPenN2h1Md22aaHQ4AAIgx5BYAAABAaMIq4peXlyslJeWi46dPn1ZaWlrEggIQG+wOp0rPlCsrI77//m021ZhtwAY5AAA0HLkFAAAAEJqwltO54YYb9PHHH9c4Vl1drWXLlummm26KaGAAYBUt0tOUv2W//rjuO63ZdoDlgwAAiAByCwAA0BCeAXcs84tEENZI/ClTpmjs2LHau3evKisrlZeXp/3796usrEyrV6+OVowAYDrPrAMAABAZ5BYAAKAhPAPuWOYXiSCsIn6XLl1UUFCg1atXKzU1VU6nU7m5uXrggQfUpk2baMUIwGL4lBsAADQUuQUAAGioRFnmFwi5iF9ZWakxY8YoLy9Pjz/+eDRjAmBhng1tM9NTzQ4FAADEKHILAAAAIHQhF/FTUlJ05MgR2WyMvgUSnd3hlNjbFQAA1BO5BQAAABC6sDa2veeee7RmzZpoxQIAAAAgQZBbAADQONj8FYh9Ya2Jf/78eRUUFOirr75Sjx491KxZsxrt06dPj2hwAAAAAOITuQUAANHnWRKXzV+B2BZSEf/vf/+7rrrqKhUVFemaa66RJB0+fLjGY5gKCwAAACAYcgsAABoXm78CsS+kIv69996r7du367333pMkTZ48WbNnz1abNm2iGhwAAACA+EJuAQAAAIQnpCK+211zB8udO3fK6XRGJSAAAAAA8YvcAgAARIvNphpr/7tc7gCPBmJHWBvbetTueEfS4sWL1a1bN/3444+SpN27d2v48OEaMmSIxo8fr5KSEu9jA7UBAAAAsL5o5hYAACCxtEhPU/6W/frjuu+0ZtsBNvNF3AipiG+z2RplXcrvvvtOu3fvVvv27SVJLpdLU6ZM0YwZM7Rp0yb169dPCxYsCNoGAAAAwJoaK7cAAACJybMHgN3BTD/Ej5CX05kyZYpSUlIkSRUVFXrxxRfVpEmTGo9bunRpvQOpqKjQrFmz9Nprr+nBBx+UJBUWFiotLU39+vWTJI0ePVqDBg3S3LlzA7YBAAAAsKbGyC0AAACAeBLyxra+hg8fHvFAXn/9dQ0fPlwdOnTwHisuLla7du2832dnZ8vlcslutwdsy8rKCvl1W7XKCPmxrVtnhvxY/BPXLXxWv2bJKUlKSjGUnJKklJTkoF9Hu90TU2O8fnJKUljvG1Zn9d81K+KahY9rFj6uWf1w3WJDY+QWAAAAQDwJqYgf7dHt33zzjQoLC/Xss89G9XX8KSkpC2mTi9atM3XqlKMRIoovXLfwWf2aGYZNVZXVqq50qaqyWpWVVUG/jna7pEZ7/arK5JDfN6zO6r9rVsQ1Cx/XLHxcs/ox47oZhi2uPthtLMycBQAAAMITUhE/2nbs2KGioiINGjRIknT8+HFNmDBB48aN07Fjx7yPKy0tlWEYysrKUk5OTp1tAAAAAAAAAADEg5A2to22yZMna/v27dq6dau2bt2qtm3basWKFZo4caLKy8u1c+dOSVJ+fr5yc3MlST179qyzDQAAAAAAAACAeGCJkfh1MQxD8+bN08yZM+V0OtW+fXvNnz8/aBsAAAAAAAAAAPHAkkX8rVu3er/u06ePCgoK/D4uUBsAAAAAAACAxGSzXdjDyCMe9rZD4rJkER8AAAAAAAAA6qtFepryt+yX3eFUVmaa7hvQhUI+YhZFfAAAAAAAAABxx+5wqvRMudlhAA1miY1tAQAAAAAAAADAxSjiAwAAAIhbixcvVrdu3fTjjz9Kknbv3q3hw4dryJAhGj9+vEpKSryPDdQGAAAAmIUiPgAAAIC49N1332n37t1q3769JMnlcmnKlCmaMWOGNm3apH79+mnBggVB2wAAAAAzUcQHEBLDsHn/AwAAsLqKigrNmjVLL730kvdYYWGh0tLS1K9fP0nS6NGjtXHjxqBtAAAAgJnY2BZAUIZh05ptB2R3ONWxbabZ4ViK50MNdrgHAMBaXn/9dQ0fPlwdOnTwHisuLla7du2832dnZ8vlcslutwdsy8rKCvl1W7XKiMwPEKbWremjRRrXNPK4ppHHNY28eLymySlJSklJVlKKoeSUJO//gx1raHtSiiE5FdFz1vfnSE5JMu0eHQ3x+HtqBVa+rhTxAYTEs6N7Vkaa2aGYymb7Z+HeMGzK37JfknTfgC4U8gEAsIhvvvlGhYWFevbZZxv9tUtKyhq9T9C6daZOnXI06mvGO65p5HFNI49rGnnxeE0Nw6aqympVVlaputKlqspq7/+DHWtoe3WlS5Iies76/hxVlcmm3KOjIR5/T63A7OtqGLaAHzRRxAeAMLRIT1P+lv3eWQl2h9PskAAAQC07duxQUVGRBg0aJEk6fvy4JkyYoHHjxunYsWPex5WWlsowDGVlZSknJ6fONgAAAMBMrIkPAGHyzEpwlFWYHQoAAPBj8uTJ2r59u7Zu3aqtW7eqbdu2WrFihSZOnKjy8nLt3LlTkpSfn6/c3FxJUs+ePetsAwAg1rCvHRBfGIkPAAAAICEYhqF58+Zp5syZcjqdat++vebPnx+0DQCAWMK+dkD8oYgPAAAAIK5t3brV+3WfPn1UUFDg93GB2gAAiCXsawfEF5bTAQAAAAAAAADAoijiAwAAAAAAAABgURTxAQAAAAAAAACwKIr4AAAAAAAAAABYFEV8AAAAAAAAAAAsiiI+AAAAAAAAAAAWRREfAAAAAAAAAACLoogPAAAAAAAAAIBFUcQHAAAAAAAAAMCiKOIDAAAAAAAAAGBRFPEBAAAAAAAAALAoivgAAAAAAAAAAFgURXwAAAAAAAAAACwq2ewAACDW2WySYdi837tcbhOjAQAAAAAAQDyhiA8ADdQiPU35W/bL7nAqKzNN9w3oQiEfAAAAAACL8B18R76OWEQRHwAiwO5wqvRMudlhAAAAAAASgO9scF8UqP3zDL6TxMA7xCSK+AAAAAAAAECMMAyb1mw7ILvDqY5tM+U4W1FjZjj8szucZocA1BtFfAAAAAAAACCGeGaDZ2WkyV7GzHAg3lHEBwAAAAAAAGKc77rvAOILRXwAAAAAAAAgxnnWfc9MTzU7FAARRhEfAAAAAAAAiAN2h1Niz1Yg7hhmBwAAAAAAAAAAAPyjiA8AAAAAAAAAgEWxnA6AOnk2xGFjHAAAAAAAAMAcFPEB+GUYNq3ZdkB2h1Md22aaHQ4AAAAAAACQkFhOB0Cd7A6nSs+Uy1FWYXYoAAAAAAAAQEKiiA8AAAAAAAAAgEVRxAcAAAAAAAAAwKIo4gMAAAAAAAAAYFEU8QEAAAAAAAAAsCiK+AAAAAAAAAAAWBRFfAAAAAAAAAAALIoiPgAAAAAAAAAAFkURHwAAAAAAAAAAi6KIDwAAAAAAAACARVHEBwAAAAAAAADAopLNDgAA4onNJhmGzfu9y+U2MRoAAAAAAADEOor4ABBBLdLTlL9lv+wOp7Iy03TfgC4U8gEAAAAAAFBvFPEBIMLsDqdKz5TXGJVPIR8AAAAAAAD1wZr4ABAlnlH5a7YdqLHEDgAAAAAAABAqRuIDQBTZHU6zQwAAAAAAAEAMYyQ+AAAAAAAAAAAWRREfwEUMw8byLwAAAAAAAIAFsJwOgBoMw6Y12w4oMz3V7FAAAAAAAIAPBt0BiYkiPoCL2B1OyW12FAAAAAAAwINBd0DioogPAAAAAAAAxAAG3TWMzaYaMxlcLi4mYgNFfAAAAAAAAABxr0V6mvK37Jfd4VRWZpruG9CFQj5iAkV8AAAAAAAAAAnB7nCq9Ey52WEAYTHMDgAAAAAAAAAAAPjHSHwAAAAAAAAACYX18RFLKOIDkPTPG5fvDQwAAAAAACAesT4+YglFfAAyDJvWbDsgu8Opjm0zzQ4HAAAAAAAg6lgfH7GCNfEBSPrnjctRVmF2KAAAAAAAAAD+D0V8AAAAAAAAAAAsiuV0ACDK2CwHAAAAAFBf7GEHwDJF/NOnT+u5557TP/7xD6Wmpuryyy/XrFmzlJ2drd27d2vGjBlyOp1q37695s+fr1atWklSwDYAsAI2ywEAAAAA1Ad72AGQLLScjs1m08SJE7Vp0yYVFBSoY8eOWrBggVwul6ZMmaIZM2Zo06ZN6tevnxYsWCBJAdsAwEo8ew7YHU6zQwEAAAAAxBD2sANgmSJ+VlaWbrzxRu/3vXv31rFjx1RYWKi0tDT169dPkjR69Ght3LhRkgK2AQAAAAAAAAAQ6yyznI4vl8ul1atXa+DAgSouLla7du28bdnZ2XK5XLLb7QHbsrKyQnqtVq0yQo6rdWumLdUH1y18Zlyz5JQkpaQkKynFUHJKkvf/vsfCaY/kuYK1+4u/MV8/nPbklKSw3neijb/P8HHNwsc1Cx/XrH64bgAAAADikSWL+K+88oqaNWumsWPH6rPPPovqa5WUlIW0NnXr1pk6dcoR1VjiEdctfGZcM8OwqaqyWpWVVaqudKmqstr7f99j4bRH8lzB2iWZ+vrhtFdVJof8vhNt/H2Gj2sWPq5Z+Lhm9WPW/dNKH8wCAAAAiE+WK+Ln5eXp0KFDWrp0qQzDUE5Ojo4dO+ZtLy0tlWEYysrKCtgGAAAAAAAAAMHYbBcGaEiyxKA7oDbLrIkvSQsXLlRhYaGWLFmi1NRUSVLPnj1VXl6unTt3SpLy8/OVm5sbtA1AcIZh8/4HAAAQL06fPq1JkyZpyJAhGjZsmB577DGVlpZKknbv3q3hw4dryJAhGj9+vEpKSrzPC9QGAADiV4v0NOVv2a812w5QI4ElWaaIv3//fr311ls6efKkRo8erREjRujRRx+VYRiaN2+eXn75ZQ0ePFg7duzQM888I0kB2wAEZhg2rdl2QH9c9502/M8hs8MBAACIGJvNpokTJ2rTpk0qKChQx44dtWDBArlcLk2ZMkUzZszQpk2b1K9fPy1YsECSArYBAID4Z3c4ZXc4zQ4D8Msyy+lcddVV+uGHH/y29enTRwUFBWG3AQjM7nCq9Ey5sjLSzA4FAAAgYrKysnTjjTd6v+/du7dWr16twsJCpaWlqV+/fpKk0aNHa9CgQZo7d27ANgAAAMBMliniAwAAAECkuVwurV69WgMHDlRxcbHatWvnbcvOzpbL5ZLdbg/YFs6eW2Ztdty6daYprxvPuKaRxzWNPK5p5FnxmianJCklJVlJKYaSU5K8//c91tD2aJ1TTkX0nNH+OWw28+7l4bDi72k8sPJ1pYgPAI3Id7MciQ1zAACItldeeUXNmjXT2LFj9dlnn0X99UpKyhr9/t66daZOnXI06mvGO65p5HFNI49rGnlWvKaGYVNVZbUqK6tUXelSVWW19/++xxraHq1zSoroOaP9c2RlpOnND3fL7nAqKzNN9w3oYrm83Yq/p/HA7OtqGLaAHyBRxAeARuTZLMfKHQIAAOJFXl6eDh06pKVLl8owDOXk5OjYsWPe9tLSUhmGoaysrIBtAACYwTBsbLJqAs/Sw4CVWGZjWwBIFJ4OARvmAAAQPQsXLlRhYaGWLFmi1NRUSVLPnj1VXl6unTt3SpLy8/OVm5sbtA0AgMZmGDat2XZAG/7nkNmhALAARuIDAAAAiCv79+/XW2+9pU6dOmn06NGSpA4dOmjJkiWaN2+eZs6cKafTqfbt22v+/PmSJMMw6mwDAMAMdodTYuI2AFHEBwAAABBnrrrqKv3www9+2/r06aOCgoKw2wAAAACzUMQHAAAAAAAALMCzBj5r4QPwRREfAAAAAAAAMJlnHXy7w6mObTPNDgeAhbCxLQAAAAAAAGABdodTpWfK5SirMDsUABZCER8AAAAAAAAAAItiOR0AAAAAAADAJKyDDyAYivgAAAAAAACACVgHH0AoWE4HAAAAAAAAMAnr4AMIhiI+AAAAAAAAAPiw2S7MlGCZI1gBy+kAgEk8HYLaXC63CdEAAAAAAACPFulpyt+yX5J034Au5OowFUV8IAHxSbI1eDoEmempcpytkN3hVFZmGp0DAAAAAAAswO5wmh0CIIkiPpBwPJvmZKanmh0K9H8dArdkL7uwBiIAAAAAAADgiyI+kIA8hWMAAAAAAAAA1sbGtgAAAAAAAAAAWBQj8QEAAAAAAIBGxn51scFmU41/J/awgxko4gMAAAAAAACNiP3qYkeL9DTlb9kvu8OprMw03TegC4V8NDqK+AAAAAAAAEAjY7+62GF3OFV6ptzsMJDAKOIDCcIz9YupetbGND0AAAAAiF/k5rGNnB1moYgPJADPND27w6mObTPNDgcBME0PAAAAAOITuXnsI2eHWSjiAwnCM/UrKyPN7FAQBNP0AAAAACA+kZvHPnJ2mMEwOwAAAAAAAAAAAOAfRXwAAAAAAAAAACyK5XQAwKJ8N8xhjT0AAAAAAKyJzW4RbRTxAcCiPBvmSGKzHAAAAAAALMh3w2I2u0W0UMQHAAuzO5xmhwAAAAAAAGrxnT3PZreINor4AAAAAAAAABAGz+z5zPRUs0NBAqCIDwAAAAAAAABhsjucEivnoBFQxAcAi/OdoiexSQ4AAAAAAEAioYgPABbnmaLHJjkAAAAAAACJhyI+AMQANskBAAAAAABITBTxAQAAAAAAgHpi+VMA0UYRH4hjno6Eb4cCAAAAAABEhmHYtGbbAZY/BRBVFPGBOOXbkejYNtPscAAAAAAAiEt1LX9ae0AdA+wA1BdFfCCOeToSWRlpZoeCCLHZmKoJAAAAAFbnGViXmZ4qx9kKBtgBaBCK+AAQQ1qkpyl/y36magIAAACAxfgOujIMm+wOp+SW7GUMsAPQMBTxASDGeGZY1B6V70FRHwAAAAAan++gK0bdJyZmzyNaKOIDccgwbKy1lwBqdxAdZyskidH5AAAAAGASlrVNbMyeR7RQxAfijO+6e4h/vh1Ee5nT7HAAAAAAAEhodW10DDQERXwgDnnW3UPiYeoeAAAAAABAfKGIDwBxhKl7AAAAAAAA8YUiPgDEGabuAQAAAABgLt+Z8gyuQ0NRxAcAAAAAAACACPLMlLdJGjXoKm8hn4I+6oMiPhDDWPsc9eH7ewMAAAAAAKLD7nAqK4Nlb9FwFPGBGGUYNq3ZdoCbAMLi+3tzSctmGnnrFfzeAAAAAAAQRSx7i4aiiA/EMM9NwHedNUZZoy6GYZNh2Ly/N8kpSXU+zoMCPwAAAIBEFSw38uRYABBtFPGBOOBZZ83ucKpj20yzw4EFeUbgZ6anhvQ4ZngAAAAASGS+uVHLzLQaa5p72vO37A+aYwFAJFDEB+KEZ3R1Vkaa2aHAouwOpxRCPZ5pfgAAAAASle8sd98821Owd5yt8A6gCzXHAjx8V1LwxeA5BEMRHwASlL/OQ2NPBWXpHgAAAABW4hl9X3uWu6dgby9jAB3qz7OSgu8HQsyCRygo4gNAnAq2V0Lz9NQayzA5zlY06lRQlu4BAAAAYDXMcke01f5ACAgFRXwAiFOh7JXg20G1lwWeCur5ICCShXaW7gEAAAAAAAiMIj4AxLFIjSLxjJqXVOeI+WgU+eMdywkBAAAA5mns5UQBoL4o4gMAQmJ3OOtsi1aRP56L3CwnBAAAADSe2vmIb3/cs7xoy+ZNzAwRCar2fnXkhfCHIj4QgwzDxogBmCJQ56KhRf66nhOoyB3rHR2WEwIAAACir658pPbyoknJhplhIkH5LoXrm/vGer6LyKKID1hQoBHLns5HY25AisTkb2Nc385Fy8w0jRp0VY3ORbAif7DNdmsLVOS2wkj2aHeq6LQBAAAAoQnWdw406Agwmyf39eTMhmHzm3sjcVHEByzI3wgB38KnZydzIJrq2hjXd7RK7fa6RhAEO6dvcT+cjkmwkezRLIJH+0MEK3xIAQAAAMQC376zb8GT/jNijSdnzkxP9Zt7Z2Wm6f/7f73NDhMmoIgPWJC/Ecv+Cp9AtAXbGNdfe+0RBFLNYrq/53g6KjbpotH9UvAiv7/2uorgwWYAROJDhIZu8usZecFyOwAAAEhkdQ3K8dffrl3w9JdbhDszGDCDv4Gb/nJDZm4nFor4gEXVHrEcrJgKWE1do+7rYnc4/Y7u9z2X5H9N/braA01J9Gxe5ft1XecPxt+Hbr5JgxR6p8rfklmR3uiooR8yAAAAANEWaFDOmm0H6hwAJNWdW4SbowBWY/u/X/XkZCPgLHjEH4r4gImCffJP4R6xrj6/w3U9J9galoHa65qSaC+r+XVt/v5G/Y3c8fehm2/S4G8Nw7pmGvhbMivYMkWhxF17hoJU9wcWZhf5GVECAAAQf+rKfwP19+qa5RtoAJC/5/ubOUyejVjUIj1Nyz7Zq6ZpSczcTjAU8QGT+I4q8B0RfEX7FmaHBlhWsOmvgdrD3UvC399oWXmVclo1k+NsxUWbSwdLEGrPAPB9figjgoJNn/Q95vnAwvO+UnsT4tpLdvl7fu2ZBL5q79Xhe8xffIZhC3smQqBlkCjsw4Np8AAAWF+gGbF1DVDxPMcjlP26gERhL3OqqpKSbqLhXxyIglBHsfobEdyqZdPGCBGIScGK3Q2dHutvhI/v36jjfJUy0pIvjNoPs45c+1x1rXEYLAEJZWkgzwcWvjMNgk0lrv18fx88+CZakvxuHiapxjTnsvIqZTRJDmt6Z+0PLNjkF/7U/r1ggy8AAMwVbICJv/w30N5WoQyaAVA3BkLFF4r4QISFslQFgPqrz2a7oYqFNTJDWRrIn2AzBfw9P1ii5W+mgaeg72l3nK9SVWV1jVgCjZ5gQlOlAAAVX0lEQVSuq83fVGpfdS1VFIy/WQV1nRfWwxRiAADqJ9QZlb7tgTaZDWWAiT+evm3t9e3DnUULJDJ/e6gxwzn+xHwR/+DBg5o6darsdruysrKUl5enTp06mR0W4py/kfa1R+8G2oiy9tRAANYRCyN8zExqfD9EqB2Tb0G/druH78iq2hsL1/7wxF/B3t8MgtpJn7+li/y9lu8HDv6STn97GdQWrOMb7L2+rg8R/I1I8/eawWZ+Bbpf1fU8OvZIdOQXAKzMX58h3L6Bb3/J3yxH3+Kfv/6Sv01mwx1g4ivU9e0B+OdvDzXp4oFQvn/7/mZTw9pivog/c+ZMjRkzRiNGjNCnn36qGTNm6N133zU7LMQxfyPta6+dLdV8E629HnWgAhcAWF2wDxFqt9e1cW/tjYVrJ3qhfGBgL7s46fO3dFFdrxVsVkPt/QXCKfL7258g2NJEHdtm6ryzWr+cPhdy0izVnPnle63zt+yv0e4vKa+dtNeV1If6gQAfAiDWkV8A1hLqUqWhniecc9XnPhfqB/jhPtbz+Np9huqq6otyzbr2NvK3tI2/QRO1l5UM9JxIjpqPhcE0gFUF+puuazZ3XQX9SCMniIyYLuKXlJTo+++/19tvvy1JGjp0qF555RWVlpYqOzs7pHOEMxo6UiOnE20EdnKyYXYIEWUYNmU2u1BQSk42vJ2lzGapcrvdSm+aoo6XZiq9WYrOnquU2+3WpZek67/3FKvsfIVat2ymzGap3se1yEhV29bpykxPVYuMVOVkp6tZarLSm6V4j/m2e762envjvlaamqUmW/ZaWPVae37XrPSzWL39rLNKbVo2tUQssdLuuWa+74Ge98hQfq/Pnqus8/3S97U877f+HhvotYKd39Mut7zn93zteW9v2iRZ58urvD+f79ee93t/z89sluq9R/reQ5KSDFVWptY4v6fd8xzfe0/t+9Ffdh+r8fp13a9q35vOl1cFfK2/7D4mSbqtd7uLXiujaapu691Oki46Fq1Ou2HYvP9uzdPTvMcaU6L16RJBY+cXkRRvfW4r4JpGXrjX1N/9pz783bNCmU0X7n2u9n24dv/A9+fwPLaufkRd56/dZ2iS2uTiXLNZykX3+Lpy0ZzWGX77A759o9r9pdrPCaVvV592M85Zn9zSjH53LJ2zvKJa6WlJXJsInrO8olpNUpP8tnv+PoP9HXuOhZrXeN4bQjlW1/teLPDcp8yIN1gf0uZ2u2PjKvpRWFio559/Xhs2bPAeu+uuuzR//nz16NHDxMgAAAAAxBryCwAAAFgRQwsAAAAAAAAAALComC7i5+Tk6MSJE6qurpYkVVdX6+TJk8rJyTE5MgAAAACxhvwCAAAAVhTTRfxWrVqpe/fuWr9+vSRp/fr16t69e8jrVQIAAACAB/kFAAAArCim18SXpKKiIk2dOlVnzpxR8+bNlZeXpyuvvNLssAAAAADEIPILAAAAWE3MF/EBAAAAAAAAAIhXMb2cDgAAAAAAAAAA8YwiPgAAAAAAAAAAFkURHwAAAAAAAAAAi6KIDwAAAAAAAACARVHEBwAAAAAAAADAoijih+m9995Tbm6uhg0bphEjRpgdTkz561//qu7du+v99983OxTLe/nll5Wbm6vhw4dr9OjR2rt3r9khWdLBgwc1atQoDRkyRKNGjdLPP/9sdkiWd/r0aU2aNElDhgzRsGHD9Nhjj6m0tNTssGLG4sWL1a1bN/34449mh2J5TqdTM2fO1ODBgzVs2DC9+OKLZocUE7Zt26Z77rlHI0aM0PDhw7V582azQ7KcvLw8DRw48KK/Re4JSDSffvqphg0bpmuuueai/vX58+f15JNP6o477lBubq62bdtmUpSx7eDBgxo3bpxGjBihO++8U4sWLTI7pLhATh0d5NuRQz4eOfTPIot8Prqsnu9TxA/D5s2btXHjRn344YcqKCjQihUrzA4pZpSVlWnBggX69a9/bXYoMeHXv/61CgoKtG7dOj300EN66qmnzA7JkmbOnKkxY8Zo06ZNGjNmjGbMmGF2SJZns9k0ceJEbdq0SQUFBerYsaMWLFhgdlgx4bvvvtPu3bvVvn17s0OJCfPnz1daWpr3d+2JJ54wOyTLc7vdeu655zRv3jx9+umnmjdvnp5//nm5XC6zQ7OUQYMGadWqVRf9LXJPQKLp3r27fv/732vo0KEXta1YsUIZGRn67LPPtHTpUk2fPl1nz541IcrYNn/+fA0ZMkSffvqpPvzwQ3300Ufas2eP2WHFNHLq6CDfjizy8cihfxZZ5PPREwv5PkX8MKxcuVKPPfaYMjIyJEmXXHKJyRHFjldffVUTJkxQy5YtzQ4lJgwYMEApKSmSpN69e+v48eMUcWopKSnR999/701chw4dqu+//55PoYPIysrSjTfe6P2+d+/eOnbsmIkRxYaKigrNmjVLL730ktmhxISzZ8/qk08+0RNPPCGbzSaJe2aoDMOQw+GQJDkcDrVp00aGQXfNV79+/ZSTk1PjGPcEJKKuXbuqS5cuft8j/vznP2vUqFGSpE6dOqlnz5764osvGjvEmGez2bzvyeXl5bLZbMrOzjY5qthGTh0d5NuRRT4eGfTPIo98PjpiJd8nKwxDUVGRvv32W40ePVojR47UmjVrzA4pJvzlL3+Rw+FQbm6u2aHEpFWrVql///4UcWopLi7WpZdeqqSkJElSUlKS2rRpo+LiYpMjix0ul0urV6/WwIEDzQ7F8l5//XUNHz5cHTp0MDuUmHD48GFlZWVp8eLFGjlypMaNG6edO3eaHZbl2Ww2/fu//7seeeQRDRgwQI8++qjy8vLMDismcE8Aajp27FiNkWQ5OTk6fvy4iRHFpmnTpulPf/qTbr31Vg0cOFATJkygL9BA5NSRR74dXeTj9Uf/LLrI5yMnVvL9ZLMDsJJ77723zk+wvvrqK1VXV6u4uFj/8R//odOnT+v+++/XFVdcoRtuuKGRI7WWQNdt48aNeu211/T22283clTWFux3zXOT27BhgwoKCrRq1arGDA8J4pVXXlGzZs00duxYs0OxtG+++UaFhYV69tlnzQ4lZlRXV+vw4cO65ppr9Pzzz+vbb7/Vww8/rM8++8w78g4Xq6qq0ltvvaU33nhDffv21a5du/Tkk09qw4YNSk9PNzs8AI0s1P4i6i/YNf7ggw80YsQITZw4USdPntS4cePUs2dP9erVq5EjjR3k1JFHvh155OOIB+TzkRFL+T5FfB8ff/xxwPZ27dpp6NChMgxDrVq10q9+9Svt2bMn4Tscga7bzp07derUKf32t7+VdGETjm3btslut+uxxx5rrBAtJ9jvmiR99tln+v3vf6933nmHaaZ+5OTk6MSJE6qurlZSUpKqq6t18uTJi5ZYgH95eXk6dOiQli5dyqiSIHbs2KGioiINGjRIknT8+HFNmDBBc+fO1S233GJydNaUk5Oj5ORk79TZXr16qWXLljp48KCuvfZak6Ozrn379unkyZPq27evJKlv375q2rSpioqKdN1115kcnbVxT0A8CqW/WJd27drp6NGj3qVfiouLa0y/xwXBrvF7772nzz//XJLUpk0b3XTTTdqxYwdF/ADIqSOPfDvyyMcbB/2z6CGfj5xYyvf5lw7D0KFD9d///d+SpHPnzmnXrl26+uqrTY7K2vr166evv/5aW7du1datWzVkyBD97ne/o0MRxLZt2zR37lytWLHC8tN5zNKqVSt1795d69evlyStX79e3bt3Z53SECxcuFCFhYVasmSJUlNTzQ7H8iZPnqzt27d738fatm2rFStWWO6GbiXZ2dm68cYb9eWXX0qSDh48qJKSEl1++eUmR2Ztbdu21fHjx/XTTz9JurDkQElJiS677DKTI7M+7glATbm5ufrggw8kST///LP27t2rW2+91eSoYk+HDh28+V9ZWZl27dqlq666yuSoYhs5dWSRb0cH+Xhk0D+LDvL5yIqlfN/mdrvdZgcRK8rLy/Xiiy/q+++/lySNGDFCkydPNjmq2DJ16lT17NmT6T5B3HTTTUpJSalxc3vnnXfYqKiWoqIiTZ06VWfOnFHz5s2Vl5enK6+80uywLG3//v0aOnSoOnXqpCZNmki6kKAuWbLE5Mhix8CBA7V06VJ17drV7FAs7fDhw5o2bZrsdruSk5P15JNP6rbbbjM7LMtbt26dli1b5t0Q+PHHH9ftt99uclTWMnv2bG3evFm//PKLWrZsqaysLG3YsIF7AhLO+vXrNW/ePJ05c0YpKSlq2rSpVq5cqS5duujcuXOaOnWq9u3bJ8MwNGXKFN5L6qGwsFCzZ8/WuXPnVFVVpbvuuoviaAORU0cX+XZkkI9HDv2zyCKfjz4r5/sU8QEAAAAAAAAAsCiW0wEAAAAAAAAAwKIo4gMAAAAAAAAAYFEU8QEAAAAAAAAAsCiK+AAAAAAAAAAAWBRFfAAAAAAAAAAALIoiPgA0klmzZmncuHFhPWfv3r3q1q2bjhw5EqWoAAAAAMQacgsASCwU8QEgAqZOnaqHHnrI7DDq5Ha7tXbtWo0aNUrXX3+9+vTpo3vvvVfLli1TWVmZ2eE12Lhx4zRr1iyzwwAAAAAajNzCXOQWAKwo2ewAAADRN2XKFG3evFkPPfSQXnjhBWVnZ+vAgQN6//331apVK40cOdLsEAEAAADEAHILAGh8jMQHgCiorq5WXl6ebrjhBt1www2aM2eOqqurgz7viy++UG5urq699lqNGTNGP//880WP2bx5s4YNG6aePXvqtttu05tvvim3213nOf/0pz+poKBACxYs0KOPPqrrrrtOHTp0UP/+/bV8+XLdfvvtkiSXy6UlS5botttuU8+ePTVs2DB9/vnn3vMcOXJE3bp104YNGzR27Fhdd911uueee/T3v/9dP/74o0aPHq3evXvr/vvv1+HDh73PW7RokYYOHaq1a9eqf//+uu666/TII4+otLTU+5hgry1Jixcv1oABA9SzZ0/dfPPNeu655yRdGKn0v//7v1q1apW6detWY4rwjh079Nvf/lbXXnutfvWrX+nf/u3fVFFREfTfAQAAALAKcgtyCwCgiA8AUbBy5UqtWbNGL7/8svLz8+VyuVRQUBDwOcXFxXr00Ud1880365NPPtHYsWM1f/78Go8pLCzUE088oTvuuEMFBQV65pln9Mc//lHvv/9+nectKChQp06dNHjwYL/tzZs3lyS9++67WrFihZ599lkVFBTo9ttv1+9+9zvt27evxuP/8Ic/aNKkSfr444+VmZmpZ555Rq+88oqefPJJrV27Vk6nU3PmzKnxnKNHj2rdunV644039Pbbb+vQoUOaNm2atz3Ya2/atEkrV67UzJkztXnzZi1dulTXXXedJOmFF17Q9ddfr5EjR2r79u3avn27cnJydOLECU2aNEndu3fXJ598ojlz5mjDhg1auHBhwH8HAAAAwErILcgtAEBuAECDPf/88+7Jkyd7v7/55pvdb7zxhvf76upq9+DBg91jx46t8xyvvfaae/DgwW6Xy+U9tmTJEnfXrl3dhw8fdrvdbvfTTz/tHjduXI3n/eEPf3DfeuutdZ73zjvvdD/88MNBf4ZbbrnFvWjRohrHxo4d637mmWfcbrfbffjwYXfXrl3dq1ev9rZv3brV3bVrV/emTZu8x/7zP//T3bt37xrxXX311e6jR496j+3YscPdtWtX98GDB0N67ZUrV7oHDx7srqio8Bv72LFj3S+//HKNYwsXLnTfcccd7urq6hqx9ejRw33u3Lmg1wMAAAAwA7kFuQUA1MZIfACIMIfDoVOnTql3797eY4ZheEd31KWoqEi9evWSzWbzHrv++utrPOann35Snz59ahzr27evTpw4UecmUu4A02E9ysrKdPLkSfXt27fG8T59+qioqKjGsW7dunm/btWqlSSpa9euNY6dO3dO58+f9x679NJL1a5dO+/3vXr1kmEYKioqCum1c3NzVVFRoUGDBmnatGn685//HHTqqud6GsY/b3V9+/ZVZWWlDh06FPC5AAAAgBWQW5BbAIDEcjoAEPc6deqkn376qd7P9+34S1JycvJFbf6OuVyuer9m7XPl5ORo48aNmjVrljIyMpSXl6eRI0fq3LlzDTovAAAAgNCRW9R9XgCIJor4ABBhmZmZat26tb799lvvMbfbrT179gR8XufOnfXtt9/WGN2ye/fuGo+58sor9be//a3GsV27dqlt27bKyMjwe95hw4bp559/1ubNm/22nzlzRhkZGWrTpo127dpVo+1vf/ubOnfuHDDuUJw4cULFxcXe7/fs2SOXy6XOnTuH/NppaWnq37+/pk2bpg8//FD79+/3XouUlJSLNvfyXE/fDv+uXbuUkpKiyy67rME/EwAAABBt5BYXI7cAkIgo4gNAFDz44INavny5Nm7cqJ9++klz5szRqVOnAj5n9OjROnr0qObMmaOffvpJGzduVH5+fo3HjB8/Xjt27NCiRYt08OBBrVu3TitXrtTEiRPrPO+dd96pu+66S88++6yWLFmiPXv26OjRo/riiy80efJkff7555KkCRMmaOXKlVq/fr0OHjyo119/XTt37tSECRMafD2aNGmi559/Xvv27dM333yjl156Sf3791enTp1Ceu2PPvpIa9eu1Q8//KDDhw/ro48+UkpKii6//HJJUvv27bV3714dOXJEpaWlcrlcGjNmjE6ePKmXXnpJRUVF+q//+i+99tprGjt2rJo2bdrgnwkAAABoDOQWNZFbAEhEycEfAgAI1/jx4/XLL79o+vTpkqQRI0Zo2LBhAaeetmvXTosXL9bcuXP1wQcfqEePHnrmmWc0ZcoU72N69Oih119/XYsWLdJbb72lVq1aafLkyRo7dmyd57XZbFq4cKHWrFmjDz/8UMuXL5fNZtNll12mu+++W4MHD5Z0ITk4e/as5s+fr5KSEl1xxRVatGiRrr766gZfj/bt2+vuu+/Www8/rNOnT+vmm2/WnDlzvO3BXrt58+ZatmyZ8vLyVFVVpc6dO2vRokXq2LGjpAvXe+rUqbr77rtVXl6uLVu2qEOHDlq2bJnmzZunESNGqHnz5ho6dKiefvrpBv88AAAAQGMht6iJ3AJAIrK5Q9mVBACAelq0aJE2bdqk9evXmx0KAAAAgBhGbgEgUbGcDgAAAAAAAAAAFkURHwAAAAAAAAAAi2I5HQAAAAAAAAAALIqR+AAAAAAAAAAAWBRFfAAAAAAAAAAALIoiPgAAAAAAAAAAFkURHwAAAAAAAAAAi6KIDwAAAAAAAACARf3/Jhcpdq3KGPkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 469 + }, + "id": "k9dbAMmldgSq", + "outputId": "8a5ef4f3-e348-4f9d-a8a3-c90a80996ab8" + }, + "source": [ + "# Criação do Canva:\n", + "fig, axs = plt.subplots(figsize = (26, 7), ncols = 2)\n", + "\n", + "#Plot das Médias:\n", + "ax1 = sns.histplot(data = dados.loc[:,'g-0':'g-771'].describe().T['mean'], ax = axs[0])\n", + "ax1.set_title('Distribuição de Frequências dos Valores Médios de Expressividade', fontsize = 18)\n", + "ax1.set_xlabel('Valores Médios', fontsize = 14)\n", + "ax1.set_ylabel('Frequência', fontsize = 14)\n", + "\n", + "#Plot dos Desvios Padrões:\n", + "ax2 = sns.histplot(data = dados.loc[:,'g-0':'g-771'].describe().T['std'], ax = axs[1])\n", + "ax2.set_title('Distribuição de Frequências dos Desvios Padrões de Expressividade', fontsize = 18)\n", + "ax2.set_xlabel('Valores de Desvio Padrão', fontsize = 14)\n", + "ax2.set_ylabel('Frequência', fontsize = 14)\n", + "\n", + "plt.show()" + ], + "execution_count": 28, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABeMAAAHECAYAAAC6BzE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3wUxf/H8XcagUBCKKGICFgugAGCoUmR3qR3MCBSVKQIIij4E1FUIAIiRJEmoPQakC5FkY74VRABC9J7T0gCIcn+/uBxJ8ddkjvIJoCv5+PB40H29mbn5mZndz43O+NhGIYhAAAAAAAAAABgGs/MzgAAAAAAAAAAAA87gvEAAAAAAAAAAJiMYDwAAAAAAAAAACYjGA8AAAAAAAAAgMkIxgMAAAAAAAAAYDKC8QAAAAAAAAAAmIxgPIB0ExMTo88//1ybN2/O7KwAGcYwDM2YMUOzZ8/O7KwAAAA8cOhDAAD+SwjGZ6IlS5YoODhYO3fuzNRjmpmPe037119/VbVq1VSrVi2tWbNGv/76q8qXL5/OuUzdiRMnFBwcrMjIyAw97oNoyJAhWrVqlfr27aujR49m2HFr1aqlTp06ZdjxXPGw1pv7sawz27hx4zRhwgSFhYW5/J6MbovvRadOnVSrVq3MzsZ/RmRkpIKDg3XixIm7er8739fOnTsVHBysJUuW3NWx0isfANxDHyJt9CEeLPQh/kW9cV9wcLAGDRqU2dkw3d3WjU8//VRly5ZVt27ddPLkSb333nsaPny4Sbm8e/drX+hhda9tjbvfl1nt7YNab7wzOwMPg507d+rFF1+0/e3p6akcOXIof/78evrpp9WoUSNVq1ZNHh4e6XbMyMhIlShRQnXq1Em3NO9HM2bMUHBwsEqWLKn/+7//U1xcnF555ZXMzla6uLPe3Gn+/PkKDQ3NwBzdm4ULF2rfvn1auHChZs6cqTfffFNz586Vj49PZmftP2X27NkaNmyYBg8erJdeeinF/d5++20tXbpUc+fO1TPPPJNxGbwPLFmyRIMHD5YkvfXWW+rWrZvDPvv371eLFi0kSS1atNDIkSOdprVq1SrNmjVL06ZNU/Hixc3L9EOoVq1aOnnyZIqvf/LJJ2rWrFkG5ggAMhZ9CPPQh6APgbsTHBxs+7+Hh4eyZcum3Llzq3jx4qpVq5YaNWqkrFmzZmIO7y+dOnXSrl27bH97e3srd+7cKl++vF577TU99dRTmZg7KTY2VlOmTFHv3r3122+/qW7duvL19f1PPdEbGRmpzz//PMXXn332Wc2YMSPjMgSIYHy6aty4sZ577jkZhqHY2FgdPnxYGzZs0NKlS1W5cmWNGzdOAQEBtv2bNWumRo0a3dWNxueff64WLVq4fSN9L8e8G/d6vMGDByt79uzKkSOHevbsqWvXrilv3rzpnMvMZa03d3rssccyITd3Jzk5WdHR0Zo4caJy5cqlPn36KCAgQP/884/dDZ1Z1qxZY/oxHhRNmjRRRESElixZkmIw/tq1a1q7dq0ef/zx/1wg/na+vr5asmSJ02D84sWL5evrqxs3bqT4/qSkJJ06dUrTpk1T6dKl7zk/Gd0+3w8KFCig/v37O33tv1o3X3vtNb3yyivKkiXLXb3/q6++SuccATAbfYj0Px59iAcDfYj7U4kSJdSlSxdJ0vXr13Xq1Clt3bpV77zzjiZOnKjIyMj7ahDK3r175emZeZM+ZMmSRR999JEk6caNG9qzZ4+WLl2qH374QYsWLdLjjz+eaXnz9fXVmjVrVKRIEUnSpUuXlC1bNmXLli3T8pRZXn/9dT366KMO2/Ply5cJucl8hQoV0t69e+Xl5XVX7/8v9l3TE8H4dFSyZEmHUXyDBw/WqFGjNH36dPXv319Tp061vebl5XXXFd9d165dU44cOTL0mNK9f8b8+fPb/p81a9aH8ld4Z/UmNUlJSUpISLivLqCenp52AU0PD49UR2Wnt7sNWj2MAgICVLduXa1YsUK///67nn76aYd9Vq9erfj4eLVq1SoTcujI2j5lNGs57d271y6YnpCQoBUrVtheT4mXl5e6d++ebvnJ6Pb5fuDv73/fjX6/fv26vL295e2dObdI93ps2kPgwUMfwhF9iLTRh7h3XDOdy58/v0PdeuONN7R69WoNHDhQ3bt318qVK5UzZ85MyqE9X1/fTD2+t7e3XXm1bdtWTzzxhCIiIjRz5kwNHTo0Q/NjGIbi4uKUPXt2eXt72wLxkpQ7d+4Mzcv95LnnnlOpUqUyOxs2t39PmcHDw+Oezp3/Yt81PTFnvMm8vLw0aNAghYWFafPmzdq9e7ftNWdzG924cUORkZGqX7++ypQpo3LlytlGukr/zuskSVFRUQoODrb9s7LOmbZ9+3Z16NBBZcuW1WuvvZbiMa2SkpIUGRmpmjVrKiQkRE2aNNHKlSsd9ktpTjZ35pJMSEjQlClT1KxZM5UpU0ZhYWFq2bKlZs2aZdvn7NmzGjlypJo1a6by5curVKlSev755zV58mQlJSU5HP/SpUv64IMPVL16dYWEhKh69er64IMPdPnyZYd9U7J79261b99epUuXVuXKlTVs2DDFxcU53dcwDM2ZM0ctW7ZUmTJlVLZsWXXq1Ek7duxw+XhpsZbftm3b9MUXX6hOnToqXbq0Vq9e7XYebty4oYiICFWtWlWlS5dW69attWXLFg0aNMhh5ElK83mlNL9wQkKCJk6cqEaNGqlUqVIqV66cevToof3796f4/sWLF6tRo0YKCQlRzZo1NWXKFKdlsH//fr3++uuqXLmy7Xvt37+/jh07lmp+t2zZon79+ql27doqXbq0ypUrp65du9o9Rmj1119/6fXXX1e1atUUEhKiKlWqqFOnTvrhhx+c5ulO7tSbuLg4jRkzRnXq1LEd66233nKYriM5OVkzZsxQkyZNVLZsWT3zzDOqX7++3nnnHd28eTPV/LRu3VrSrdHdzixevFje3t5q3ry5pFtT23Tt2tX2+atWraoBAwa4NWf1+vXr1b59e4WGhqps2bJq37691q9f77Cf9bvav3+/unXrprCwMDVt2tT2+pEjRzRw4EBVrVpVISEhqlWrliIiIhzK8/Tp0xo8eLCtvXr22WfVvn17RUVFuZznmjVrKleuXA7ltH79el25ciXVHyu2bdumrl27qly5cipVqpSaNGmiuXPnOt13wYIFatCggUJCQlS3bl3NmDFDhmE47JdSe+lq25bW9SMtV69e1bvvvquKFSsqNDRUnTp10r59+1Lc/7ffflOvXr1UsWJFhYSEqH79+vryyy+VmJjo0vFctX//fpUqVUpdunSxK7ekpCSFh4erTJky+vPPPyXZz324YsUKNWnSRKVKlVKNGjUUGRnpkDdr+3fp0iUNHjxYlStXVmhoqM6cOSPp1oJyo0aNUt26dRUSEqJKlSqpf//+On78uF06rpb9Dz/8oI4dO6pixYoqXbq0atSood69e+vw4cO2fe6cM37OnDkKDg7Whg0bHMomOTlZzz33nF0HMKW52tevX6/mzZurVKlSql69uj777DOn39W1a9c0duxYtWnTxvbd1q1bV6NHj1Z8fLzD/vdrvQEedPQh6EPcC/oQ9CHupg+RloYNG6pbt246f/68wzQn7tSppUuXqnXr1ipXrpxCQ0NVu3Ztvfnmm7p06ZIkqV+/fgoJCXF6Dlqfmvj4449t21JqWxYuXKgWLVqodOnSCgsLU9euXe3aUitX7s/cVbVqVUmy1be9e/dq0KBBtjba2l9at26d0/e7WjduPzdmz56t559/XqVKldK0adMkSYmJiZo8ebJte8WKFdWrVy/98ccfTo+7atUqW/tfpkwZtWnTxukTJPdaZq72jyTX78fvVWJioq0/e+jQIbvX5s+fr+DgYI0bN862zXrPffz4cb322msKCwvTM888o169ejnkLa3vSUrfsnelr3znnPHR0dEqVaqUevfu7bR8xowZo+DgYB04cEBSytfp06dPq2/fvrby6NGjh127e7tVq1apR48eqlGjhkJCQlSxYkX17NlTBw8edLr//Vhv7hYj4zNI69at9fPPP2vTpk0qV65civt98MEHWrx4sZo3b66yZcsqKSlJR44csVXw3Llz65NPPtFbb72lcuXKqW3btk7T2bdvn9auXau2bdva5j1Oy+jRoxUXF6cOHTpIunVy9e/fXzdu3FDLli3d/MQpS0hIULdu3bRr1y5VrVpVTZs2la+vr/78809999136tixoyTpjz/+0Hfffae6devqscce082bN7V582aNGTNGJ06c0LBhw2xpxsTEqEOHDjp69KhatWqlkiVL6sCBA5o7d6527NihhQsXpjnyds+ePerSpYuyZ8+ul19+Wf7+/lq1apXefvttp/sPHDhQK1euVP369dWyZUslJCRo+fLl6tq1qyIjI1W7dm2XyiM+Pt5242GVJUsWu/xGREQoMTFRbdu2Vfbs2VWsWDG389C/f3+tX79eNWvWVLVq1XTs2DH16dPH6aNa7rh586a6deumX375Rc2aNVN4eLiuXbumBQsWqEOHDpo1a5bDL9Dz5s3ThQsX1Lp1awUEBOjbb7/V6NGjVaBAATVp0sS23/fff68+ffrIz89PrVu3VpEiRXT+/Hlt2bJFf/75Z6qP4UZFRenq1atq3ry5ChQooLNnz2rhwoV66aWX9M0339jOw8uXL6tz586SpPbt2+uRRx7R5cuXtW/fPu3Zs0c1atRI9fO7U2+sZfW///1P9evXV5cuXXT06FHNnTtXW7du1eLFi1WgQAFJ0pdffqnx48erZs2aat++vby8vHTixAlt3LhRCQkJqT4OVqlSJT366KNasWKFBg0aZDfq5/Dhw/rll19Uu3Zt2+Pa06ZNswXRAgMD9eeff2rRokXasWOHli9frly5cqVaBtZ56h9//HH17NnTVv69evXSsGHD1K5dO7v9T506pc6dO6tBgwaqV6+e7cZy37596ty5swICAtSuXTvlz59fBw8e1MyZM/XLL79o5syZ8vHxUWJiorp06aKzZ8/qhRdeUNGiRXXt2jX98ccf2r17t8ttnre3t5o2baqoqCi98847tpEBixcvVsmSJVN8/Hb+/PkaOnSoQkND1aNHD2XLlk3btm3T+++/r2PHjtl99zNmzNCIESNUvHhx9e/fX/Hx8Zo2bZry5MnjUh7dadvSun6kxlo3f/vtN1uA4+DBg+rSpYsCAwMd9v/hhx/Uu3dvFSlSRF27dlXOnDn166+/avz48Tpw4IDGjx/v0udLSkpyaP+scuXKJQ8PD5UsWVIDBw7Uxx9/rMmTJ+vVV1+VdGuqhd27d+uDDz6QxWKxe+/GjRt1/PhxhYeHK2/evNq4caM+//xznTp1SiNGjHA4VpcuXZQ3b1717NlTcXFx8vPzU0xMjNq3b69Tp06pVatWeuqpp3T+/HnNmTNHbdq00eLFi1WoUCFJrpX9rl27bHOHvvrqq/L399e5c+e0fft2HTt2zNau36lRo0YaMWKEli1b5nBd2b59u86ePauuXbumWs7r1q1Tnz59VKhQIfXq1UteXl5asmSJNm3a5LDv2bNntWjRItWrV0+NGzeWt7e3du3apalTp+rAgQN20+BkVr0B/kvoQ/yLPoQ9+hD0IdK7D+GKNm3aaOLEidq0aZPtvl9yvU4tXbpUb7/9tsqVK6fXX39dWbNm1enTp7Vp0yZdvHhRuXPnVosWLbR69WqtXLnSdl5bLVu2TJLSbJ9GjRqlqVOnqnTp0urfv7+tbnXu3FkTJkxQ9erVJd39/VlarAsRW++H1q1bp3/++UcNGjRQoUKFdOXKFUVFRal3794aPXq0Xf11t02RpK+//lpXrlxRmzZtFBQUZKsPAwYM0OrVq1WlShV16NBBFy5c0OzZs9W+fXvNnj1bJUuWtKUxduxYTZw4UdWqVVPfvn3l6empdevWqW/fvnrvvfcUHh6eLmXmTv/InfvxtFy7ds1pv8PPz09Zs2aVt7e3xowZo+bNm6t///5auHChsmTJor/++kvDhw9XWFiYQ6A6Li5OnTp1stWzo0ePas6cOdqzZ4+ioqIUFBTk0veUnmV/t33lgIAA1apVSxs2bNCVK1fs7uWTk5O1fPlyBQcHq0SJEimWcXR0tMLDw3XmzBm1b99eTzzxhH766Se9+OKLun79usP+s2bNUmBgoNq2baugoCAdO3bMdg2IiopS0aJFbftmVr0xjYF7tmPHDsNisRhTp05NcZ99+/YZFovF6N27t23b4sWLDYvFYuzYscO2rXz58kb37t3TPKbFYjHefvvtFF+zWCzG1q1bHV5zdkzrtho1ahjR0dG27dHR0UaNGjWM8uXLG/Hx8WkeO7W0b982efJkw2KxGGPGjHFIIykpyfb/+Ph4Izk52WGfAQMGGMWLFzfOnj1r2/bpp58aFovFmDVrlt2+s2bNMiwWizF27FiHdO7Url074+mnnzb++ecf27YbN24YrVq1MiwWizF+/Hjb9u+++86wWCzGvHnz7NK4efOm0aJFC6NmzZpO8347a71x9q9fv36GYfxbfvXq1TPi4uLs3u9OHjZv3uz0e1u3bp3tmLerWbOm0bFjxxTzvHjxYtu26dOnGxaLxfjxxx/t9o2JiTGqV69ul471/VWqVLGra3FxcUbFihWNtm3bOmyrVKmScebMGYe83F5XnOU3NjbW4T3nz583KlSoYHeOrV+/3rBYLMbKlSsd9neFO/Vm/vz5hsViMSIiIuzS+P777w2LxWIMGDDAtq158+ZGw4YN7ypPhmEYn3/+udPPNXr0aMNisRjr16+3bXNWVtu2bTMsFosxefJku+13lvWVK1eM0NBQo06dOkZMTIxte0xMjFG7dm0jNDTUuHr1qt37LRaLsWDBAodjNmnSxKhfv75dOobxb1231rsDBw44zZurrOfV6tWrjYMHDxoWi8X49ttvDcMwjNOnTxvFixc3Zs6caVy8eNHhvDl79qwREhJi9O/f3yHdDz/80ChevLhx7NgxwzAM4+rVq0aZMmWMhg0b2p2/p0+fNkJDQ11qL91p21y9fjgzb948w2KxGOPGjbPbbj2/a9asadt2/fp1o3LlysYLL7xg3Lx50+n+t3+GlFjrQkr/Ll68aLd/jx49jJIlSxq//PKLsWPHDqN48eJGnz597PY5fvy4YbFYjOLFixv79u2zbU9OTjZ69uxpWCwW45dffrFtf/vttw2LxWK8+eabDvn78MMPjVKlShkHDhyw237ixAmjbNmydvXClbIfPny4YbFYjAsXLqS63/jx4w2LxWIcP37ctq1Pnz5GSEiIceXKFbt9BwwYYJQsWdIuzY4dO9p9X4mJiUb16tWNChUq2JWp9Rp/Z5t+48YNIyEhwSFfY8eONSwWi7Fnzx7btsyoN8DDhD5E2mnTh3BEH4I+hJUZfQiLxWK88sorqe5TtmxZo0KFCra/3alTvXr1MsqWLetwL3C7xMREo0qVKkarVq3sticnJxs1atQwGjdu7JDn2+vooUOHjODgYKN9+/bGjRs3bNvPnDljhIWFGTVr1jQSExMNw3D9/iwlHTt2NEJDQ42LFy8aFy9eNE6dOmWsXr3aeO655+zqt7N6FRcXZ9SrV8/h+3KnbljPjfLlyzt8hi1bthgWi8Xo27evXbty4MABo0SJEkaHDh1s26zXGmft62uvvWaULVvW1ke7lzJzt3/kzv14Sqz31in9u/MavHbtWsNisRgffPCBER8fbzRq1MgoX768cfLkSbv9OnbsaFgsFuOjjz6y2249H4YMGWLbltr3lN5l72pf2dpvur0+WduUO6+J1tjAtGnTbNucXafHjBljWCwWY9GiRXbv/+ijjwyLxeJSe/v3338bTz/9tDF06FDbtsyoN2ZjmpoMYh2hcO3atTT3+/vvv22P3N+t4sWLq3Llym69p0OHDvL397f97e/vr/bt2+vq1asujax01fLly5UzZ0716tXL4bXbF17JmjWrPDw8JN0aCXPlyhVdunRJVatWVXJyst1j8OvWrVPu3LkdRuC2a9dOuXPndjpdxu0uXryoX375RbVq1bL7JTdLlixO5y389ttvlT17dtWpU0eXLl2y/YuOjlatWrV08uRJHTlyxJXiULt27TR9+nS7f9ZHgq06dOjgML+jO3mwfv47F6qsU6fOXf/af3s+Hn/8cT399NN2+UhISFDlypX1888/O/wK2qpVK7u6li1bNoWGhtqV2ZYtW3T58mV16dLFbt5Pq7QW6fHz87P9PzY2VpcvX5anp6fKlCmjvXv32l6z5mPz5s1pnp93crferFu3Tp6enraRvVY1atRQiRIltGHDBiUnJ0u61RacPXvW6aOUrmjZsqU8PT3tHgdOSkrS0qVLFRQUZBsNIv1bVsnJyYqJidGlS5cUHBwsf39/u7JyZuvWrbYRAbePxMqRI4c6deqkuLg4bdu2ze49gYGBDiPl/vjjD/3xxx9q3LixEhIS7OpSWFiY/Pz8tHXrVkn/fmc7d+7UxYsX76J0/hUcHKyQkBBbOUVFRcnb29tudMrt1q5dq4SEBLVu3douj5cuXVKtWrWUnJxs+7xbtmxRfHy8wsPD7c7fO0dvpcadtu1erh/r16+Xl5eXwwjrF154wWFE4NatW3XhwgW1bNlS0dHRdmVgXUjO+l2lpVChQg7tn/Xf7W2EJI0YMUJ58+ZV//79NXDgQBUsWNC2WNadKleubLdegoeHh21+f2ePA9/ZNhqGoeXLl6t8+fLKly+f3We0tldbtmyx7e9K2Vs/z9q1a92ekqVFixZKSEjQqlWrbNtiY2O1fv16VatWLdUnLX7//XedPn1aLVu2tJsn1HqNv1OWLFlso+YSExN19epVXbp0yXZPsWfPHtu+mVVvgP8S+hD/og9hjz4EfQgz+hCuyJEjh91ndqdO+fv76/r16/rhhx9SnF7Cy8tLTZo00W+//WY3XcjOnTt16tSpNEfFb9iwQYZhqHv37nZPCOfPn18tW7bUyZMnbVMh3cv9mVVcXJyeffZZPfvss6pRo4b69u2rpKQkjRw5UtWqVZNkX6/i4+N1+fJlxcfHq1KlSjp06JCtPN2tG1bNmjVzuB+03vP26NHD1iZKt9r5mjVr6ueff7aNFF++fLk8PDzUvHlzp32c2NhY/frrr/dcZu70j9y9H0/Le++957TP0bBhQ7v96tWrpw4dOmj27Nl66aWX9Ndff+mjjz7SI4884jTdV155xe7vunXrqlixYk6nmHT2PaV32d9LX7lq1arKmzev7QkUq6VLl6baR7Zav3698ubNa5sO1+rll192ur/1vDAMw/bkQq5cuVSsWDG79jYz641ZmKYmg1gb17Qec3znnXf01ltvqUmTJipcuLAqVqyomjVrqlatWm6tEH774xyucrbK9xNPPCFJbs0dnZajR4+qRIkSaS4WYZ3fbNmyZTp69KjDxTo6Otr2/xMnTigkJMRh0Ttvb28VLVrUYd7BO1nnjXJWBk8++aTDtkOHDik2NjbVzsrFixddukktUqRImp0eZ+m4k4fjx4/L09PTab144okn7mk+vEOHDun69et69tlnU9zn8uXLKliwoO1vZ4+1BgYG6sqVK7a/rTdstz86545jx45p7Nix2rJli11dkWR3M1KhQgU1b95cS5Ys0fLlyxUSEqLKlSvr+eefd/rd387denPixAnly5fP6WJHTz75pA4cOKDLly8rT5486t+/v3r16qXw8HDly5dPFSpUUI0aNVS/fn2XFpsqWLCgqlSpoq1bt+rs2bPKnz+/tmzZonPnzql79+5258r27ds1YcIE7dmzRzdu3LBL5+rVq6kex9o2PPXUUw6vWbfdOS9b4cKFHRZ7sd5oR0ZG2uatu9OFCxck3Qrg9ujRQ5MnT1bVqlVVokQJVapUSQ0aNLBbiNVVLVu21EcffaSTJ08qKipKtWvXVs6cOZ0+xmjNZ2o3w9Z8WssmtbY1Le60bfdy/Th+/LiCgoIcrlFZsmRR4cKF7c4haxm88847KaZnLYO0+Pn5uRz0CQwM1IgRI9SlSxdJt+ZSDwgIcLqvs/K1npPO5gm8s228dOmSrly5oi1btqTYtt1epq6UfXh4uDZs2KAPPvhAo0ePVlhYmKpVq6bGjRunuZiWNeC+bNky2zQQ3333neLi4tJcvC+1diqlejh79mzNmzdPf//9t61zb3V7m5BZ9Qb4L6EP8S/6EPboQ9xCHyJ9+xCusC7sbOVOnXr11Vf1008/qVevXgoMDFSFChX03HPPqWHDhnZpNm/eXNOmTdOyZcvUv39/SbemqLEG6lPjav+kVKlS93R/ZuXr66uJEydKuvVDQt68eVWsWDG7tvfixYv67LPPtGHDBqcB0ujoaOXIkcPtumHl7Bw9ceKEPD09U7wvXr9+vU6cOKHcuXPr0KFDMgzDITB9O+t92r2UmTv9I3fvx9NSunRplxdwHTx4sLZu3apffvlFbdu2Vb169ZzuFxAQ4DAVjXTrs6xfv942/aWVs+8pvcv+XvrK1oD79OnTdfjwYRUrVkxxcXH67rvvVKVKFds0tymxnld39vXz5cvntN+2f/9+jRs3Trt27XJYE+H29j4z641ZCMZnEOsCGWndWNWpU0cbN27Upk2b9NNPP2nbtm1atGiRypUrp+nTp7t8Ab1zBERGcLYg0r0YOXKkZs6cqeeff149evRQ7ty55ePjo99//12jR492CBBkJMMwlDt3bo0ZMybFfZxd/O9W1qxZMz0PkvPv2DAMWSwWDR48OMX33XlRNnvV7djYWIWHhys+Pl6dO3eWxWJR9uzZ5enpqUmTJjksJBQREaFu3brpxx9/1O7duzV9+nRNnDhR77zzjsM8hRmlbNmyWrdunbZs2aKdO3dq586dWrFihb788kvNmTPH6XzMd2rVqpU2b96sqKgo9ejRw7ZQ6e0Lk+7du1fdunXTY489pjfffFOPPvqobUTZG2+8keKIlXuRWvtkXUjWmdsv4G+88YZat26tH374Qbt379aiRYv01VdfqXv37ho4cKBb+bEucDdkyBAdPXpUQ4YMSXFfa3lEREQoX758TvcpXLiwW8dPL1ZKoWIAACAASURBVOl1/UiLtQzeeuutFOcMTKls7tXGjRtt/z948KDCwsLSJd0766T1M1auXDnFkRy3c6Xsc+XKpUWLFmn37t3atm2bfvrpJ40YMUKRkZGaPHmyypYtm2L63t7eaty4sb7++msdPXpURYoU0dKlS5UzZ06X5xZ21fTp0zVy5EhVrVpVL774ovLlyycfHx+dPXtWgwYNuus2ITPrDfAgow/hPvoQ/6IP4R76EGk7ceKEYmNj7e5b3KlTRYsW1apVq7R9+3Zt375du3bt0rvvvqvx48dr9uzZtvn8rXNTL1++XG+88YauX7+utWvXqkqVKk6Dn3frXu7PrLy8vFL9IcIwDHXt2lWHDh3Siy++qJCQEPn7+8vLy0uLFy/WihUr7rldute22zAMeXh4aMqUKSmeZ9YfA9KjzFzNk+T6/Xh6OnjwoE6fPi3p1kLNiYmJDj/a3g1n35MZZX8vfeXmzZtr+vTpWrp0qd544w3bAKA7R7vfq1OnTik8PFw5cuTQa6+9pscff1zZsmWTh4eHhg8fnuJi1mnJzHrjDoLxGWTRokWSZDc1REoCAwPVrFkzNWvWTIZhaPTo0Zo6dao2bNiQ6q9l9+qff/5x2GYdyXb7r1J3jj6wcnVV4qJFi+qff/5RQkJCqh2DZcuWqXz58ho7dqzddutiKLcrXLiwDh8+7NBIJiYm6siRI2kGx6yfz1kZ/P333w7bihQpoiNHjqhMmTLKnj17qmmbxZ08FC5cWMnJyTpy5IjDzfWdK4VL7n3HRYoU0eXLl1WpUqV0/YXR2uk8cOCAbTV6V23fvl3nzp3T8OHD7QLPkvTZZ585fY/FYpHFYlH37t0VHR2tNm3aaMyYMQoPD7cbBXM7d+tN4cKFtXnzZkVHRzv8Mnzo0CHlyJHDbrHU7Nmzq379+qpfv76kfxdKXbRokW3KjdTUrl1bgYGBioqKUrt27bRx40Y988wzdr8or1ixQklJSZoyZYrdeRIXF+cwGsgZ63v++usvh1+erWXgSnC6SJEikm79Su3qSOnChQurU6dO6tSpk27cuKFu3bpp6tSp6tq1q8sLpEq3gvx169bVihUrbE8UpMQ6miFXrlxp5vP2+nFn2Tg775xxt2272+tH4cKFtXXrVoeRTgkJCTp+/LjdSCxrGWTLls3tqQzuxYYNGzRz5ky1bNlSx44dU0REhMqVK6fg4GCHfZ2Vrzv1MXfu3AoICNC1a9fcGrmfVtl7eXmpYsWKqlixoqRbN/qtWrXSl19+qcmTJ6eafosWLfT1119r6dKlatu2rXbt2qW2bdumGWCzft7UrvG3W7ZsmQoVKqQpU6bYtek//vij07Tv93oDPOjoQ/yLPkT6oA+RMvoQaVu4cKEk+zbJ3XqdJUsWVa9e3ZbGpk2b9Morr2j69OkaOnSobb/mzZtrxIgR2rFjh86fP6/Y2FiXFpa+vX9y52K9zu4H7+X+zBV//PGHDh48qF69eun111+3e81anlbu1o3UWM/fQ4cOqXjx4nav3dlGFy1aVJs3b9Yjjzzi0hO8d1tm7vSP7uZ+PD1cu3ZN/fv3V2BgoDp27KixY8cqMjJSb7zxhsO+0dHROn/+vMMPRIcOHVKePHnsRsWnxKyyv9u+cvHixVW8eHEtX75c/fr107JlyxQQEODSAKDChQvr6NGjSkpKsvth4dy5cw6xhXXr1ikuLk5ffvmlKlWqZPfalStX7K7zD0K9cVfmj81/yCUlJSkiIkI///yzqlevnuoovqSkJKePwlkfsbv90XA/Pz+nNzr3Yu7cuYqJibH9HRMTo3nz5ikgIEAVKlSwbS9atKh+/fVXxcfH27ZdvXrVbm7q1DRp0kRXr17VhAkTHF67fcSdp6enwwi8uLg4zZgxw+F91vnp7ryYLViwQJcuXVKdOnVSzVPevHkVGhqqjRs32j1umZCQ4PR4zZs3V3Jysj799FOn6WXEo/bu5MHacH711Vd2+6xfv97p46VFixbV4cOHdfbsWdu2hIQEzZ4922k+zp8/r+nTp6eZD3dUqVJFuXLl0vTp03Xu3DmH11MbnWlt+O/cZ8uWLXbzHUu3Gvo7RyIEBATo0UcfVXx8vMO0Lbdzt97UqVNHycnJDjcomzZt0v79++0eJXc2RYp1Duy0po6xypIli5o1a6YjR47o/fff182bN9W6dWu7fVL69X3SpEkujdCoUqWK/Pz8NGvWLLu5I69du6ZZs2bJz88v1eC2VcmSJWWxWDRv3jynHbbExERbmxcTE6ObN2/ave7r62v7kcHV8rndyy+/rN69e2vIkCGpdggbNmyoLFmyKDIy0umK8DExMUpISJB0q2yyZs2q2bNn27WXZ86c0fLly13Kl6ttmzvXD2dq166tpKQkTZs2zW77nDlzHOZBrVq1qvLkyaMpU6Y4vQ5dv37d7blT03L27Fm98847euKJJ/Tee+9p9OjRypo1q/r37+/0e9i2bZt+//1329+GYWjq1KmSlOb1QLp1/WnSpIn27t2rNWvWON3H+oixq2Xv7Jx+/PHH5evr61KdLVGihIKDg/Xtt99q2bJlSk5OdqlD+vTTT6tAgQJasmSJXR6uXbumefPmOezv6ekpDw8Pu/YzMTFRU6ZMcdj3fq83wIOMPoQj+hDpgz4EfYi7tXr1an311VfKly+fwsPDbdvdqVPO8pfS/WqTJk3k7e2tZcuWadmyZfL393cpIFirVi15eHjoq6++susznDt3TkuWLFGhQoVsx7zX+zNXWL+bO+vVn3/+6bCWkbt1IzXW9mvy5Ml2x/7zzz+1ceNGhYWF2Z4+adq0qSTp008/dfokS1rfoatl5k7/yJ378fQ0ZMgQnTp1SqNGjVKPHj1Uv359TZ482eHJGKs7z8t169bp8OHDLvU5pPQv+/ToK7do0UInT57U8uXLtWPHDjVs2DDNKeKkW9eMCxcuaOnSpXbbnfUjUmpvFyxYoPPnz9ttexDqjbsYGZ+O9u/fb1voIDY2VocPH9aGDRt08uRJVa1aNdXHtqzvqVq1qmrVqqWSJUsqd+7cOnHihObOnaucOXOqZs2atn1DQ0O1fft2TZ48WY888og8PDzUqFGje8p/rly51KZNG9vCikuWLNGpU6f00Ucf2T1OEx4eroEDB6pz585q1qyZoqOjtXDhQj3yyCMOJ40zL774or7//nt9+eWX+u2331S1alVlyZJFf//9tw4fPmy7yNSvX1/z589Xv379VLlyZV24cEGLFy92+mhd9+7dtWbNGg0bNkz79+9XiRIldODAAS1atEjFihVzaQTAoEGD1KlTJ3Xo0EHh4eHy9/fXqlWrnDaIDRo0UMuWLTVr1iz9/vvvqlmzpnLlyqUzZ87o119/1dGjR50u2JGe3MlDtWrVVLNmTUVFRenKlSuqVq2ajh8/rvnz58tisTgs9hUeHq6VK1fqpZdeUvv27XXz5k0tW7bM6WNVL774orZt26ZPPvlEO3bsUKVKlZQjRw6dOnVKO3bsUJYsWTRz5ky3P1+2bNn08ccfq2/fvmrSpIlat26tIkWK6NKlS9qyZYteeumlFC9wYWFhCgoKUkREhE6ePKkCBQrowIEDWrZsmcPnXbp0qb7++mvVqVNHRYoUkbe3t3766Sdt2bJFDRs2dPp47+3cqTctWrRQVFSUpkyZopMnT6pcuXI6duyY5syZY1uY0ur5559XaGioSpcurXz58un8+fNasGCBfHx83DrXW7dura+//lpr1qyRn5+fw8i4OnXqaMaMGXr55ZfVrl07+fj4aOvWrfrjjz/sRtikJCAgQAMGDNCwYcPUtm1bW3AwKipKR48e1bBhwxwW4nTGw8NDn3zyiTp37qymTZuqVatWevLJJ3X9+nUdPXpU69atU//+/dWyZUvt3LlTQ4YMUb169VSsWDFlz55d+/bt06JFi1SmTBmnc8mlxToCIC0FChTQ+++/r3fffVfPP/+8mjZtqkKFCunSpUv6888/tX79eq1cuVKPPvqocubMqb59+yoiIkLt27dX8+bNFR8fr3nz5rk0D63ketvmzvXDmZYtW2rBggX64osvdOLECYWGhurAgQNas2aNHnvsMbv67Ofnp4iICPXq1UsNGjRQq1atVKRIEUVHR+uff/7RunXr9Pnnn9tGa6QmJibGYYEgq+DgYBUvXlzJyckaMGCA4uPjNXbsWGXLls3WPvTu3VvDhw/XsGHD7N5bvHhxde7cWeHh4QoKCtKGDRu0bds2NWvWzOVHZ9944w3973//U79+/dSwYUOVKVNGPj4+OnXqlH788Uc9/fTTGjlypMtlP2TIEJ05c0ZVq1bVI488ouvXr2v16tWKjY1Nc953qxYtWmjkyJGaMmWKihYtqtDQ0DTf4+XlpcGDB6tfv35q06aN2rZta3ssOjAwUKdOnbLbv0GDBhozZoxefvll1a1bV9euXdOKFSucPpqbWfUGeNjQh6APQR+CPsT91Ic4e/asrU26ceOGTp06pa1bt2rv3r0qUqSIIiMj7Ubou1OnunXrJn9/f5UrV04FCxZUdHS0oqKi5OHh4XA/lCdPHlWrVk1r167VjRs31Lp1a5cCgo8//rhtFHDHjh3VsGFDxcbGasGCBYqLi9Po0aNtgcD0uD9LyxNPPKGnnnpKU6dO1fXr11WsWDEdPnzYdh7dPoBEcq9upKZKlSpq2LChVq5cqatXr6pmzZo6f/685syZI19fX7377ru2fUuXLq0+ffooMjJSzZs3V/369ZU/f36dO3dOv//+u3788Ufb4tf3Umbu9o9cvR93xY8//uj0iQM/Pz/VrVtX0q0nFVatWqUePXrYRmB/9NFH2rdvnwYOHKhvv/3Wro+cK1curVu3TufOnVOFChV09OhR23nZu3dvl/KV3mWfHn3lJk2aaNSoUfrggw9cHgAk3bqmrlixQkOGDNHvv/+uJ598Urt27dKvv/7qEFt47rnnlC1bNr311lvq2LGjAgIC9L///U8//vijQz8iM+uNWQjGp6MVK1ZoxYoV8vT0lJ+fnwoUKKDy5cvr/fff13PPPZfm+7NmzarOnTvb5k+LjY1Vvnz5VKtWLb366qt2q8EPHTpUw4YN08SJExUbGytJ93wjPWDAAO3evVtz5szRhQsXVKxYMY0ePdphgZSmTZvq3Llzmj17tkaMGKHChQurZ8+e8vT0dBgx4EyWLFk0bdo0TZs2TStWrLCdBCEhIbabeOnWohnZs2fXmjVrtGHDBhUsWFDt2rVTqVKlHBZP9Pf319y5czV+/Hht3LhRS5YsUZ48edS+fXv16dMnzUWvpFvz602fPl1jxozR5MmT5e/vr/r166tDhw5OF4kZMWKEKlasqAULFmjSpEm6efOmgoKCVLJkSb355ptpHi89uJOHzz77TJ999pmWL1+ubdu2yWKxKDIyUitWrHC4kQ4LC9PIkSM1ceJEjRo1Svny5VOHDh0UEhLiUPY+Pj6aNGmS5syZo2XLltkW38yXL59KlSrlcsPtTO3atTVnzhxNnDhRixYtUmxsrPLmzauwsDCnU1NYBQQEaOrUqRo1apRmzZqlxMREhYSEaMqUKVq0aJHd561YsaIOHDigH374QefPn5enp6ceffRRvf322y7N9ehOvfHx8dFXX32lL7/8UqtWrdK6devk7++vBg0aqF+/fnYLVHXt2lWbNm3SzJkzFRMTozx58qhMmTJ69dVXXQoaW1ksFpUuXVp79+5Vw4YNHR6VCwsLU2RkpCZMmKBx48bJ19dXlStX1qxZs1ye69K6QNRXX32lL774QtKtYOgXX3zh8ogA6dbI36ioKE2aNEkbN27UvHnzlD17dhUqVEgtWrSw3RAFBwerbt262rVrl5YvX67k5GQVLFhQr776qrp27ery8e5Wq1atVLRoUU2bNk3z589XTEyMAgMDVaxYMfXt29fuMcWuXbvKz8/PVkcKFiyorl27yt/fP9WFLK1cbdvcuX44Y22XP/nkE23YsEHfffedSpUqZdt28uRJu/2rVaumRYsWafLkyfr22291+fJlBQQE6LHHHtNLL72U6vl5uzNnzuitt95y+lqPHj1UvHhxTZgwQbt27dLQoUPt0q1bt65eeOEFzZkzR1WqVLE9ii3dGhFVrFgxTZo0SYcPH1aePHnUs2dP9ezZ06V8Sf+W/bRp02zXIS8vLxUoUEBhYWFq06aNJNfLvlmzZlqyZImioqJ06dIl5ciRQ08++aTGjx9vl/fUNGnSRKNHj9a1a9fcesy8QYMGGj9+vL744gtFRkYqT548atGihcqXL+9wznTr1k2GYWjRokX6+OOPFRQUpIYNG6pVq1Z6/vnn7fbNrHoDPGzoQ9CHoA9BH+J+6kMcOHDAdn/m5+enXLlyqXjx4vr444/VuHFjpz80uFqnOnTooNWrV2v+/Pm6evWqAgMDVaJECb377rsOU1VIt36I+P777yXJreD4wIEDVaRIEc2ZM0djxoyRj4+PypQpozFjxqhcuXK2/dLj/iwtXl5emjRpkiIiIhQVFaX4+Hg99dRTioiI0MGDBx2C8e62KakZPXq0SpYsqaioKI0cOVJ+fn4qX768+vbt63Au9O7dWyEhIZo5c6a++eYbxcXFKU+ePHrqqaf0f//3f7b97rXM3OkfuXo/7orx48c73Z4/f37VrVtXhw4d0scff6yyZcuqT58+ttcDAgI0ZswYdezYUYMHD7Yt1ivdOj++/vprDR8+XGPGjJFhGKpWrZoGDRrk1lpI6Vn26dFXtv4Q9v3336to0aIuD2bKmTOnZs+erZEjR9pGx1eoUEHffPONwzXgscce05QpU/Tpp59q4sSJ8vLy0jPPPKOZM2fqww8/dOhHZFa9MYuHYcbqfIAbDh8+rPDwcK1Zs8bpCssw16BBgxQVFWVbIAwAHlQnTpxQ7dq11bt3b7ubaADAw4c+ROaiDwHgv6xTp046efKkNm7cmNlZwQOIOeOR6YoVK6Z8+fJp9erVmZ0VAAAAAA8A+hAAAOBBxDQ1yDSnT5/W8uXLlTVrVh05csS26CEAAAAAOEMfAgAAPMgIxiPTJCYmaubMmbpy5YpCQ0Pdnv8MAAAAwH8LfQgAAPAgY854AAAAAAAAAABMxpzxAAAAAAAAAACY7KGZpuby5VglJz/4g/zz5MmhixevZXY2HjqUqzkoV3NQruagXM1BuZqDcjVHSuXq6emhXLmyZ0KOcD+7fDlWuXJl51w0Ge2d+SjjjEE5m48yNh9lbD7KOGNkZjmn1bd4aILxycnGQxGMl/TQfI77DeVqDsrVHJSrOShXc1Cu5qBczUG5wlXWukKdMR9lbD7KOGNQzuajjM1HGZuPMs4Y92s5M00NAAAAAAAAAAAmIxgPAAAAAAAAAIDJCMYDAAAAAAAAAGAygvEAAAAAAAAAAJiMYDwAAAAAAAAAACYjGA8AAAAAAAAAgMkIxgMAAAAAAAAAYDKC8QAAAAAAAAAAmIxgPAAAAAAAAAAAJiMYDwAAAAAAAACAyQjGAwAAAAAAAABgMoLxAAAAAAAAAACYjGA8AAAAAAAAAAAmIxgPAAAAAAAAAIDJCMYDAAAAAAAAAGAy78zOAABkhoCc2eSbxbwm8EZCoqKvxpuWPgAAAJDezLxH5v4YAACC8QD+o3yzeGvguE2mpT+qb3XT0gYAAADMYOY9MvfHAAAwTQ0AAAAAAAAAAKYjGA8AAAAAAAAAgMmYpgYATHAzMVlBQf53/f603sucmwAAAAAAAA8WgvEAYAIfb8+7nm/Tx8dbN28mproPc24CAAAAAAA8WJimBgAAAAAAAAAAkxGMBwAAAAAAAADAZExTAwAAAADAAyIgZzb5ZnGvK38vaxkBAID0QzAeAAAAAIAHhG8Wb7fWJnJlPSIr1iUCAMBcTFMDAAAAAAAAAIDJCMYDAAAAAAAAAGAygvEAAAAAAAAAAJiMYDwAAAAAAAAAACYjGA8AAAAAAAAAgMkIxgMAAAAAAAAAYDKC8QAAAAAAAAAAmIxgPAAAAAAAAAAAJiMYDwAAAAAAAACAyQjGAwAAAAAAAABgMoLxAAAAAAAAAACYjGA8AAAAAAAAAAAmIxgPAAAAAAAAAIDJCMYDAAAAAAAAAGAygvEAAAAAAAAAAJiMYDwAAAAAAAAAACYjGA8AAAAAAAAAgMkIxgMAAAAAAAAAYDKC8QAAAAAAAAAAmIxgPAAAAAAAAAAAJiMYDwAAAAAAAACAyQjGAwAAAAAAAABgMoLxAAAAAAAAAACYjGA8AAAAAAAAAAAmIxgPAAAAAAAAAIDJCMYDAAAAAAAAAGAygvEAAAAAAAAAAJiMYDwAAAAAAAAAACbzzuwMAAAAAAAA3K2AnNnkm8Wc8MaNhERFX403JW0AwH8PwXgA9yUzb6gBAAAAPDx8s3hr4LhNpqQ9qm91U9IFAPw3EekCcF8y84Za4qYaAAAAAAAAGYs54wEAAAAAAAAAMBnBeAAAAAAAAAAATEYwHgAAAAAAAAAAkxGMBwAAAAAAAADAZATjAQAAAAAAAAAwGcF4AAAAAAAAAABMlqHB+O+//17NmzdXs2bN1LRpU3333XeSpMOHD6tdu3aqX7++2rVrpyNHjmRktgAAAAAAAAAAMJV3Rh3IMAy99dZbmj17tiwWiw4ePKgOHTqoTp06Gjp0qF544QU1a9ZMy5Yt03vvvadvvvkmo7IGAAAAAAAAAICpMnRkvKenp2JiYiRJMTExypcvny5fvqz9+/ercePGkqTGjRtr//79unTpUkZmDQAAAAAAAAAA02TYyHgPDw999tln6tmzp/z8/BQbG6vJkyfr9OnTyp8/v7y8vCRJXl5eypcvn06fPq3cuXNnVPYAAAAAAIBJbiYmKyjIP7OzAQBApsqwYHxiYqImTZqkCRMmKCwsTD///LP69eunTz75JF3Sz5MnR7qkcz/gBsUclKs5zCxXHx9zm6j7OX1X3kuddh9lZg7K1RyUqzko14fL999/r3HjxskwDBmGod69e6tevXo6fPiwBg0apCtXrigwMFAREREqWrRoZmcX+E/z8fbUwHGbTEl7VN/qpqQLAEB6y7Bg/IEDB3Tu3DmFhYVJksLCwpQtWzb5+vrq7NmzSkpKkpeXl5KSknTu3DkVLFjQrfQvXrym5GTDjKxnqKAgf50/H5PZ2XjoUK7mMLNcg4L8dfNmoilpW92v6fv4eLv0Xuq0e2gHzEG5moNyNUdK5erp6fFQDez4r2BNKgAAADxoMmzO+AIFCujMmTP6559/JEmHDh3SxYsXVaRIEZUoUUIrVqyQJK1YsUIlSpRgihoAAAAAqWJNKgAAADxIMmxkfFBQkN5//3317dtXHh4ekqThw4crMDBQ77//vgYNGqQJEyYoICBAERERGZUtAAAAAA8gs9eksj4twdRG5qOM3efudIju7G/mVI4Patqu1lHqsvkoY/NRxuajjDPG/VrOGRaMl6SmTZuqadOmDtufeOIJLVy4MCOzAgAAAOABZvaaVBcvXlOePDmYMspkTMvlPnenc3R1CkQrM6dyfFDTdqWOUpfNRxmbjzI2H2WcMTKznNOaAjPDpqkBAAAAgPTiyppUku56TSoAAAAgvRGMBwAAAPDAYU0qAAAAPGgydJoaAAAAAEgPrEkFAACABw3BeAAAAAAPJNakAgAAwIOEaWoAAAAAAAAAADAZwXgAAAAAAAAAAExGMB4AAAAAAAAAAJMRjAcAAAAAAAAAwGQE4wEAAAAAAAAAMBnBeAAAAAAAAAAATEYwHgAAAAAAAAAAkxGMBwAAAAAAAADAZATjAQAAAAAAAAAwGcF4AAAAAAAAAABMRjAeAAAAAAAAAACTEYwHAAAAAAAAAMBkBOMBAAAAAAAAADAZwXgAAAAAAAAAAEzmndkZAAC472ZisoKC/E1L/0ZCoqKvxpuWPgAAAAAAwH8NwXgAeAD5eHtq4LhNpqU/qm9109IGAAAAAAD4L2KaGgAAAAAAAAAATEYwHgAAAAAAAAAAkxGMBwAAAAAAAADAZATjAQAAAAAAAAAwGcF4AAAAAAAAAABMRjAeAAAAAAAAAACTEYwHAAAAAAAAAMBkBOMBAAAAAAAAADAZwXgAAAAAAAAAAEzmndkZAAAAAADgYRKQM5t8s9DdBgAA9rg7AAAAAAAgHflm8dbAcZtMSXtU3+qmpAsAAMzHNDUAAAAAAAAAAJiMYDwAAAAAAAAAACYjGA8AAAAAAAAAgMkIxgMAAAAAAAAAYDKC8QAAAAAAAAAAmIxgPAAAAAAAAAAAJvPO7AwAAO4/NxOTFRTkb1r6NxISFX013rT0AQAAAAAA7jcE4wEADny8PTVw3CbT0h/Vt7ppaQMAAAAAANyPmKYGAAAAAAAAAACTEYwHAAAAAAAAAMBkBOMBAAAAAAAAADAZwXgAAAAAAAAAAExGMB4AAAAAAAAAAJMRjAcAAAAAAAAAwGQE4wEAAAAAAAAAMBnBeAAAAAAAAAAATEYwHgAAAAAAAAAAkxGMBwAAAAAAAADAZATjAQAAAAAAAAAwGcF4AAAAAAAAAABMRjAeAAAAAAAAAACTEYwHAAAAAAAAAMBk3pmdAQDAf8/NxGQFBfmblv6NhERFX403LX0AAAAAAAB3EYwHAGQ4H29PDRy3ybT0R/WtblraAAAAAAAAd4NpagAAAAAAAAAAMBnBeAAAAAAAAAAATEYwHgAAAAAAAAAAkxGMBwAAAAAAAADAZATjAQAAAAAAAAAwmXdmZwAAAAAAAOB+dDMxWUFB/i7t6+p+VjcSEhV9Nf5usgUAeEARjAcAAAAAAHDCx9tTA8dtSns/H2/dvJnoVtqj+la/22wBAB5QTFMDAAAAAAAAAIDJCMYDAAAAAAAAAGAygvEAAAAAAAAAAJiMYDwAAAAAAAAAACYjGA8AAAAAAAAAgMkIxgMAAAAAAAAAYDKC8QAAAAAAAAAAmMw7Iw924acf2QAAIABJREFU48YNDR8+XNu3b5evr69CQ0P14Ycf6vDhwxo0aJCuXLmiwMBARUREqGjRohmZNQAAAAAAAAAATJOhwfhRo0bJ19dXa9eulYeHhy5cuCBJGjp0qF544QU1a9ZMy5Yt03vvvadvvvkmI7MGAAAAAAAAAIBpMmyamtjYWC1dulR9+/aVh4eHJClv3ry6ePGi9u/fr8aNG0uSGjdurP379+vSpUsZlTUAAAAAAAAAAEyVYSPjjx8/rsDAQH3++efauXOnsmfPrr59+ypr1qzKnz+/vLy8JEleXl7Kly+fTp8+rdy5c7ucfp48OczKeoYLCvLP7Cw8lChXc5hZrj4+5jZR93P6rrz3fs5/Zqd/MzHZad1Mr/p6MzFZPt4su2JF+2oOytUclOvDhWkwAQAA8CDJsGB8UlKSjh8/rpIlS+rtt9/Wnj171KNHD40bNy5d0r948ZqSk410SSszBQX56/z5mMzOxkOHcjWHmeUaFOSvmzcTTUnb6n5N38fH26X33q/5vx/S9/H21MBxm+y3uViurhjVtzptyv+3d+fRUVTp/8c/adIJKJuBBAMoETSRYd9EEQcJIBETVhUGEGQJ+kVEQSLIIiIIBhRF9m1wGQZH2SSAODo4LC4IKIKKKIgG2SIJiywmnXT9/uBHD21I6IauXt+vczwnXVV96+nHonLvk1u3/z/ur+Ygr+YoKq8WS1hQTewIJSyDCQAAgEDitWl9sbGxCg8PdyxHU69ePV133XUqWbKkjh49qoKCAknni/ZZWVmKjY31VmgAAAAAAgzLYAIAACDQeG1mfFRUlJo2bapPPvlEzZs31/79+5Wdna24uDjVrFlTq1evVocOHbR69WrVrFnTrSVqAAAAAIQWby2DydJG5gvWHJu5JJ+7bbtzvD/FHWhtX0kMwXr9m4V8mY8cm48ce4e/5tlrxXhJGjdunEaOHKn09HSFh4dr8uTJKlu2rJ577jmNGDFCs2bNUtmyZZWenu7NsAAAAAAEGG8sg1mhQmmWjDJZsC7LZfaSi+607e5Sff4Sd6C1faVLIgbj9W+WYL1f+BNybD5y7B2+zPPllsD0ajH+hhtu0FtvvVVoe40aNfTuu+96MxQAAAAAAcyVZTBLlCjBMpgAAADwG15bMx4AAAAAPOXiZTAlXXIZTEksgwkAAAC/4dWZ8QAAAADgKSyDCQAAgEBCMR4AAABAQGIZTAAAAAQSlqkBAAAAAAAAAMBkbs+MP3nypDZu3KjDhw8rLy/Pad+gQYM8FhgAAACA4MbYAgAAAKHErWL8jh079Mgjj8hqter48eOqVKmSsrKyFBERoSpVqtBhBgAAAOASxhYAAAAINW4tUzN58mSlpKRo06ZNioiI0BtvvKH//ve/ql27tlJTU82KEQAAAECQYWwBAACAUONWMX7Pnj3q0aOHwsLCVKJECeXl5alixYoaNmyYZsyYYVaMAAAAAIIMYwsAAACEGreK8Var1fFzhQoVdPDgQUnStddeq6ysLM9GBgAAACBoMbYAAABAqHFrzfhatWpp165duummm9S0aVO9+uqrys7O1qpVq5SQkGBWjAAAAACCDGMLAAAAhBq3ZsY/+eSTiomJcfwcFRWl8ePH6+TJk3r++edNCRAAAABA8GFsAQAAgFDj1sz4OnXqOH6OiorSggULPB4QAAAAgODH2AIAAAChxq2Z8QAAAAAAAAAAwH2XnRmfkpKif/zjHypXrpxSUlKKPTYjI8NjgQEAAAAILowtAAAAEMouW4xv27atIiIiHD8DgCSVLVdKkhQdXcbHkQAAgEDB2AIAAACh7LLF+EGDBl3yZwChLTIiXCNnfSKbLd+U9qc80cKUdgEAgO8wtgAAAEAoc2vN+B9//FHff/99oe3ff/+99u7d67GgAAAAAAQ3xhYAAAAINW4V48eMGaMff/yx0PZ9+/ZpzJgxHgsKAAAAQHBjbAEAAIBQ41Yxfs+ePapbt26h7XXq1NEPP/zgsaAAAAAABDfGFgAAAAg1bhXjS5Qood9//73Q9pMnT8owDI8FBQAAACC4MbYAAABAqHGrGN+kSRPNmTNHBQUFjm35+fmaM2eOmjRp4vHgAAAAAAQnxhYAAAAINeHuHJyWlqbu3burTZs2atSokSRp+/btOnv2rBYvXmxKgAAAAACCD2MLAAAAhBq3ZsZXr15dq1atUkpKik6ePKmTJ08qJSVF7733nmrUqGFWjAAAAACCDGMLAAAAhBq3ZsZLUkxMjIYMGWJGLAAAAABCCGMLAAAAhBK3i/Hnzp3T7t27lZOTI7vd7rTvnnvu8VhgAAAAAIIbYwsAAACEEreK8Z9++qmGDh2qEydOFNoXFham3bt3eywwAAAAAMGLsQUAAABCjVvF+BdeeEF33323hgwZokqVKpkVEwAAAIAgx9gCAAAAocatYvzBgwc1e/ZsOssAAAAArgpjCwAAAIQat4rxDRs21P79+3XjjTeaFQ8AAACAEMDYAkCos+XbFR1dxpS2c/PyderkOVPaBgBcObeK8d26dVN6erqysrIUHx+v8HDnt9eqVcujwQEAAAAITowtAIQ6a7hFadM2mNL2lCdamNIuAODquFWMHzx4sCRpzJgxhfbxJUsAAAAAXMXYAgAAAKHGrWL8f/7zH7PiAAAAABBCGFsAAAAg1LhVjK9SpYpZcQAAAAAIIYwtAAAAEGos7r5hw4YNeuSRR9SuXTsdPnxYkvTuu+/qs88+83hwAAAAAIIXYwsAAACEEpeK8du2bZMkrVq1Sk8++aSqVaumX3/9Vfn5+ZKkgoICLViwwLwoAQAAAAQFxhYAAAAIVcUW43NzczVhwgTNnj1bkjR//nxNmDBBI0eOVIkSJRzH1a9fny9YAgAAAFAkxhYAAAAIdcUW4xcsWKBff/1VCxculCRlZmaqfv36hY675pprdPr0aXMiBAAAABDwGFsAAAAg1BVbjG/fvr1OnTqlyZMnS5JiYmL0888/Fzpu69atuvHGG00JEAAAAEDgY2wBAACAUFdsMf6GG27Q4sWLFRMTI0l68MEHNWHCBG3fvl2SdPjwYa1YsUJTpkzR3/72N/OjBQAAABCQGFsAAAAg1IVf7oCwsDA9/PDDkqTU1FSdPn1affv2VW5urnr16qWIiAj17dtXPXr0MDtWAAAAAAGMsQUAAABC2WWL8X82ZMgQPfroo9q7d68Mw1CNGjV07bXXmhEbAAAAgCDG2AIAAAChxO1ivCSVKlVKderU8XQsAAAAAEIMYwsAAACECreK8Y8++mix++fMmXNVwQAAAAAIDYwtAAAAEGrcKsZfd911Tq9tNpv27Nmjw4cPq02bNh4NDAAAAEDwYmwBAACAUONWMX7SpEmX3P7iiy+qdOnSHgkIAAAAQPBjbAEAAIBQY/FEI127dtXixYs90RQAAACAEMbYAgAAAMHKI8X4/fv3e6IZAAAAACGOsQUAAACClVvL1EyYMMHptWEY+u2337Rx40Z16dLFo4EBAAAACF6MLQAAABBq3CrG79mzx+m1xWJRVFSUnnnmGTrMAAAAAFzG2AIAAAChxq1i/FtvvWVWHAAAAABCCGMLAAAAhBqPrBkPAAAAAAAAAACK5tbM+IceekhhYWEuHfvmm29eUUAAAAAAgh9jCwAAAIQat4rxNWrUUEZGhipWrKh69epJknbu3Kljx44pOTlZJUqUMCVIAAAAAMGFsQUAAABCjVvF+IiICHXq1EmjRo1ymsXywgsvyDAMjR492uMBAgAAAAg+jC0AAAAQatxaM/69995Tjx49Cj1O2r17d61atcqjgQEAAAAIXowtAAAAEGrcKsYbhqEffvih0PZLbQMAAACAojC2AAAAQKhxa5maLl26aPTo0frll18c6zp+/fXXWrBggTp37mxKgAAAAACCD2MLAAAAhBq3ivFpaWmKiorSm2++qalTp0qSoqOjlZqaqr59+5oSIAAA/saWb1d0dBnT2s/Ny9epk+dMax8A/AFjCwAAAIQat4rxFotFqampSk1N1enTpyVJpUuXNiUwAAD8lTXcorRpG0xrf8oTLUxrGwD8BWMLAAAAhBq31oy/YNeuXdq4caMslvNvP3v2rPLz8z0aGAAAAIDgx9gCAAAAocKtmfHHjh3TwIEDtXPnToWFhenf//63rrnmGr344ouKiIjQ6NGjzYoTAAAAQBBhbAEAAIBQ49bM+EmTJqlChQrasmWLSpYs6dielJSkTz75xOPBAQAAAAhOjC0AAAAQatyaGf/ZZ5/p9ddfV7ly5Zy233DDDTp8+LBHAwMAAAAQvBhbAAAAINS4NTP+jz/+kNVqLbT9+PHjioyM9FhQAAAAAIIbYwsAAACEGreK8U2aNNGKFSucthUUFGj+/Pm6/fbbPRoYAAAAgODF2AIAAAChxq1latLS0tSzZ0/t2rVLNptN6enp+vHHH3X69GktWbLErBgBAAAABBnGFgAAAAg1bhXjb775ZmVkZGjJkiWKiIhQbm6ukpKS1KNHD8XExJgVIwAAAIAgw9gCAAAAocblYrzNZlP37t2Vnp6uwYMHmxkTAAAAgCDG2AIAAAChyOU1461Wq3799VeFhYWZGQ8AAACAIMfYAgAAAKHIrS9w7dixo955552rPumMGTOUkJCgH374QZK0Y8cOtW/fXm3btlXfvn2VnZ191ecAAAAA4L88NbYAAAAAAoVba8afO3dOGRkZ+vTTT1WrVi1dc801TvtHjx592Ta+/fZb7dixQ1WqVJEk2e12paWladKkSWrcuLFmzZqll156SZMmTXInNAAAAAABxBNjCwAAACCQuDQz/vvvv1dBQYH27dunv/zlLypbtqwOHDigPXv2OP67MMu9OHl5eXr++ef13HPPObZ98803ioyMVOPGjSVJ3bp107p1667s0wAAAADwa54aW1yMJ28BAAAQCFyaGd+pUydt3rxZb731liRpwIABmjBhgmJiYtw62bRp09S+fXtVrVrVse3w4cOqXLmy43VUVJTsdrtOnDih8uXLu9x2hQql3YrFn0VHl/F1CEGJvJrDanXrARu/advf23flvf4cv7+278lzmh1/IN2zAinWQEJezUFefc9TY4sLePIWAAAAgcKlSoJhGE6vt23bptzcXLdO9NVXX+mbb77RsGHD3Hqfq7KzT8tuNy5/oJ+Lji6j33773ddhBB3y6nkXihk2W75p5zCzbX9u32oNd+m9/hq/v7bval6vtH1PC5R7FvdXc5BXcxSVV4slLKgmdvg7T4wtLrjw5O3LL7+sXr16Sbr0k7etWrWiGA8AAACfu6JpfX/uQLti69at2rdvn1q1aiVJOnLkiPr166eHHnpIhw4dchyXk5Mji8Xi1qx4AAAAAIHpSsYWF3jjyVuepjBfsObYn54gded4f4o70Nq+khjMjDsY/20F42fyN+TYfOTYO/w1zy7d9cPCwhQWFnZVJxowYIAGDBjgeJ2YmKg5c+bo5ptv1jvvvKNt27apcePGevvtt5WUlHRV5wIAAADgnzwxtpC88+RthQqleUrFZMH6JFB0dBm/eYLU3acD/SXuQGv7Sp/CNDPuYPu3Faz3C39Cjs1Hjr3Dl3m+3FO3Li9Tk5aWJqvVKun846BjxoxRyZIlnY6bM2fOFQRo0eTJkzV27Fjl5uaqSpUqmjJlitvtAAAAAPB/nhpb8OQtAAAAAo3LX+B6sfbt21/1idevX+/4uWHDhsrIyLjqNgEAAAD4N0+NLXjyFgAAAIHGpWI8X3YEAAAAwBPMHlvw5C0AAAD8lXnfFAIAAAAAXsKTtwAAAPB3Fl8HAAAAAAAAAABAsKMYDwAAAAAAAACAySjGAwAAAAAAAABgMorxAAAAAAAAAACYjGI8AAAAAAAAAAAmoxgPAAAAAAAAAIDJwn0dAAAAAAAA3la2XClFRjAkBgAA3kPPAwAAAAAQciIjwpU2bYMpbU95ooUp7QIAgMDGMjUAAAAAAAAAAJiMYjwAAAAAAAAAACZjmRoAAAAAAIAgYsu3Kzq6jClt5+bl69TJc6a0DQDBjmI8AAAAAABAELGGW/hOBADwQyxTAwAAAAAAAACAySjGAwAAAAAAAABgMorxAAAAAAAAAACYjGI8AAAAAAAAAAAm4wtcgSBVtlwpRUbwTxwAAAAAAADwB1TqgCAVGRGutGkbTGt/yhMtTGsbAAAAAAAACDYsUwMAAAAAAAAAgMkoxgMAAAAAAAAAYDKK8QAAAAAAAAAAmIxiPAAAAAAAAAAAJqMYDwAAAAAAAACAySjGAwAAAAAAAABgMorxAAAAAAAAAACYjGI8AAAAAAAAAAAmoxgPAAAAAAAAAIDJKMYDAAAAAAAAAGAyivEAAAAAAAAAAJiMYjwAAAAAAAAAACajGA8AAAAAAAAAgMkoxgMAAAAAAAAAYDKK8QAAAAAAAAAAmIxiPAAAAAAAAAAAJqMYDwAAAAAAAACAySjGAwAAAAAAAABgMorxAAAAAAAAAACYjGI8AAAAAAAAAAAmoxgPAAAAAAAAAIDJKMYDAAAAAAAAAGAyivEAAAAAAAAAAJiMYjwAAAAAAAAAACajGA8AAAAAAAAAgMkoxgMAAAAAAAAAYLJwXwcAAAAAAACAwGDLtys6uowpbefm5evUyXOmtA0A/oBiPAAAAAAAAFxiDbcobdoGU9qe8kQLU9oFAH/BMjUAAAAAAAAAAJiMYjwAAAAAAAAAACajGA8AAAAAAAAAgMkoxgMAAAAAAAAAYDKK8QAAAAAAAAAAmIxiPAAAAAAAAAAAJqMYDwAAAAAAAACAySjGAwAAAAAAAABgMorxAAAAAAAAAACYjGI8AAAAAAAAAAAmoxgPAAAAAAAAAIDJKMYDAAAAAAAAAGAyivEAAAAAAAAAAJiMYjwAAAAAAAAAACajGA8AAAAAAAAAgMkoxgMAAAAAAAAAYDKK8QAAAAAAAAAAmIxiPAAAAAAAAAAAJqMYDwAAAAAAAACAySjGAwAAAAAAAABgMorxAAAAAAAAAACYLNybJzt+/LiefvppZWZmKiIiQtWqVdPzzz+vqKgo7dixQ88++6xyc3NVpUoVTZkyRRUqVPBmeAAAAAAAAAAAmMKrM+PDwsLUv39/ffDBB8rIyNANN9ygl156SXa7XWlpaXr22Wf1wQcfqHHjxnrppZe8GRoAAACAAHL8+HGlpqaqbdu2SklJ0aBBg5STkyNJ2rFjh9q3b6+2bduqb9++ys7O9nG0AAAAgJeL8eXLl1fTpk0dr+vXr69Dhw7pm2++UWRkpBo3bixJ6tatm9atW+fN0AAAAAAEECb6AAAAINB4dZmai9ntdi1ZskSJiYk6fPiwKleu7NgXFRUlu92uEydOqHz58i61V6FCabNC9bro6DK+DiEohWJerVbz/4mbeQ6z4/fn9l15rz/H76/te/KcZsZvy7ebes+y5dtlDffc3+ND8f7qDeTVHOQ1eFxqos+SJUsuOdGnVatWmjRpkq9CBQAAACT5sBg/fvx4XXPNNerZs6c+/PDDq24vO/u07HbDA5H5VnR0Gf322+++DiPohGJeo6PLyGbLN/08Zp7D7Pj9tX2rNdyl9/pr/P7avqt5vdL2PckablHatA2mtT/liRYeuyeG4v3VG8irOYrKq8USFlQTO0KRpyf6SP+b7MMfcMznyxwH6sQSd9t253h/ijvQ2r6SGPwhbn9ru7h7Avdk85Fj85Fj7/DXPPukGJ+enq5ffvlFc+bMkcViUWxsrA4dOuTYn5OTI4vF4lZnGQAAAEBo8vREH+n8ZJ8KFUrzhzGT+fKPj2ZPXvGXtt2dkOAvcQda21c68cPXcftj20XdE5isYD5ybD5y7B2+zPPlJvp4dc14SZo6daq++eYbzZw5UxEREZKk2rVr648//tC2bdskSW+//baSkpK8HRoAAACAAHNhos+rr77KRB8AAAD4Na/OjP/xxx81d+5cxcXFqVu3bpKkqlWraubMmZo8ebLGjh2r3NxcValSRVOmTPFmaAAAAAACzIWJPvPmzbvkRJ/GjRsz0QcAAAB+w6vF+FtuuUV79uy55L6GDRsqIyPDm+EAAAAACFBM9AEAAECg8dkXuAIAAADAlWKiDwAAAAKN19eMBwAAAAAAAAAg1FCMBwAAAAAAAADAZCxTAwAAAAAAAJ+z5dsVHV2myP3F7buc3Lx8nTp57orfDwCeQDEeAAAAAAAAPmcNtyht2oZL77OGy2bLv+K2pzzR4orfCwCewjI1AAAAAAAAAACYjJnxgI+ULVdKkRH8EwQAAAAAAABCAZVAwEciI8KLfPzOE3gEDwAAAAAAAPAfLFMDAAAAAAAAAIDJKMYDAAAAAAAAAGAyivEAAAAAAAAAAJiMYjwAAAAAAAAAACajGA8AAAAAAAAAgMkoxgMAAAAAAAAAYLJwXwcAAAAAAMCllC1XSpERDFsBXD1bvl3R0WVMaTs3L1+nTp4zpW0AwYVeDQAAAADAL0VGhCtt2gZT2p7yRAtT2gXgn6zhFu4nAHyOZWoAAAAAAAAAADAZxXgAAAAAAAAAAEzGMjUAAIQYT6+X+ee2WDMTAAAAocTM9ejPt18ga3gJU9qm7w54F8V4AABCjCfXy7Raw2Wz5TttY81MAAAAhBIz16OXzvevWe8eCA4sUwMAAAAAAAAAgMkoxgMAAAAAAAAAYDKK8QAAAAAAAAAAmIxiPAAAAAAAAAAAJqMYDwAAAAAAAACAySjGAwAAAAAAAABgsnBfBwBcqbLlSikywvVLODq6jFvt2/ILZA0v4W5YAAAAAAAAAFAIxXgErMiIcKVN2+DSsVZruGy2fLfan/JEC5fbvxJTnmhhWtsAAAAAAAAA/AvL1AAAAAAAAAAAYDKK8QAAAAAAAAAAmIxiPAAAAAAAAAAAJqMYDwAAAAAAAACAySjGAwAAAAAAAABgMorxAAAAAAAAAACYjGI8AAAAAAAAAAAmoxgPAAAAAAAAAIDJKMYDAAAAAAAAAGAyivEAAAAAAAAAAJgs3NcBAAAAAAAAAPA+W75d0dFlHK8v/vlq5ebl69TJcx5rz1vKliulyAhzSqa2fLsp7SJwUIwHAAAAAAAAQpA13KK0aRvO/2wNl82W77G2pzzRwmNteVNkRLgjJ54WqDmB57BMDQAAAAAAAAAAJmNmPAAAAAAAAICAYeZSMoCZuGoBAAAAAAAABAyWkkGgYpkaAAAAAAAAAABMRjEeAAAAAAAAAACTsUwNTMP6XQAAAAAAAABwHpVSmMbM9bsk1vACAAAAAAAAEDhYpgYAAAAAAAAAAJNRjAcAAAAAAAAAwGQsUxPCWNMdAAAACA1m9v1t+QWyhpe44vdHR5fxYDQAAAD+i0psCGNNdwAAACA0mNn3n/JEiytu22oNl82WX2zbAAAAwYJlagAAAAAAAAAAMBnFeAAAAAAAAAAATMYyNQAAwKNs+XZT1//NzcvXqZPnTGsfAHyF73QCAAQTs8cFQCCipwcAADzKGm7hO0kA4AqYva47AADeZOa4gN9rCFQsUwMAAAAAAAAAgMkoxgMAAAAAAAAAYDKWqQEAALiI2Ws2s+Y9AAAAAIQmivEAAAAXMXPNZon1LQEAAAAgVLFMDQAAAAAAAAAAJqMYDwAAAAAAAACAyVim5iqYtaZsdHQZSawpCwAAAAAAAAQLW77dUffztECtI5pZX/XHnFCMvwpmrClrtYbLZsuXxJqyAAAAAAAAQLCwhltM+36qQK0jmllf9cecsEwNAAAAAAAAAAAmoxgPAAAAAAAAAIDJWKYGAAAAAAAAAHBJZq3rHorIIgAAAAAAAADgksxY1/0Cf1zX3UwsUwMAAAAAAAAAgMmYGe/HbPl2RUeX8XUYAAD4FX4/+pbZj6jm5uXr1MlzprUPAAAABCPGSYHBb4rx+/fv14gRI3TixAmVL19e6enpiouL83VYPmUNt5j2CIgUeo+BAACCA78ffcvMR1Ql8g/PYXwBAABCiZnjJPronuM3y9SMHTtW3bt31wcffKDu3bvr2Wef9XVIAAAAAAIU4wsAAAD4G7+YGZ+dna3vvvtOixYtkiQlJydr/PjxysnJUVRUlEttWCxhZoZYpOvKRHq0vXBruPJtJUxr/89Cpf0/59XT7V+pQG+/fJnIK8qrqwI9P1favqvXq7/G76/tX+l9wNX2PS1Q2i8qr4ESv6/ad6Xf4qu+jSv8IT+ebNufc40r48nxhbevDzP/fflj2678fvbHuAOpbXf7QP4Sd6C17Y9jzmBr2xP9+UDNidntX2jb02Omi9s2A23TdlEuvpa93Ze73PnCDMMwvBRLkb755hsNHz5ca9ascWxr166dpkyZolq1avkwMgAAAACBhvEFAAAA/JHfLFMDAAAAAAAAAECw8otifGxsrI4ePaqCggJJUkFBgbKyshQbG+vjyAAAAAAEGsYXAAAA8Ed+UYyvUKGCatasqdWrV0uSVq9erZo1a7q8niMAAAAAXMD4AgAAAP7IL9aMl6R9+/ZpxIgROnXqlMqWLav09HRVr17d12EBAAAACECMLwAAAOBv/KYYDwAAAAAAAABAsPKLZWoAAAAAAAAAAAhmFOMBAAAAAAAAADAZxXgAAAAAAAAAAExGMR4AAAAAAAAAAJNRjAcAAAAAAAAAwGQU433s3LlzevLJJ9WmTRslJSXp448/LvLY3bt3q0ePHmrXrp3atWunDRs2eDHSwOJOXiUpNzdX9913nzp37uylCAOTq3n96KOP1LlzZyUnJ+u+++7T3//+dy9H6v/279+vrl27qm3bturatat+/vnnQscUFBRo3Lhxat26tdq0aaN3333X+4EGGFfyOnPmTN13331KSUlR586dtWnTJu8HGmBcyesFP/30k+rVq6f09HTvBRigXM3r2rVrlZKSouTkZKWkpOjYsWPeDTQAuZLb7OxsDRgwQCkpKbr33nv13HPPKT8/3/vBwifkNSxPAAAcTUlEQVRcuUamT5+uO+64Qx06dFCHDh00btw4xz53+5qhyJUcP/300478dujQQbfeeqv+85//SCo+/5DS09OVmJiohIQE/fDDD5c8pri+JP1M17iS5+L6liNGjNBf//pXx3U8e/Zsb4UeMFzJMffjq+NKjrkfX53jx48rNTVVbdu2VUpKigYNGqScnJxCxxV3vXItF8/VHI8bN05JSUlq3769unXrpl27djn2PfTQQ2rVqpXjWl62bJk3P8L/GPCp6dOnG6NGjTIMwzD2799vNGvWzDh9+nSh486cOWMkJiYaX331lWEYhmGz2YycnByvxhpIXM3rBZMmTTKeeeYZo1OnTt4KMSC5mtcdO3YYR44cMQzDME6dOmW0bt3a2Lp1q1dj9XcPPfSQsXLlSsMwDGPlypXGQw89VOiYFStWGH379jUKCgqM7Oxs46677jIOHDjg7VADiit53bhxo3H27FnDMAxj9+7dRqNGjYxz5855Nc5A40peDcMw8vPzjZ49expDhw41XnzxRW+GGJBcyevOnTuNe++918jKyjIM4/w99Y8//vBqnIHIldxOmDDBcZ3m5eUZ999/v7FmzRqvxgnfceUaee2114q8l7nb1wxFrv7uuGD37t3GbbfdZuTm5hqGUXz+YRhbt241Dh06ZLRs2dLYs2fPJY8pri9JP9M1ruS5uL7l8OHDjbfeestr8QYiV3LM/fjquJLji3E/dt/x48eNzz//3PH6xRdfNJ555plCxxV3vXItF8/VHK9fv97Iy8tz/NyqVSvHvp49exrr1683P9jLYGa8j73//vvq2rWrJCkuLk61a9fWxo0bCx23evVqNWrUSPXr15ckhYeH67rrrvNqrIHE1bxK0rZt2/Tzzz+rQ4cO3gwxILma13r16qlSpUqSpDJlyqhGjRo6ePCgV2P1Z9nZ2fruu++UnJwsSUpOTtZ3331X6K+6a9eu1QMPPCCLxaKoqCi1bt1a69at80XIAcHVvN51110qVaqUJCkhIUGGYejEiRNejzdQuJpXSZo3b57uvvtuxcXFeTnKwONqXl9//XX17dtX0dHRks7fUyMjI70ebyBxNbdhYWE6c+aM7Ha78vLyZLPZHL+7ENzcua8VxZ2+Zii6khwvXbpUKSkpioiI8FaYAa1x48aKjY0t9pji+pL0M13jSp7pW14dV3JcHO7Hl+dujrkfu698+fJq2rSp43X9+vV16NChQscVd71yLRfP1Ry3bNlSVqvVccyRI0dkt9u9FqcrKMb72KFDh1SlShXH69jYWB05cqTQcXv37lV4eLhSU1PVoUMHjRw5UidPnvRmqAHF1byePXtWEydO5DErF7ma14vt27dPO3bs0O233252eAHj8OHDqlSpkkqUKCFJKlGihGJiYnT48OFCx1WuXNnx2pV8hzJX83qxlStX6sYbb9T111/vrTADjqt5/f7777V582Y9/PDDPogy8Lia13379unAgQPq0aOHOnXqpFmzZskwDF+EHDBcze3AgQO1f/9+NW/e3PFfo0aNfBEyvMyd3xdr1qxRSkqK+vbtq6+++sqx/Ur6RKHE3d/JeXl5ysjIUJcuXZy2F5V/uKa4viT9THNcqm+5aNEipaSkaODAgdq3b58Powts3I+9g/vx1bPb7VqyZIkSExML7SvueuVadl1xOb7Y4sWLdffdd8ti+V/5e/LkyUpJSdGwYcN09OhRs0O9pHCfnDWEdOrU6ZJ/qZGkTz/91OV27Ha7Pv/8c7399tuqWLGiJk2apBdffFGTJk3yVKgBxVN5nTx5srp3765KlSoVuwZyqPBUXi/IysrSwIEDNXbsWGYbwu988cUXmjZtGt9p4AE2m01jxozRpEmTHIUXeEZBQYH27NmjRYsWKS8vT/3791flypXVsWNHX4cW8NatW6eEhAS98cYbOnPmjFJTU7Vu3TolJSX5OjT4iW7duunRRx+V1WrVJ598ooEDB2rt2rU8nWqCjz76SJUrV1bNmjUd28g/As2l+pZDhgxRdHS0LBaLVq5cqf79++ujjz6iv+Qm7gfew/346o0fP17XXHONevbs6etQgpYrOV6zZo0yMjK0ePFix7bJkycrNjZWBQUFmjt3rp588kktWbLEGyE7oRhvshUrVhS7v3Llyjp48KCioqIknZ+hcPFjFxfExsaqadOmiomJkSSlpKRo5MiRng84QHgqr9u3b9fGjRs1a9Ys5ebm6uTJk0pJSVFGRoYpcfs7T+VVOv94cp8+fdS/f3/de++9Ho81kMXGxuro0aMqKChQiRIlVFBQoKysrEKPDsbGxurQoUOqW7eupMIzmODM1bxK0ldffaW0tDTNmjVL1atX90G0gcOVvP7222/KzMzUgAEDJEmnTp2SYRg6ffq0xo8f76vQ/Zqr12vlypWVlJSkiIgIRUREqFWrVtq5cyfF+GK4mtt//OMfmjhxoiwWi8qUKaPExERt2bKFYnwIcPUaubA8lCTdeeedio2N1Y8//qjbbrvNrT5RKHLnd7IkLVu2rNAszOLyD9cU15ekn+lZRfUtL56Q1LFjR02aNElHjhxxmv2Ky+N+7D3cj69Oenq6fvnlF82ZM8dpNvYFxV2vXMuuuVyOJenDDz/UK6+8otdff10VK1Z0bL/QDylRooR69eqlGTNmyG63F9mOWVimxseSkpL0r3/9S5L0888/a9euXbrrrrsKHXfvvfdq586dOn36tCRp48aNSkhI8GqsgcTVvGZkZGj9+vVav369pk6dqvj4+JAtxLvC1bweP35cffr0UY8ePfTAAw94O0y/V6FCBdWsWVOrV6+WdP47IWrWrOn4pXtBUlKS3n33XdntduXk5Oijjz5S27ZtfRFyQHA1rzt37tSQIUP02muvqVatWr4INaC4ktfKlStry5Ytjvtp79699eCDD1KIL4ar12tycrI2b94swzBks9n0+eef69Zbb/VFyAHD1dxWrVrVsQ5nXl6ePvvsM91yyy1ejxfe5+o1cvGjy7t379bBgwd10003SXK9TxSqXM2xJB05ckTbt29XSkqK0/bi8g/XFNeXpJ/pOcX1LS++jjdt2iSLxcITw1eA+7F3cD++OlOnTtU333yjmTNnFrnefnHXK9fy5bmS448//liTJk3SwoULVbVqVcf2/Px8HTt2zPF6zZo1io+P93ohXpLCDBYe9amzZ89qxIgR2r17tywWi9LS0tS6dWtJ0rRp0xQTE6O//e1vks6vP7dgwQKFhYWpatWqGj9+vNNfePA/7uT1gi1btig9PV3Lly/3RcgBwdW8pqena/HixU6/oHv16lXoL+yhbN++fRoxYoROnTqlsmXLKj09XdWrV1dqaqoGDx6sOnXqqKCgQM8//7w++eQTSVJqaqrjC11waa7ktUuXLjp48KDTQGjy5Mn8gbMYruT1YtOnT9fZs2c1fPhwH0UcGFzJq91uV3p6ujZu3CiLxaLmzZtr+PDhPuk0BhJXcpuZmamxY8fq2LFjKigoUNOmTTVq1CiFh/PgaChw5RoZPny4vv32W1ksFlmtVg0ePFgtWrSQVHyfCOe5+rtj9uzZ+uGHH/TKK684vb+4/EOaMGGC/v3vf+vYsWO67rrrVL58ea1Zs8blviT9TNe4kufi+pYPP/ywsrOzFRYWptKlS+vpp59W/fr1ffiJ/I8rOeZ+fHVcybHE/fhq/Pjjj0pOTlZcXJxKliwp6fzEj5kzZ6pDhw6aN2+eKlWqVOz1yrVcPFdzfPvtt8tqtTpNAHj99dcVGRmpnj17ymazSZJiYmI0atQonzwpTzEeAAAAAAAAAACTMa0KAAAAAAAAAACTUYwHAAAAAAAAAMBkFOMBAAAAAAAAADAZxXgAAAAAAAAAAExGMR4A4JbTp09rxowZOnjwoK9DAQAAAAAACBgU4wHAJNOnT1dycrKvw/C4kSNH6sSJE6pSpUqxx61bt04JCQmO18uXL1eDBg3MDg8AAAC4aoHUl8/JyVFCQoK2bNni61A8JjExUQsXLvR1GIUsXLhQiYmJlz3ObrerR48eatu2rfbs2aN+/frp559/Nj9AAH6PYjwA/Mmjjz6q3r17X3Lfvn37lJCQoM2bN3s5Ks9KSEhQQkKCtm3b5rS9oKBAd911lxISErRu3bpC73vzzTclnS/Iu6tdu3b66KOPrixgAAAAwAWh0Jc3y4UxQkJCgurVq6dWrVrpqaeeKjRm8IalS5eqe/fuV9VGYmKi0+dJTk7Wv/71Lw9FWLz9+/fr2muv1ciRIzVs2DCVKlVKcXFxXjk3AP9GMR4A/uT+++/Xli1b9Ouvvxbat3TpUlWpUkXNmjXzSiw2m820tmNjY7Vs2TKnbRs3blR4eHiR7+nVq5dee+01WSzu//ooWbKkKlSo4Pb7AAAAAFeFSl/eLBMmTNDmzZu1du1avfDCC7JarerZs6cWLFjg1TiioqJUqlSpq27nscce0+bNm7Vq1Sq1atVKzz77rNauXeuBCC8tLy9PklSjRg3NmzdPLVq0UEZGhmbMmGHaOQEEForxAPAnd999typWrKjly5c7bbfZbHrvvffUuXNnGYahkSNHKjExUXXr1tU999yj+fPny263F9mu3W7XzJkz1aJFC9WuXVspKSlOM8V//fVXJSQkaPXq1erVq5fq1q3rmLmxbNkytWvXTnXq1FHbtm31+uuvO53r7bffVtu2bVWnTh01bdpU/fr1U35+frGfs1OnTlq3bp3OnDnj2LZ06VJ16tSp0LG///67xowZozvuuEMNGjRQz549tWvXLqdjVq5cqZYtW6pevXp65JFHlJ2d7bT/UsvUvP3222rTpo1q166tNm3a6J133im0393PBQAAgNAVCn35nTt3qnPnzqpTp446duyonTt3Fjpm7969GjBggBo0aKA77rhDQ4cO1W+//XbZ/JUpU0bR0dGqUqWKbr/9dr344osaMGCApk6dql9++cXl9vfs2aPevXurYcOGatCggdq3b6/PP/9cdrtdLVq00FtvveV03v379yshIUHffvutpMLL1Bw6dEiPPfaYGjRooAYNGmjQoEE6cuTIZT/Ptddeq+joaFWrVk1DhgxRXFyc4//bSy+9pLZt26pu3bpKTEzU5MmTlZub6/T++fPn684771SDBg309NNP6+zZs077R4wYoUceeUTz5s3TX//6V7Vo0UKS9N5776lLly6O/AwePFhHjx51eu/WrVv1wAMPqE6dOmrWrJkmTpzoKOYDCF4U4wHgT8LDw9WxY0etWLHCqZP88ccf6/jx4+rSpYvsdrsqVaqkV199VWvXrtWTTz6puXPnFpppfrE333xTCxcu1LBhw5SRkaHWrVvr8ccf1+7du52Omzp1qrp37641a9aodevWeuedd/TKK69o8ODBWrt2rYYPH6758+frn//8pyRp165dev755/XYY49p3bp1euONN3TXXXdd9nMmJCSoevXqjpkh2dnZ2rhxozp37ux0nGEYGjBggI4ePaq5c+dq5cqVaty4sXr37q2srCxJ0tdff60RI0bowQcfdBTlX3vttWLP/+GHH2r8+PHq3bu3MjIy1KtXL40bN07r16+/qs8FAACA0BXsffkzZ87okUceUdWqVbVs2TI99dRTSk9PdzomKytLPXr00C233KKlS5dq0aJFOnv2rAYOHFjsHxyK0qdPH9ntdkcR25X2hw0bpujoaL377rtauXKlHn/8cUVGRspisei+++5TRkaG0zkyMjJUo0YN1apVq9D57Xa7Bg4cqOzsbL355pt68803lZWVpYEDB8owDLc+S0REhOMPHaVKldLEiRO1du1ajR07VmvXrtXs2bMdx65du1bTpk3T448/ruXLl+umm27SokWLCrX5xRdfaM+ePVqwYIFef/11Sef/+DN48GCtWrVKc+fO1fHjxzV06FDHe44eParU1FTVrFlTK1eu1AsvvKA1a9Zo6tSpbn0eAAHIAAAUsn//fiM+Pt7YtGmTY1tqaqrRr1+/It8zZcoUo3fv3o7Xr732mnHfffc5Xjdv3tyYPn2603t69uxpPPXUU4ZhGMaBAweM+Ph4Y+HChU7HtGjRwlixYoXTtkWLFhn33nuvYRiG8cEHHxgNGzY0fv/9d5c/X3x8vPH+++8bixcvNrp27WoYhmEsWLDAEf+F/YZhGJ9++qlRv35949y5c05ttG/f3pg3b55hGIYxdOhQ4+GHH3baP3LkSCM+Pt7xetmyZUb9+vUdr7t27WqMGDHC6T3Dhw83unXrdsWfCwAAAAjmvvzbb79tNGrUyDh9+rRj28qVK434+Hjj888/NwzDMF599VWjV69eTu87ceKEER8fb3z99ddFtn3xGODPmjVrZowdO9bl9hs0aGAsX778km3t3r3biI+PN3755RfHtjZt2hizZ892vG7ZsqWxYMECwzAMY/Pmzcatt95qHDhwwLE/MzPTSEhIMD755JMiP8/FbdhsNmPZsmVGfHy8sXjx4kse/89//tNo3bq143XXrl2NUaNGOR3Tu3dvo2XLlo7Xw4cPN5o2bWrk5uYWGYdhGMbevXuN+Ph44/Dhw4ZhGMbUqVONNm3aGAUFBY5jli1bZtSqVcs4e/ZssW0BCGxFLwwMACEsLi5Ot912m5YtW6bmzZvr6NGj2rx5s9NMhSVLlujdd9/VoUOHlJubK5vNpipVqlyyvdOnTysrK0uNGjVy2t6wYUNt3LjRaVvt2rUdP+fk5Ojw4cMaO3asxo0b59ien5/vmAXSrFkzVa5cWa1atVLz5s3VvHlztWnTRqVLl77s50xJSVF6erp++uknLVu2TAMHDix0zLfffqtz587pjjvucNqem5urAwcOSDr/ZVgtW7Z02l+/fn0tXbq0yHP/9NNP6tKli9O2Ro0aOWbGX83nAgAAQOgK5r78hS+hvfbaax3b/rwU5Lfffqtt27YV2i5JmZmZqlu37iXbLo5hGAoLC3O5/T59+mj06NFasWKF7rjjDt1zzz2qUaOGJOnWW29VfHy8Vq1apUGDBunrr79WZmamUlJSivzMMTExqlq1qmPbDTfcoJiYGO3du7fY7wB45ZVXNGPGDOXl5clqtapfv37q1q2bJDmeRMjMzNTZs2dVUFDg9OTAvn37dP/99zu1V79+fWVmZjptu+WWWxQREeG07dtvv9WMGTP0/fff68SJE47thw4d0vXXX699+/apXr16Tt/F1ahRI9lsNv3yyy+69dZbi/xMAAIbxXgAKEKXLl00ZswYnThxQitWrFC5cuXUqlUrSecfWZw4caKGDx+uBg0aqHTp0lq8eLHTupGuutCpveDiLyq60BkcN27cJTu7klS6dGmtWLFCW7du1aeffqq5c+dq6tSpWrp0qSpVqlTsucuUKaM2bdpo7NixOnbsmNq0aVPoGLvdrooVK2rx4sWXPLenXcjH1XwuAAAAhLZQ6MsX5cK67MOHDy+0r0KFCm63l5OTo5ycHN1www0ut//4448rJSVFGzdu1ObNmzVz5kw999xzjuJ2+/bttXTpUg0aNEgZGRlq1KhRkX8MKc6f8/9nffr00f3336+SJUsqJibGcfyOHTs0dOhQPfbYY7rrrrtUtmxZrV+/vtCSP6645pprnF6fPXtW/fr1U7NmzTR58mRFRUXp+PHj6tGjh0tf6nu5zwQgsLFmPAAUISkpSZGRkVq1apWWLVumjh07ymq1SpK2b9+uevXqqWfPnqpVq5aqVatWaIbExUqXLq2YmBht377dafuXX37pmCFyKRUrVlRMTIwyMzNVrVq1Qv9dEB4erjvuuENPPfWUVq1apXPnzum///2vS5/z/vvv1xdffKHk5GRFRkYW2l+rVi0dO3ZMFoul0PkvdLZr1Kihr7/+2ul9f379Z9WrV9eXX37ptG379u1O+biazwUAAIDQFax9+Ro1auiHH35w+iLRHTt2OB1Tq1Yt7d27V5UrVy50ziuZTLNo0SJZLBa1bt3arfbj4uLUq1cvzZs3T126dHF6ajYlJUWZmZnasWOH1q5dq/bt2xd5/ho1aigrK0u//vqrY9uBAweUlZWlm2++udjYy5cvr2rVqqlSpUpORe4vv/xSlSpV0mOPPaa6desqLi5Ohw4dKnRed8c40vkngI8fP64hQ4aoSZMmqlGjhnJyci7Z9sUz8bdv3y6r1aobb7zxsucAELiYGQ8ARShZsqSSk5M1Y8YMnTx50ukRxbi4OC1fvlwbNmxQtWrVtGbNGm3dulXlypUrsr1+/frptddeU1xcnGrVqqVVq1Zp27ZtWrFiRbFxDB48WOPHj1fZsmX117/+Vfn5+fruu+909OhRPfLII/r444+VmZmpJk2aqFy5ctqyZYvOnDlT7MDgYrfffrs+++yzIjvmzZo1U8OGDTVw4EANGzZM1atX17Fjx7Rp0yY1a9ZMjRs31kMPPaRu3bpp7ty5atu2rb744gt9+OGHxZ63f//+euKJJ1S7dm3deeed2rRpkzIyMjR9+nRJuurPBQAAgNAVrH355ORkvfLKKxo5cqQee+wxZWVlac6cOU7HdO/eXe+8846GDBmi1NRURUVF6cCBA3r//fc1fPjwYgvyv//+u3777TfZbDZlZmZq5cqVWrlypdLS0hxF4su1Hx4ervT0dCUlJalKlSrKzs7Wl19+6bQ8zvXXX68mTZpo7Nix+v3335WUlFRkTM2aNVNCQoKGDRumUaNGSZImTJigv/zlL7r99tuLzX9R4uLidPToUa1atUoNGjTQpk2btHr1aqdjevXqpaefflp16tTRbbfdpg8++EBff/21ypcvX2zblStXVkREhBYvXqwePXpo3759mjZtmtMx3bt31xtvvKHnnntOvXv31oEDB/Tyyy+rZ8+eTk9XAAg+FOMBoBgPPPCAlixZogYNGjh1iLt27ardu3dr2LBhMgxD99xzj/r06aPly5cX2VavXr105swZTZkyRdnZ2brppps0ffr0y64H+MADD6hUqVJauHChXn75ZZUsWVI333yzevbsKen8UjMfffSRZs2apXPnzunGG2/UhAkT1LhxY5c/Z1RUVJH7wsLCNG/ePL366qsaM2aMcnJyVKFCBTVs2FAdO3aUdH7txBdeeEHTp0/XzJkzddttt+nxxx/X+PHji2y3devWGj16tP7+979r4sSJqly5ssaOHavExESPfS4AAACErmDsy1977bWaO3eunnvuOXXq1EnVq1fXsGHD9H//93+OYypVqqQlS5Zo6tSp6t+/v3JzcxUbG6vmzZsXWtv8z0aPHi1JioiIUHR0tOrXr6+33npLTZo0cav9U6dO6ZlnnlFWVpbKly+vli1bFlrWpn379ho1apTatGlT7B9CwsLCNGvWLE2YMEG9evWSdL5AP2bMmCte0iUxMVH9+vXTxIkTlZubqzvvvFODBw92Wtu/Xbt2OnDggF555RX98ccfSkxMVJ8+fS77B5ioqCilp6dr6tSpWrx4sRISEjRixAj179/fcUylSpU0f/58TZ48WR06dFDZsmWVnJysoUOHXtHnARA4wowL3xoCAAAAAAAAAABMwZrxAAAAAAAAAACYjGI8AAAAAAAAAAAmoxgPAAAAAAAAAIDJKMYDAAAAAAAAAGAyivEAAAAAAAAAAJiMYjwAAAAAAAAAACajGA8AAAAAAAAAgMkoxgMAAAAAAAAAYLL/Bx5QAfkuaeSaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 470 + }, + "id": "y9ocknbWfABH", + "outputId": "ed251cd8-8e5f-41fd-cfd6-d419b614240e" + }, + "source": [ + "# Criação do Canva:\n", + "fig, axs = plt.subplots(figsize = (26, 7), ncols = 2)\n", + "\n", + "#Plot dos Valores Mínimos:\n", + "ax1 = sns.histplot(data = dados.loc[:,'g-0':'g-771'].describe().T['min'], ax = axs[0])\n", + "ax1.set_title('Distribuição de Frequências dos Valores Mínimos de Expressividade', fontsize = 18)\n", + "ax1.set_xlabel('Valores Mínimos de Expressividade', fontsize = 14)\n", + "ax1.set_ylabel('Frequência', fontsize = 14)\n", + "\n", + "#Plot dos Valores Máximos:\n", + "ax2 = sns.histplot(data = dados.loc[:,'g-0':'g-771'].describe().T['max'], ax = axs[1])\n", + "ax2.set_title('Distribuição de Frequências dos Valores Máximos de Expressividade', fontsize = 18)\n", + "ax2.set_xlabel('Valores Máximos de Expressividade', fontsize = 14)\n", + "ax2.set_ylabel('Frequência', fontsize = 14)\n", + "\n", + "plt.show()" + ], + "execution_count": 29, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABeoAAAHFCAYAAACNTslbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3RURf/H8U82EBAIgYQgVVB0QyD0IDyUH11QWuhdpKgIIkU6UkR5MBRFitLhkV5DE0EgqHRFRQzFQpMSARMCJISEZO/vD86uLLtpJGQp79c5nEPunbt3dnZ27p3vzp1xMwzDEAAAAAAAAAAAcAmTqzMAAAAAAAAAAMCTjEA9AAAAAAAAAAAuRKAeAAAAAAAAAAAXIlAPAAAAAAAAAIALEagHAAAAAAAAAMCFCNQDAAAAAAAAAOBCBOoBZKgbN25oxowZ2r17t6uzAjxQ8fHx+vzzz7V582ZXZwUAAOCxQp8CT6LTp09r+vTp+uWXX1ydFQAuQqDexdatWyc/Pz8dPHjQped8kPlI72sfPnxYNWvWVN26dbV161YdPnxYlStXzuBcJu/8+fPy8/PT9OnTM/W8j6JRo0Zpy5Yt6tevn86ePZtp561bt666dOmSaedLjce13jyMZe0KH3/8sRYsWKDSpUun+VhXtP2Z5eDBg/Lz89O6detcnZUnhp+fn4YNG3Zfx6b18+rSpYvq1q17X+fKyHwAsEefImX0KR4t9Cn+9bjWm4exrF3p2rVr6tWrl44fP35f/Qurx7W+WKXnvhdpl957/7R8XtOnT5efn5/Onz9/3+fLiHy4GoH6DGLtYFr/+fv7q3LlymrSpImGDh2q7777ToZhZOg5p0+frh07dmToaz6MFi1aJD8/PzVp0kQjR45Uhw4d1LFjR1dnK0PcW2/u/Xf48GFXZzFNVq9erbCwMC1dulSvvfaa3n33Xd2+fdvV2XriLF26VH5+flq0aFGy6YYOHSo/Pz/99NNPmZOxh4i1s+/n56f58+c7TXPs2DFbmnsv6vv379fixYs1ZcoUPfvss5mR5Sfe3Z+Zs38NGjRwdRYBIN3oUzw49CkeHfQpHg70KVKW3j6FVUJCgvr3768iRYpo6tSpypIly4PMNu5h/XEjuX9///23q7OJJwTf/gzWpEkT/d///Z8Mw1BMTIxOnz6tnTt3av369apWrZo+/fRT5c6d25a+efPmaty4sbJmzZrmc82YMUMtWrRQ/fr103Rces55P9J7vuHDhytnzpzKlSuXevfurejoaOXLly+Dc+la1npzr2eeecYFubk/FotF169f16xZs5Q3b1717dtXuXPn1qlTp+Tn5/fAz79169YHfo5HRdOmTRUcHKx169bptddec5omOjpa27Zt03PPPaeKFStmbgYfItmyZdO6devUo0cPh31r165VtmzZFBcXZ7f92rVrGjp0qAYOHOj0e5samd0OP066dOmiMmXKOGzPmTOnC3LzcDhy5IhMpvsbe1G5cmUdOXKEDiHwkKFPkfHno0/xaKBP8fCgT5F699OnuNuff/6pqlWrqmvXrvLw8EhXXgoXLqwjR47I3d09Xa/zJKpevbqaN2/udJ+Xl1cm5+bhkNQPUKmVnn7Kk4peWQYrVaqUwxd7+PDhmjRpkhYuXKiBAwdq3rx5tn3u7u6Z1oBGR0crV65cmXpOKf3v8emnn7b9P3v27MqePXtGZOuh4qzeJCcxMVHx8fF66qmnHmCu0sZkMtndmLi5uSV5Q/cgpPeG5nGSO3duNWjQQJs3b9bRo0edPjr51VdfKTY2Vq1atXJBDh1Z26fMZi2nI0eOqGzZsrbt8fHx2rx5s23/3by8vPTdd9+l67yZ3Q4/TgIDA9WoUSNXZ8OOq+qvVbZs2e77WJPJlK7jATwY9Ckc0adIGX2K9KNP8S/6FKl3P32Ku5UsWVIlS5bMkLy4ublxb3efihcvnqY2NDO4up+R3jaRuph2/KyRCdzd3TVs2DBVqlRJu3fv1qFDh2z7nM21GBcXp+nTp6thw4YqV66cAgMDbb9mS/8+liNJISEhdo/jWFkfq9q/f786dOigChUq6K233krynFaJiYmaPn266tSpo4CAADVt2lRffvmlQ7qkHttKy1yV8fHxmjt3rpo3b65y5cqpUqVKatmypZYsWWJLc+nSJX300Udq3ry5KleurDJlyuiVV17RnDlzlJiY6HD+yMhIvf/++6pVq5YCAgJUq1Ytvf/++7p69apD2qQcOnRI7du3V9myZVWtWjWNGzdON2/edJrWMAwtW7ZMLVu2VLly5VShQgV16dJFBw4cSPX5UmItv3379mnmzJmqX7++ypYtq6+++irNeYiLi1NwcLBq1KihsmXLqnXr1tqzZ4+GDRvmMEIlqTkDk5pHOD4+XrNmzVLjxo1VpkwZBQYGqlevXjp27FiSx69du1aNGzdWQECA6tSpo7lz5zotg2PHjumdd95RtWrVbJ/rwIED9ddffyWb3z179qh///6qV6+eypYtq8DAQHXv3l3ff/+9wzn++OMPvfPOO6pZs6YCAgJUvXp1denSRd98843TPN0rLfXm5s2bmjJliurXr28715AhQ3ThwgW7dBaLRYsWLVLTpk1VoUIFVaxYUQ0bNtSIESNSfPy3devWku6M4HBm7dq1ypIli4KCgiTdebS1e/futvdfo0YNDRo0KE3zw+3YsUPt27dX+fLlVaFCBbVv397po/TWz+rYsWPq0aOHKlWqpGbNmtn2nzlzRoMHD1aNGjUUEBCgunXrKjg42KE8w8PDNXz4cFt79Z///Eft27dXSEhIqvNcp04d5c2b16GcduzYoaioqCQ7Hc7qm3XbyZMn9cYbb6hChQqqVKmS3nnnHV25csUubXJt5f79+zVjxgzVqVNHZcuWVZs2bWyPrH///ffq0KGDypcvrxo1amjmzJlO85faz+Knn35Sz549Vb16dZUpU0Y1a9bU66+/nupH5Hfs2KGgoCCVKVNGtWrV0tSpU5WQkOA0bWrbiIzQv39/+fv7O1x3du/erZIlS2rIkCG2bdb2LzIyUkOGDFGVKlVUvnx5de3aVUePHrU7/u45P7ds2aKWLVuqbNmy+vDDD21p9u3bp+7duyswMFBlypRR06ZNtXz5coc8pqbso6Ki9N///lf169dXmTJlVKVKFbVs2dIuOCfZX5MTExNVo0YNtWjRwmnZrFixQn5+frb6kFSbfu3aNb333nu28ujSpYvCwsKcvmZa2lrp4a03wMOOPgV9ivSgT0Gfgj7Fw9en2LJli3r16qXatWsrICBAVapUUe/evXXixAm7dN98841KliypESNG2G2PiYlRw4YNVa1aNVt/w9kc9ffewzZv3lxly5ZVgwYNbHm+ePGi3nnnHb344ouqUKGCBg0apOjoaIc8nzhxQn369FGVKlVsbencuXMd2tL0lusff/yhHj16qHz58nrxxRf17rvvKiIiIsn0W7ZssV2nypUrpzZt2jyQJ2SsU0Ld2w+7dOmSqlatqpdfftlWx+5ud1NzTczMOp3aduHeOer79++vgIAAp9dD65NP48ePt21zdp23WCyaPXu26tatqzJlyqhJkybauHGj0/I+efKkxo4dq8aNG9s+25YtW2r16tVO0z+s9SYtGFGfiVq3bq0ff/xR3377rQIDA5NM9/7772vt2rUKCgpShQoVlJiYqDNnzthuSr29vTVx4kQNGTJEgYGBatu2rdPXCQsL07Zt29S2bdskO+z3mjx5sm7evKkOHTpIutOwDBw4UHFxcWrZsmUa33HS4uPj1aNHD33//feqUaOGmjVrpmzZsun333/X119/rc6dO0uSfvvtN3399ddq0KCBnnnmGd2+fVu7d+/WlClTdP78eY0bN872mjdu3FCHDh109uxZtWrVSqVKldLx48e1fPlyHThwQKtXr07xl8hffvlF3bp1U86cOfX666/L09NTW7Zs0dChQ52mHzx4sL788ks1bNhQLVu2VHx8vDZt2qTu3btr+vTpqlevXqrKIzY2VpGRkXbbPDw87PIbHByshIQEtW3bVjlz5rTNi52WPAwcOFA7duxQnTp1VLNmTf3111/q27evihQpkqp8JuX27dvq0aOHfv75ZzVv3lydOnVSdHS0Vq1apQ4dOmjJkiUOU1WsWLFC//zzj1q3bq3cuXNr48aNmjx5sgoUKKCmTZva0u3atUt9+/ZVjhw51Lp1axUrVkxXrlzRnj179Pvvvyf7KG9ISIiuXbumoKAgFShQQJcuXdLq1av12muv6YsvvrB9D69evaquXbtKktq3b69ChQrp6tWrCgsL0y+//KLatWsn+/7TUm+sZfXTTz+pYcOG6tatm86ePavly5dr7969Wrt2rQoUKCBJ+vzzzzVt2jTVqVNH7du3l7u7u86fP6/Q0FDFx8cn++h31apVVaRIEW3evFnDhg2z+yX89OnT+vnnn1WvXj3bI98LFiywBePy5Mmj33//XWvWrNGBAwe0adMm5c2bN9kyWLp0qcaNG6fnnntOvXv3tpV/nz59NG7cOLVr184u/cWLF9W1a1c1atRIL730ku3mIiwsTF27dlXu3LnVrl07Pf300zpx4oQWL16sn3/+WYsXL1bWrFmVkJCgbt266dKlS+rYsaOKFy+u6Oho/fbbbzp06FCq27wsWbKoWbNmCgkJ0YgRI2y/+K9du1alSpVK88iWS5cu6dVXX1X9+vU1ZMgQnThxQitXrlR0dLQWLFiQqteYPHmyLBaLXn31Vd2+fVsLFixQ9+7dNXHiRI0cOVJt27ZV06ZN9dVXX2natGkqUqSI3ciP1H4Wp06dUvfu3ZUvXz69+uqr8vHxUUREhH788UedOHFC5cuXTzaf27dvV9++fVW4cGH16dNH7u7uWrdunb799luHtPfTRiQlJibGob2U7oyOzJEjhyTpgw8+0K+//qrBgwdr/fr18vb21pUrVzR06FAVK1ZMY8aMcTi+Z8+e8vLy0ttvv61//vlHS5YsUefOnbVy5UqZzWa7tDt27NDixYvVoUMHtW/f3tZWr1y5UmPGjFH58uXVq1cvPfXUU9q3b5/Gjh2rv/76y9YmpLbs+/XrZ+uw+/n56datWzp58qS+//579ezZ02n5uLu7q1mzZpo/f77++OMPvfDCC3b7169fr7x586pWrVpJlrH18/r1119tga8TJ06oW7duypMnj0P61La1kuvqDfA4oU/xL/oU9uhT0KegT/Fo9SmWLFkiLy8vtW3bVr6+vjp79qytvoeEhKh48eKSpNq1a6tr165atGiRqlevrsaNG0u6086fPXtWc+bMka+vb4r53LVrl1asWKEOHTooT548WrNmjUaMGKGsWbPqk08+UdWqVTVgwAD9+uuvtil77g66/vrrr+rSpYuyZMmiTp06KV++fNq1a5cmT56sEydOaMqUKZKU7nI9d+6cOnXqpPj4eHXq1EkFCxbUrl27krz//eSTTzRr1izVrFlT/fr1k8lk0vbt29WvXz+NHj1anTp1SrFspDs/QjrrZ2TJksU23VynTp104MABzZw5U1WqVFFgYKAsFosGDRqkmJgYLVq0yNYnsUrLNTGz6vT9tgstWrTQV199pS+//NJ2jbXasGGDLU1yJkyYoC+++EKVK1fWa6+9poiICI0bN05FixZ1SPv999/r0KFDql27tooUKaLY2Fht3bpV7733niIjI/Xmm2/a0rqq3mQ4AxniwIEDhtlsNubNm5dkmrCwMMNsNhtvv/22bdvatWsNs9lsHDhwwLatcuXKRs+ePVM8p9lsNoYOHZrkPrPZbOzdu9dhn7NzWrfVrl3buH79um379evXjdq1axuVK1c2YmNjUzx3cq9997Y5c+YYZrPZmDJlisNrJCYm2v4fGxtrWCwWhzSDBg0ySpYsaVy6dMm27eOPPzbMZrOxZMkSu7RLliwxzGaz8cknnzi8zr3atWtnlC5d2jh16pRtW1xcnNGqVSvDbDYb06ZNs23/+uuvDbPZbKxYscLuNW7fvm20aNHCqFOnjtO8381ab5z969+/v2EY/5bfSy+9ZNy8edPu+LTkYffu3U4/t+3bt9vOebc6deoYnTt3TjLPa9eutW1buHChYTabje+++84u7Y0bN4xatWrZvY71+OrVq9vVtZs3bxpVqlQx2rZt67CtatWqxt9//+2Ql7vrirP8xsTEOBxz5coV48UXX7T7ju3YscMwm83Gl19+6ZA+NdJSb1auXGmYzWYjODjY7jV27dplmM1mY9CgQbZtQUFBxssvv3xfeTIMw5gxY4bT9zV58mTDbDYbO3bssG1zVlb79u0zzGazMWfOHLvt95Z1VFSUUb58eaN+/frGjRs3bNtv3Lhh1KtXzyhfvrxx7do1u+PNZrOxatUqh3M2bdrUaNiwod3rGMa/dd1a744fP+40b6ll/V599dVXxokTJwyz2Wxs3LjRMAzDCA8PN0qWLGksXrzYiIiIcPq9cVbfrO/r3vIeO3asYTabjZMnTzqc31lbGRQUZMTFxdm2W+tnqVKljCNHjti2x8XFGdWrV7f7zqTls/jf//5nmM1m45dffklz+SUkJBi1atUyXnzxRSMiIsK23XrNSE8bkRRr+ST17/3337dLf/jwYaN06dLGm2++aSQmJhqvvfaaUbp0aSMsLMwu3dChQw2z2Wz06dPHrs3+9ddfDT8/P6N79+62befOnbN9Fn/++afd61y6dMkICAgwBg4c6JD3Dz74wChZsqTx119/GYaRurK/fv26YTabjTFjxqRYNvfW0d9//91pO3P27FnDbDYbH3zwgW2bszZ9xYoVhtlsNj799FO7462fY506dey2p7atdUW9AR419ClSfm36FI7oU9CnsKJPccej0qe4N3+Gcec+rnTp0g73gHFxcUaLFi2MihUrGn/99ZcREhJimM1m46OPPrJLZ71fvbu+WLeVK1fOOH/+vG17RESEERAQYPj5+RkLFiywe50+ffoYpUuXNqKjo23b2rVrZ/j7+xvHjx+3bbNYLMY777xjmM1mY9++fYZhpL9cBw4caJjNZmP//v125+ndu7dDOVqvic6uA2+99ZZRoUIFp+V8N2v5JPWvcePGdumjoqKMOnXqGLVq1TKioqJs35HFixfbpUvrNTEz63Rq24XOnTvb3fsnJCQY1atXN1q1amWXzmKxGLVr1zaaNGlit/3ez+vkyZOGn5+f8eqrrxoJCQm27WFhYYafn59hNpuNc+fO2bY7a1MSExONzp07GxUrVjTi4+Nt2zO73jwoTH2TiawjGZw9PnRvuj///FO///57us5XsmRJVatWLU3HdOjQQZ6enra/PT091b59e127ds3pY633a9OmTfLy8lKfPn0c9t290ET27Nnl5uYm6c6ImaioKEVGRqpGjRqyWCx2j+Fv375d3t7eDr+yt2vXTt7e3k4fl7tbRESEfv75Z9WtW9c2skS6MwrF2byIGzduVM6cOVW/fn1FRkba/l2/fl1169bVhQsXdObMmdQUh9q1a6eFCxfa/bM+VmzVoUMHh/kj05IH6/u/d4Gb+vXr273f+7Fx40Y999xzKl26tF0+4uPjVa1aNf3444+6deuW3TGtWrWyq2tPPfWUypcvb1dme/bs0dWrV9WtWze7eUWtUlqU5O5fsmNiYnT16lWZTCaVK1dOR44cse2z5mP37t0pfj/vldZ6s337dplMJrtffqU7oyT8/f21c+dOWSwWSXfagkuXLtk92p4WLVu2lMlksnukODExUevXr5evr6/diFprWVksFt24cUORkZHy8/OTp6enXVk5s3fvXt28eVNdunSxG7GVK1cudenSRTdv3tS+ffvsjsmTJ4/D6IHffvtNv/32m5o0aaL4+Hi7ulSpUiXlyJFDe/fulfTvZ3bw4MFkH2VLDT8/PwUEBNjKKSQkRFmyZLEbhZVa+fPn1yuvvGK3rWrVqpKks2fPpuo1OnToYDdayTpKq2zZsnajyDw8PFSmTBm770xaPgtrGe7cuTPZxa2cOXr0qMLDw9WyZUt5e3vbtluvGfe6nzYiKX369HFoLxcuXOgwoqNcuXLq16+fdu3apU6dOmnfvn0aNGiQ0/lVpTsj6q3XG0m2R8j379+vmJgYu7S1atVSiRIl7LZt27ZN8fHxat26td17jIyMVN26dWWxWNJU9tmyZZOHh4eOHDmSpsfFJemFF15Q6dKltWnTJlt7It0ZTS/J9nh6Unbs2CF3d3d1797dbnvHjh2djiJNbVvrynoDPE7oU/yLPoU9+hT0KehTPFp9irvfp8ViUVxcnJ555hmVKFHCobw8PDw0depUGYahPn366P3331dAQIAGDhyY6jzWq1dPhQsXtv3t7e2tZ599ViaTyWH0cGBgoG7fvm2bSunuOnr3EwJubm62dmb79u2S0leuFotFoaGhCggIsPWjrOdxNjJ606ZNcnNzU1BQkNN78JiYmFRP61mvXj2n/Yy7p7mU7qxZNnnyZF25ckWvv/66Zs6cqbp16zr0R6zSck3MrDp9v+2Cu7u7mjZtql9//VUnT560bT948KAuXryY4mj6nTt3yjAMdevWzW7dmdKlS6t69eoO6e9uf+Pi4nT16lVFRUWpevXqio6O1qlTpyS5tt5kNKa+yUTWi3VKj0qOGDFCQ4YMUdOmTVW0aFFVqVJFderUUd26ddO0WrL1Mam0eO655xy2WYMRaQ0UJOfs2bPy9/dPcWGJhIQEzZkzRxs2bNDZs2dlGIbd/uvXr9v+f/78eQUEBChLFvtqnSVLFhUvXjzF+WzPnTsnyXkZPP/88w7bTp48qZiYmGQ7LhEREam6YS1WrFiKHSBnr5OWPJw7d04mk8lpvShRooROnz6dYj6TcvLkSd26dUv/+c9/kkxz9epVFSxY0Pa3s0dj8+TJo6ioKNvf1hvsUqVK3Ve+/vrrL33yySfas2ePXV2RZBeQe/HFFxUUFKR169Zp06ZNCggIULVq1fTKK684/ezvltZ6c/78eeXPn9/pqvHPP/+8jh8/rqtXr8rHx0cDBw5Unz591KlTJ+XPn18vvviiateurYYNG6ZqUZeCBQuqevXq2rt3ry5duqSnn35ae/bs0eXLl9WzZ0+778r+/fv12Wef6ZdffnEIHF67di3Z81jbhnun2Lh7m7WcrIoWLeqwIJz1Qj99+nS7ORXv9s8//0iSChcurF69emnOnDmqUaOG/P39VbVqVTVq1MhuAafUatmypT788ENduHBBISEhqlevnry8vJw++pgcZ4/rWacKubtup+U1rHXF2XfGy8vL7nXT8lk0btxYGzdu1KxZs7Ro0SKVK1dONWrUUOPGje1u4J1Jrt7fG8CW7q+NSIrZbE51wKhnz5765ptvdOjQIdWoUcP2OLozzvJdokQJ7dmzRxcvXrQrU2ftqLX+JrfgnbX+pqbsPTw8NGLECI0fP1716tXT888/r6pVq6p+/frJlqNVixYt9OGHH2rfvn2qUaOGDMPQxo0b9cILLyggICDZY8+dOydfX1+H+xUPDw8VLVrUoT1NbVvrynoDPE7oU/yLPoU9+hR30KegTyE9Gn2KP//8UzNnznQaVHVWt5955hkNHz5c7733nrJnz66PP/442amL7uWsr+Ll5SVfX1+HumCd6sX6XbJ+Ps7q43PPPSeTyWT7fNJTrhEREbp582aa2lDDMPTyyy8n+ZrWzzslBQoUSHU/o2LFiurZs6dmzZolX19f/fe//00ybVquiZlVp9PTLgQFBWnBggXasGGD7YeiDRs22IL4yUmpP7Bnzx67bTExMZoxY4a++uorhYeHOxxjbZNdWW8yGoH6TPTbb79Jcn5zdLf69esrNDRU3377rX744Qft27dPa9asUWBgoBYuXJjqVZfvHSmRGZwtxpQeH330kRYvXqxXXnlFvXr1kre3t7JmzaqjR4/a5nF2FcMw5O3tbZuHzRlnNxn3K3v27C7Pg+T8MzYMQ2azWcOHD0/yuLtHT0pyuPhktJiYGHXq1EmxsbHq2rWrzGazcubMKZPJpNmzZzssjBUcHKwePXrou+++06FDh7Rw4ULNmjVLI0aMSPKX8QetQoUK2r59u/bs2aODBw/q4MGD2rx5sz7//HMtW7bM6VzR92rVqpV2796tkJAQ9erVy7ZY0N0LGh05ckQ9evTQM888o3fffVdFihSxjTwbMGCAQ2c2IyTXPlkXoHLGesMoSQMGDFDr1q1tgdg1a9Zo/vz56tmzpwYPHpym/FgX1xs1apTOnj2rUaNGpel4q+TqdWrLMangSUZ/Zzw8PLRw4UIdOXLEtijhtGnTNGPGDE2ZMkUNGjTIsHPdTxuREc6fP2+79p49e1YxMTEpBrZSw1n9tX6+wcHByp8/v9PjrJ2j1JZ9hw4dVK9ePX377bf6/vvvtW3bNi1ZskSvvPKKPvnkk2Tz2LhxYwUHB2v9+vWqUaOGfvzxR507d06DBg1Kz1t3kNa2Ni1cVW+Ahx19irSjT/Ev+hRpQ5/iDvoUqZOWPsWlS5fUvn17eXp66q233tJzzz2nHDlyyM3NTaNGjXJ4otMqNDRUknTr1i2dPn1axYoVS3X+kvq+ZEQf5l4ZWa7JMQxDbm5umjt3bpLvI6Ufyu5HfHy8LagcFRWl8PDwFNdgSI3MqtPpaRf8/Pzk7++vTZs2acCAAbp165a2bdum6tWrp2qthLR499139c0336ht27aqXLmy8uTJI3d3d3377bdatGjRfV+/XVVvUoNAfSZas2aNJCW7gJtVnjx51Lx5czVv3lyGYWjy5MmaN2+edu7cmewvPullfWzkbtZf7+7+RffeUQpW9/7CnZTixYvr1KlTio+PT7aTsGHDBlWuXNkhIOFsComiRYvq9OnTSkhIsPtVPyEhQWfOnHH66/HdrO/PWRn8+eefDtuKFSumM2fOqFy5csqZM2eyr/2gpCUPRYsWlcVi0ZkzZxxutO9+ZMkqLZ9xsWLFdPXqVVWtWjVNI7RSYu2AHj9+XDVq1EjTsfv379fly5f13//+1+4GUpKmTp3q9Biz2Syz2ayePXvq+vXratOmjaZMmaJOnTrZjZa5W1rrTdGiRbV7925dv37d7hR3ER4AACAASURBVGIq3fkccuXKZXeBz5kzpxo2bKiGDRtK+neBpTVr1iS5KMrd6tWrpzx58igkJETt2rVTaGioKlasaPdL8+bNm5WYmKi5c+fafU9u3rzpMGrIGesxf/zxh8MIKGsZpPT9k2S7yTSZTKkeyVC0aFF16dJFXbp0UVxcnHr06KF58+ape/fu8vHxSdVrSHdubBo0aKDNmzfbRg09iu7nsyhbtqxtdEV4eLiCgoI0derUZAP11tdI7ppxtwfVRiQnISFB7777rhITE/Xee+9p/PjxGjt2rCZPnuw0/cmTJx0W0D158qTc3d1VqFChFM9nHVmYN2/eVNff1JR9/vz51aZNG7Vp00aJiYkaMmSINm/erG7duiU7Isnb21v/93//px07digmJkbr16+XyWRSs2bNUsxX0aJFtXfvXkVHR9v9sBEfH69z587Zjd5LS1v7KNQb4FFAn+Jf9CkyBn2KpNGnuIM+ReqkpU/x9ddf68aNG/r8889VuXJl23bDMBQREeH0R7XFixcrNDRUb7zxhr7++msNGzZMGzduTHKQSEay1lFn9fHUqVOyWCwOn8/9lKu3t7dy5MiR6u9C8eLFtXv3bhUqVMjpE5oPyscff6ywsDANHjxY8+bN04ABAxQSEuKwkKyU+mtiUh5UnU5PuxAUFKQJEybowIEDunLlimJiYlK1+PLd/YF7F/G+9xpy/fp1ffPNN2revLndou+SHKbBelTqTWrQ68kEiYmJCg4O1o8//qhatWqpUqVKyaZ19jid9TG9ux8Xy5EjR6qnUkit5cuX68aNG7a/b9y4oRUrVih37tx68cUXbduLFy+uw4cPKzY21rbt2rVrdvPWJadp06a6du2aPvvsM4d9d/9iazKZHH7BvXnzphYtWuRwnHVOxdWrV9ttX7VqlSIjI1W/fv1k85QvXz6VL19eoaGhdo9sxsfHOz1fUFCQLBaLPv74Y6evlxmPyaQlD/Xq1ZMkzZ8/3y7Njh07nD6iWrx4cZ0+fVqXLl2ybYuPj9fSpUud5uPKlStauHBhivlIi+rVqytv3rxauHChLl++7LA/uV/3rb+K3ptmz549+uWXX+y2RUVFOfwSmzt3btuq4snN353WelO/fn1ZLBbNmTPHbvu3336rY8eO2T2O7uwRSev82ik9Omrl4eGh5s2b68yZMxo7dqxu376t1q1b26VJ6hfk2bNnp+oX6urVqytHjhxasmSJ3Xyc0dHRWrJkiXLkyJGqwHepUqVkNpu1YsUKp523hIQEW5t348YN3b59225/tmzZbJ2F1JbP3V5//XW9/fbbGjVq1CMbFEzLZ+GsfhUoUEDe3t4pll/p0qVVoEABrVu3zu51oqOjtWLFCof0D6qNSM7UqVP1yy+/aNSoUerSpYu6deumTZs2KSQkxGn6efPm2bUXR48e1b59+/Sf//wnVYGTl19+WR4eHpo+fbrTedNv3Lih+Ph4Sakr+9jYWLtrrHTnu+rn5ycpdXW8RYsWio2N1caNG7V161ZVq1bN6dy896pXr54SExO1YMECu+3Lli1zmHM3LW3to1BvgIcZfQpH9CkyBn0K+hQpoU+ReqntU1h/tElISLDbvnz5cqdzi584cUITJ05UlSpVNGDAAH3yySeKjo7WkCFDMuWpIB8fH1WoUEG7du2yW/vEMAxbPbQONklPubq7u6tOnToKCwuze2LFMAzNmzfPIb11EMrHH3/s9EmdB9GGWkdzt2jRQj179tSECRN05swZffDBB07Tp/aamJQHUafT2y40bdpUWbJk0YYNG7RhwwZ5enrarg/JqVu3rtzc3LRw4UK7z8va97qb9ftzb/t7+fJlh2v0o1BvUosR9Rns2LFj2rBhg6Q7j8mdPn1aO3fu1IULF1SjRo1kHye0HlOjRg3VrVtXpUqVkre3t86fP6/ly5fLy8tLderUsaUtX7689u/frzlz5qhQoUJyc3NT48aN05X/vHnzqk2bNrbFK9atW6eLFy/qww8/tHsEp1OnTho8eLC6du2q5s2b6/r161q9erUKFSqkK1eupHieV199Vbt27dLnn3+uX3/9VTVq1JCHh4f+/PNPnT592nYz0rBhQ61cuVL9+/dXtWrV9M8//2jt2rVOH8Pp2bOntm7dqnHjxunYsWPy9/fX8ePHtWbNGj377LOpGikwbNgwdenSRR06dFCnTp3k6empLVu2OP3iNmrUSC1bttSSJUt09OhR1alTR3nz5tXff/+tw4cP6+zZs9q5c2eK50yPtOShZs2aqlOnjkJCQhQVFaWaNWvq3LlzWrlypcxms8NCY506ddKXX36p1157Te3bt9ft27e1YcMGp49ivfrqq9q3b58mTpyoAwcOqGrVqsqVK5cuXryoAwcOyMPDQ4sXL07z+3vqqac0fvx49evXT02bNlXr1q1VrFgxRUZGas+ePXrttdeS7CxVqlRJvr6+Cg4O1oULF1SgQAEdP35cGzZscHi/69ev1//+9z/Vr19fxYoVU5YsWfTDDz9oz549evnll52OZrhbWupNixYtFBISorlz5+rChQsKDAzUX3/9pWXLlilfvnx2iwG98sorKl++vMqWLav8+fPrypUrWrVqlbJmzZqm73rr1q31v//9T1u3blWOHDkcRtDVr19fixYt0uuvv6527dopa9as2rt3r3777bdUPb6XO3duDRo0SOPGjVPbtm1tv6SHhITo7NmzGjdunN3iOUlxc3PTxIkT1bVrVzVr1kytWrXS888/r1u3buns2bPavn27Bg4cqJYtW+rgwYMaNWqUXnrpJT377LPKmTOnwsLCtGbNGpUrV87p3HQpKVmypN3CSI+itHwWn3/+ufbu3avatWurSJEiMgxDu3bt0qlTp1JsL93d3TV8+HD1799fbdq0Udu2beXu7m5rny9evGiXPiPbiEOHDiXZ0W3WrJnc3Ny0d+9ezZs3T02aNLFdzwYOHKgffvhB48aNU4UKFRzm1r148aJ69OihunXr6sqVK1qyZImyZ8+e6kdzCxQooLFjx+q9997TK6+8ombNmqlw4cKKjIzU77//rh07dujLL79UkSJFUlX2Z86cUefOndWgQQO98MILyp07t06dOqXly5erSJEitkWGk1OrVi3lyZNHkydPVnR0dKpGuUh35lddtWqVZs6cqfPnz6t8+fI6fvy4tm7dqmeeecaubUtLW+vKegM8auhT0KegT0Gfgj7F492nqFmzprJnz64hQ4aoc+fO8vT01E8//aTdu3erWLFidgH8mzdvasCAAcqVK5cmTZokk8mkUqVKadCgQZowYYLmzp3rsLDwgzBy5Eh16dJFnTp1UseOHeXr66tdu3Zpz549atKkie1JiPSWa//+/fXdd9+pV69e6ty5swoUKKBdu3Y5DS6XLVtWffv21fTp0xUUFKSGDRvq6aef1uXLl3X06FF99913dguGJ+fMmTO2a++9qlWrJl9fX12+fFnDhg1TsWLFbFMb1alTR6+++qq++OIL27pTd0vtNTEpD6JOp7dd8PHxUc2aNbVt2zbFxcWpdevWKa4XI92Zh75Tp05asmSJunbtqpdeekkRERFaunSpSpYsabcOTK5cuVS9enVt3LhR2bNnV5kyZXThwgWtXLlSRYoUcRhk4Kp6k9EI1GewzZs3a/PmzTKZTMqRI4cKFCigypUra+zYsfq///u/FI/Pnj27unbtqv3792v//v2KiYlR/vz5VbduXb355pt2I+HGjBmjcePGadasWbb5y9J7Uz1o0CAdOnRIy5Yt0z///KNnn31WkydPdlgQolmzZrp8+bKWLl2qCRMmqGjRourdu7dMJpPDyAJnPDw8tGDBAi1YsECbN2/WRx99JEkKCAiwW+F6+PDhypkzp7Zu3aqdO3eqYMGCateuncqUKeOwYJ+np6eWL1+uadOmKTQ0VOvWrZOPj4/at2+vvn37pmpe4goVKmjhwoWaMmWK5syZI09PTzVs2FAdOnRwuijGhAkTVKVKFa1atUqzZ8/W7du35evrq1KlSundd99N8XwZIS15mDp1qqZOnapNmzZp3759MpvNmj59ujZv3uxwU12pUiV99NFHmjVrliZNmqT8+fOrQ4cOCggIcCj7rFmzavbs2Vq2bJk2bNhgW+Akf/78KlOmTKqDQ87Uq1dPy5Yt06xZs7RmzRrFxMQoX758qlSpkm1kqTO5c+fWvHnzNGnSJC1ZskQJCQkKCAjQ3LlztWbNGrv3W6VKFR0/flzffPONrly5IpPJpCJFimjo0KGpmksyLfUma9asmj9/vj7//HNt2bJF27dvl6enpxo1aqT+/fvbLY7VvXt3ffvtt1q8eLFu3LghHx8flStXTm+++WaaAspms1lly5bVkSNH9PLLLzs8jlepUiVNnz5dn332mT799FNly5ZN1apV05IlS1I9l6Z1EZr58+dr5syZku7cpM6cOTPFkWd38/f3V0hIiGbPnq3Q0FCtWLFCOXPmVOHChdWiRQvbzZ+fn58aNGig77//Xps2bZLFYlHBggX15ptvqnv37qk+3+MotZ9F/fr1deXKFW3dulX//POPsmfPrmLFiunDDz90GCHlTKNGjTRt2jTNnDlT06dPl4+Pj1q0aKHKlSs7fAYZ2UYk10Fv3Lixrl27pqFDh6po0aJ6//337fLw8ccfKygoSAMHDtSKFSvspkmYN2+eJkyYYBsRX65cOQ0ZMiRN37VWrVqpePHiWrBggVauXKkbN24oT548evbZZ9WvXz/bnI2pKfsCBQqoVatWOnjwoHbs2KH4+Hg9/fTTatOmjV5//fVU3dR7eHioSZMmWrJkiXLlypXq76L1Gj1x4kTt3LlTX3/9tcqUKWPbduHCBVvatLS1kuvqDfCooU9Bn4I+BX0K+hSPd5+iWLFimj17tqZOnapZs2YpS5YsqlSpkpYtW6axY8fa3W998MEHOn36tGbPnm3Xflvb+WnTpqlq1aoqV67cA81zmTJltGLFCk2bNk3Lly/XzZs3VbRoUQ0aNMiuvNJbrs8884yWLl2q4OBgLVmyRB4eHqpZs6YmTpzodOqXt99+WwEBAVq8eLG++OIL3bx5Uz4+PnrhhRc0cuTIVL+/vXv3au/evU73LVy4UD4+PhoyZIiio6O1YMECu6duBw8erEOHDmn06NEqW7as3TRAqb0mJiej63RGtAstWrTQrl27JEnNmzdP9XsZOXKk8uXLp1WrVmnixIkqXry4Ro8erbNnzzos2D5p0iRNmTJFoaGhCgkJUfHixTVgwABlyZLFYT0TV9WbjOZmPIgVPYA0On36tDp16qStW7c6zLGHB2/YsGEKCQmxLU4GAE8K2j8AeHzQp3AtrqkA8K9169Zp+PDh+uKLL1SlShVXZwePiEdzEl48dp599lnlz59fX331lauzAgAAAOARRJ8CAAA8ypj6Bi4VHh6uTZs2KXv27Dpz5oxtoT0AAAAASA36FAAA4HFAoB4ulZCQoMWLFysqKkrly5dP0xxdAAAAAECfAgAAPA6Yox4AAAAAAAAAABdijnoAAAAAAAAAAFzoiZj65urVGFksmfvggI9PLkVERGfqOfH4oP4gPag/SA/qD9Ljcaw/JpOb8ubN6eps4CHjiv5FejyO301XojwzDmWZsSjPjENZZhzKMmNRnhnHFWWZUt/iiQjUWyyGS26kH6Wbdzx8qD9ID+oP0oP6g/Sg/uBJ4Kr+RXo8avl92FGeGYeyzFiUZ8ahLDMOZZmxKM+M87CVJVPfAAAAAAAAAADgQgTqAQAAAAAAAABwIQL1AAAAAAAAAAC4EIF6AAAAAAAAAABciEA9AAAAAAAAAAAuRKAeAAAAAAAAAAAXIlAPAAAAAAAAAIALEagHAAAAAAAAAMCFCNQDAAAAAAAAAOBCBOoBAAAAAAAAAHAhAvUAAAAAAAAAALgQgXoAAAAAAAAAAFyIQD0AAAAAAAAAAC5EoB4AAAAAAAAAABciUA8AAAAAAAAAgAtlcXUGHle3Eyzy9fV0dTbSLS4+Qdevxbo6GwAAAAAAAAAyWW6vp5TN4/ELId9OsLg6Cw4ev1J+SGTNYtLgT791dTbSbVK/Wq7OAgAAAAAAAAAXyOaR5bGIcd7rYYx5MvUNAAAAAAAAAAAuRKAeAAAAAAAAAAAXIlAPAAAAAAAAAIALEagHAAAAAAAAAMCFCNQDAAAAAAAAAOBCBOoBAAAAPNJmzJghPz8//f7775Kkw4cPq1mzZmrYsKG6d++uiIgIW9rk9gEAAACuQqAeAAAAwCPr6NGjOnz4sAoXLixJslgsGjx4sEaPHq1t27YpMDBQkydPTnEfAAAA4EoE6gEAAAA8kuLj4zVu3DiNHTvWti0sLEzZsmVTYGCgJKl9+/baunVrivsAAAAAVyJQDwAAAOCR9Omnn6pZs2YqUqSIbVt4eLgKFSpk+9vb21sWi0VRUVHJ7gMAAABcKYurMwAAAAAAafXzzz8rLCxMgwYNyvRz+/jkyvRzppevr6ers/BYoTwzDmWZsSjPjENZZhzKMmO5ojyzZn08Q8gPW918PEsZAAAAwGPthx9+0MmTJ1WvXj1J0t9//60ePXqoS5cuunjxoi1dZGSkTCaT8uTJo4IFCya5Ly0iIqJlsRgZ80Yyga+vp65cueHqbDw2KM+MQ1lmLMoz41CWGYeyzFiuKE9fX0/dvp2QqefMLJldliaTW7IDPpj6BgAAAMAj54033tCePXsUGhqq0NBQFShQQPPnz1fPnj1169YtHTp0SJK0YsUKNWrUSJIUEBCQ5D4AAADAlRhRDwAAAOCxYTKZNHHiRI0ZM0ZxcXEqXLiwJk2alOI+AAAAwJVcEqifMWOGpk+frk2bNslsNuvw4cMaPXq03c2yj4+PJCW7DwAAAAAkKTQ01Pb/ihUratOmTU7TJbcPAAAAcJVMn/rm6NGjOnz4sAoXLixJslgsGjx4sEaPHq1t27YpMDBQkydPTnEfAAAAAAAAAACPg0wN1MfHx2vcuHEaO3asbVtYWJiyZcumwMBASVL79u21devWFPcBAAAAAAAAAPA4yNSpbz799FM1a9ZMRYoUsW0LDw9XoUKFbH97e3vLYrEoKioq2X158uRJ9XmTW033Qcqa9fFYAsDX19PVWXgiUe5ID+oP0oP6g/Sg/gAAAABA2mVaJPnnn39WWFiYBg0alFmntImIiJbFYmTqOX19PXX7dkKmnvNBuXLlhquz8MTx9fWk3HHfqD9ID+oP0uNxrD8mk5vLBn0AAAAAeHJkWqD+hx9+0MmTJ1WvXj1J0t9//60ePXqoS5cuunjxoi1dZGSkTCaT8uTJo4IFCya5DwAAAAAAAACAx0GmzVH/xhtvaM+ePQoNDVVoaKgKFCig+fPnq2fPnrp165YOHTokSVqxYoUaNWokSQoICEhyHwAAAAAAAAAAjwOXT6JuMpk0ceJEjRkzRnFxcSpcuLAmTZqU4j4AAAAAAAAAAB4HLgvUh4aG2v5fsWJFbdq0yWm65PYBAAAAAAAAAPCoy7SpbwAAAAAAAAAAgCMC9QAAAAAAAAAAuBCBegAAAAAAAAAAXIhAPQAAAAAAAAAALkSgHgAAAAAAAAAAFyJQDwAAAAAAAACACxGoBwAAAAAAAADAhQjUAwAAAAAAAADgQgTqAQAAAAAAAABwIQL1AAAAAAAAAAC4EIF6AAAAAAAAAABciEA9AAAAAAAAAAAuRKAeAAAAAAAAAAAXIlAPAAAAAAAAAIALEagHAAAAAAAAAMCFCNQDAAAAAAAAAOBCBOoBAAAAAAAAAHAhAvUAAAAAAAAAALgQgXoAAAAAAAAAAFyIQD0AAAAAAAAAAC5EoB4AAAAAAAAAABciUA8AAAAAAAAAgAsRqAcAAAAAAAAAwIUI1AMAAAAAAAAA4EIE6gEAAAAAAAAAcCEC9QAAAAAAAAAAuBCBegAAAAAAAAAAXCiLqzMAAAAAAPejd+/eOn/+vEwmk3LkyKFRo0bJ399fdevWlYeHh7JlyyZJGjRokGrWrClJOnz4sEaPHq24uDgVLlxYkyZNko+PjyvfBgAAAECgHgAAAMCjKTg4WJ6enpKkHTt2aMSIEQoJCZEkTZs2TWaz2S69xWLR4MGDNWHCBAUGBuqzzz7T5MmTNWHChEzPOwAAAHA3pr4BAAAA8EiyBuklKTo6Wm5ubsmmDwsLU7Zs2RQYGChJat++vbZu3fpA8wgAAACkBiPqAQAAADyyRo4cqb1798owDM2bN8+2fdCgQTIMQ5UqVdLAgQOVO3duhYeHq1ChQrY03t7eslgsioqKUp48eVyRfQAAAEASgXoAAAAAj7Dx48dLktavX6+JEydq7ty5Wrp0qQoWLKj4+HiNHz9e48aN0+TJkzPsnD4+uTLstTKLr69nyomQapRnxqEsMxblmXEoy4xDWWYsV5Rn1qyPZwj5Yaubj2cpAwAAAHiiBAUFafTo0bp69aoKFiwoSfLw8FDHjh311ltvSZIKFiyoixcv2o6JjIyUyWRK82j6iIhoWSxGxmX+AfP19dSVKzdcnY3HBuWZcSjLjEV5ZhzKMuNQlhnLFeXp6+up27cTMvWcmSWzy9Jkckt2wAdz1AMAAAB45MTExCg8PNz2d2hoqLy8vJQtWzbduHGn02UYhrZs2SJ/f39JUkBAgG7duqVDhw5JklasWKFGjRplfuYBAACAe2T6iPrevXvr/PnzMplMypEjh0aNGiV/f3/VrVtXHh4eypYtm6Q7c0rWrFlTknT48GGNHj1acXFxKly4sCZNmiQfH5/MzjoAAACAh0RsbKz69eun2NhYmUwmeXl5adasWYqIiFDfvn2VmJgoi8WiEiVKaMyYMZIkk8mkiRMnasyYMXZ9CwAAAMDVMj1QHxwcLE/PO/P/7NixQyNGjFBISIgkadq0aTKbzXbpLRaLBg8erAkTJigwMFCfffaZJk+erAkTJmR21gEAAAA8JPLly6dVq1Y53bd+/fokj6tYsaI2bdr0oLIFAAAA3JdMn/rGGqSXpOjoaLm5uSWbPiwsTNmyZVNgYKAkqX379tq6desDzSMAAAAAAAAAAJnFJYvJjhw5Unv37pVhGJo3b55t+6BBg2QYhipVqqSBAwcqd+7cCg8PV6FChWxpvL29ZbFYFBUVleZFnwAAAAAAAAAAeNi4JFA/fvx4SXceSZ04caLmzp2rpUuXqmDBgoqPj9f48eM1btw4TZ48OUPOl9xqug9S1qwuKd4M5+vrmXIiZDjKHelB/UF6UH+QHtQfAAAAAEg7l0aSg4KCNHr0aF29elUFCxaUJHl4eKhjx4566623JEkFCxbUxYsXbcdERkbKZDKlaTR9RES0LBYjYzOfAl9fT92+nZCp53xQrly54eosPHF8fT0pd9w36g/Sg/qD9Hgc64/J5OayQR8AAAAAnhyZOkd9TEyMwsPDbX+HhobKy8tL2bJl040bdzp1hmFoy5Yt8vf3lyQFBATo1q1bOnTokCRpxYoVatSoUWZmGwAAAAAAAACAByZTR9THxsaqX79+io2NlclkkpeXl2bNmqWIiAj17dtXiYmJslgsKlGihMaMGSNJMplMmjhxosaMGaO4uDgVLlxYkyZNysxsAwAAAAAAAADwwGRqoD5fvnxatWqV033r169P8riKFStq06ZNDypbAAAAAAAAAAC4TKZOfQMAAAAAAAAAAOwRqAcAAAAAAAAAwIUI1AMAAAAAAAAA4EIE6gEAAAAAAAAAcCEC9QAAAAAAAAAAuBCBegAAAAAAAAAAXIhAPQAAAAAAAAAALkSgHgAAAAAAAAAAFyJQDwAAAAAAAACACxGoBwAAAAAAAADAhQjUAwAAAAAAAADgQgTqAQAAAAAAAABwIQL1AAAAAAAAAAC4EIF6AAAAAAAAAABciEA9AAAAAAAAAAAuRKAeAAAAAAAAAAAXIlAPAAAAAAAAAIALEagHAAAAAAAAAMCFCNQDAAAAAAAAAOBCBOoBAAAAAAAAAHAhAvUAAAAAAAAAALgQgXoAAAAAAAAAAFyIQD0AAAAAAAAAAC5EoB4AAAAAAAAAABciUA8AAAAAAAAAgAsRqAcAAAAAAAAAwIUI1AMAAAAAAAAA4EIE6gEAAAAAAAAAcKEsrs4AAAAAANyP3r176/z58zKZTMqRI4dGjRolf39/nT59WsOGDVNUVJTy5Mmj4OBgFS9eXJKS3QcAAAC4CiPqAQAAADySgoODtXHjRq1fv17du3fXiBEjJEljxoxRx44dtW3bNnXs2FGjR4+2HZPcPgAAAMBVCNQDAAAAeCR5enra/h8dHS03NzdFRETo2LFjatKkiSSpSZMmOnbsmCIjI5PdBwAAALgSU98AAAAAeGSNHDlSe/fulWEYmjdvnsLDw/X000/L3d1dkuTu7q78+fMrPDxchmEkuc/b29uVbwMAAABPOAL1AAAAAB5Z48ePlyStX79eEydOVL9+/R74OX18cj3wc2Q0X1/PlBMh1SjPjENZZizKM+NQlhmHssxYrijPrFkfzxDyw1Y3H89SBgAAAPBECQoK0ujRo1WgQAFdunRJiYmJcnd3V2Jioi5fvqyCBQvKMIwk96VFRES0LBbjAb2TjOfr66krV264OhuPDcoz41CWGYvyzDiUZcahLDOWK8rT19dTt28nZOo5M0tml6XJ5JbsgI9Mn6O+d+/eatasmYKCgtSxY0cdP35cknT69Gm1a9dODRs2VLt27XTmzBnbMcntAwAAAPDkiYmJUXh4uO3v0NBQeXl5ycfHR/7+/tq8ebMkafPmzfL395e3t3ey+wAAAABXyvQR9cHBwbZFn3bs2KERI0YoJCREY8aMUceOHdW8eXNt2LBBo0eP1hdffCFJye4DAAAA8OSJjY1Vv379FBsbK5PJJC8vL82aNUtubm4aO3ashg0bps8++0y5c+dWcHCw7bjk9gEAAACukumBemuQXpKiVxgpuAAAIABJREFUo6Pl5uamiIgIHTt2TAsXLpQkNWnSRB988IEiIyNlGEaS+xj5AgAAADyZ8uXLp1WrVjndV6JECa1evTrN+wAAAABXcckc9SNHjtTevXtlGIbmzZun8PBwPf3003J3d5ckubu7K3/+/AoPD5dhGEnuI1APAAAAAAAAAHjUuSRQP378eEnS+vXrNXHiRPXr1++Bni+5SfofpMdlReSHbQXkJwXljvSg/iA9qD9ID+oPAAAAAKSdSyPJQUFBGj16tAoUKKBLly4pMTFR7u7uSkxM1OXLl1WwYEEZhpHkvtSKiIiWxWI8wHfi6HFaEZnVuTMfq6IjPag/SA/qD9Ljcaw/JpObywZ9AAAAAHhymDLzZDExMQoPD7f9HRoaKi8vL/n4+Mjf31+bN2+WJG3evFn+/v7y9vZOdh8AAAAAAAAAAI+6TB1RHxsbq379+ik2NlYmk0leXl6aNWuW3NzcNHbsWA0bNkyfffaZcufOreDgYNtxye0DAAAAAAAAAOBRlqmB+nz58mnVqlVO95UoUUKrV69O8z4AAAAAAAAAAB5lmTr1DQAAAAAAAAAAsEegHgAAAPh/9u48PKry/P/4J7ssgZiQ0IAWlJoYEyJLcEFZBIFoEwJqC8Zov1UR64qWxbIqS2MgRauiWEH8SlPQSiEEFNCySaV8ActWNkEQkLAl7EvW8/uDXwbGLGTIZJ6Zyft1XVwXc5Y593nmSXLue855HgAAAAAwiEI9AAAAAAAAAAAGUagHAAAAAAAAAMAgCvUAAAAAAAAAABhEoR4AAAAAAAAAAIMo1AMAAAAAAAAAYBCFegAAAAAAAAAADKJQDwAAAAAAAACAQRTqAQAAAAAAAAAwiEI9AAAAAAAAAAAGUagHAAAAAAAAAMAgCvUAAAAAAAAAABhEoR4AAAAAAAAAAIMo1AMAAAAAAAAAYBCFegAAAAAAAAAADKJQDwAAAAAAAACAQRTqAQAAAAAAAAAwiEI9AAAAAAAAAAAGUagHAAAAAAAAAMAgCvUAAAAAAAAAABhEoR4AAAAAAAAAAIMo1AMAAAAAAAAAYBCFegAAAAAAAAAADKJQDwAAAAAAAACAQRTqAQAAAAAAAAAwiEI9AAAAAAAAAAAGUagHAAAAAAAAAMAgf0d3OHnypFauXKnc3FwVFhbarXvuueecFhgAAAAA70ZuAQAAAFzkUKF+w4YNGjhwoAICAnT8+HE1bdpUR44cUWBgoJo3b87FNAAAAIBqqWlucfz4cQ0dOlT79u1TYGCgWrRoobFjxyo0NFTR0dGKioqSr+/FB4gnTpyo6OhoSdLSpUs1ceJElZSUKDY2Vunp6apXr16tny8AAABQFYeGvpk4caKSk5P19ddfKzAwUP/7v/+r5cuXKy4uTgMGDKitGAEAAAB4mZrmFj4+PnryySe1ePFi5eTk6Prrr1dmZqZt/ezZs5Wdna3s7Gxbkf7s2bMaNWqUpk6dqi+//FINGjTQ9OnTa+0cAQAAgOpyqFC/Y8cOPfLII/Lx8ZGfn58KCwvVpEkTDR48WO+8805txQgAAADAy9Q0twgJCdHtt99ue92mTRsdPHiwyn1WrlypuLg4tWzZUpLUv39/ffHFFzU6DwAAAMAZHCrUBwQE2P4fFhamH3/8UZLUoEEDHTlyxLmRAQAAAPBazswtSktLNWvWLHXr1s227NFHH1VKSor+9Kc/2ca/z83NVbNmzWzbNGvWTLm5uTU5DQAAAMApHBqjPjY2Vps3b9YNN9yg22+/XW+++aby8vI0f/582+OkAAAAAHAlzswtxo0bp/r16ystLU2StHz5ckVGRurMmTMaMmSIpkyZopdeeslpsYeFNXTae7lKeHiw6RC8Cu3pPLSlc9GezkNbOg9t6Vwm2jMgwKESssdwt77pUCsPGjRIZ8+etf1/6NChGjdunFq2bKn09PQr7s+ETwAAAACkmucWZTIyMvTDDz9o6tSptlwiMjJSktSwYUP96le/0owZM2zL16xZY9v34MGDtm0dkZd3RqWllsP7mRIeHqyjR0+bDsNr0J7OQ1s6F+3pPLSl89CWzmWiPcPDg1VUVOzSY7qKq9vS19enyhs+HCrUt27d2vb/0NBQTZs2zaFgyiZ8KhtLMiMjQ5mZmfrjH/8o6eKETw0aNLDbp2zCp6ysLLVs2VIjRozQ9OnT9dxzzzl0bAAAAADuo6a5hSRNnjxZW7Zs0V/+8hcFBgZKkk6ePKmgoCBdc801Ki4u1uLFixUTEyNJ6tSpk8aNG6e9e/eqZcuWmj17tu677z7nnBAAAABQAw6NUV9TTPgEAAAAwBm+++47vf/++zpy5Ij69++vlJQUPfvss/r+++/1q1/9Sr1791bv3r3l7++vF198UdLFO+zHjh2rgQMHqkePHjp9+rQef/xxw2cCAAAAVOOO+uTkZP31r39V48aNlZycXOW2OTk51T5wZRM+lZSUqHPnznr++ecVGBjIhE8AAACAl3BmbnHTTTdpx44dDu9777336t57771ysAAAAIALXbFQ36tXL9tjpL169XLagV054ZOpyZ68ZaIFd5tYoa6g3VET9B/UBP0HNUH/QVVqK7cAAAAAPN0VK8mXjwXvrHHhXT3hk4nJnrxpogUm/XA9JltBTdB/UBP0H9SEN/afK034BMfURm4BAAAAeAOHxqj/7rvvtH379nLLt2/frl27dlXrPcomfJoyZYrdhE8XLlyQpAonfNq8ebP27t0rSUz4BAAAAHgBZ+QWAAAAgLdwqFA/atQofffdd+WW7969W6NGjbri/kz4BAAAAECqeW4BAAAAeBOHBlHfsWOH4uPjyy1v3bq1du7cecX9mfAJAAAAgFTz3AIAAADwJg7dUe/n56fTp8uPO3ry5ElZlmvHgAcAAADgucgtAAAAgEscKtR36NBBU6dOVUlJiW1ZcXGxpk6dqg4dOjg9OAAAAADeidwCAAAAuMShoW+GDBmi1NRU9ejRQ+3bt5ckrV+/XufOnVNWVlatBAgAAADA+5BbAAAAAJc4dEf9jTfeqPnz5ys5OVknT57UyZMnlZycrOzsbLVq1aq2YgQAAADgZcgtAAAAgEscuqNekiIiIvTSSy/VRiwAAAAA6hByCwAAAOAihwv158+f17Zt25Sfn6/S0lK7dT179nRaYAAAAAC8G7kFAAAAcJFDhfpvvvlGL7/8sk6cOFFunY+Pj7Zt2+a0wAAAAAB4L3ILAAAA4BKHCvUTJkxQ165d9dJLL6lp06a1FRMAAAAAL0duAQAAAFziUKH+xx9/1HvvvceFNAAAAIAaIbcAAAAALvF1ZON27dppz549tRULAAAAgDqC3AIAAAC4xKE76vv376+MjAwdOXJEUVFR8ve33z02NtapwQEAAADwTuQWAAAAwCUOFepfeOEFSdKoUaPKrWPCJwAAAADVRW4BAAAAXOJQof6f//xnbcUBAAAAoA4htwAAAAAucahQ37x589qKAwAAAEAdQm4BAAAAXOLQZLKStGLFCg0cOFD333+/cnNzJUl///vftXr1aqcHBwAAAMB7kVsAAAAAF1WrUL9u3TpJ0vz58zVo0CC1aNFCBw4cUHFxsSSppKRE06ZNq70oAQAAAHgFcgsAAACgvCoL9QUFBRo/frzee+89SdIHH3yg8ePHa/jw4fLz87Nt16ZNGyZ7AgAAAFApcgsAAACgclUW6qdNm6YDBw5o+vTpkqR9+/apTZs25barX7++zpw5UzsRAgAAAPB45BYAAABA5aos1Pfu3VunTp3SxIkTJUkRERHau3dvue3Wrl2rn//857USIAAAAADPR24BAAAAVK7KQv3111+vrKwsRURESJJ+/etfa/z48Vq/fr0kKTc3V3PnztWkSZP08MMP1360AAAAADwSuQUAAABQOf8rbeDj46P/+Z//kSQNGDBAZ86c0eOPP66CggI99thjCgwM1OOPP65HHnmktmMFAAAA4MHILQAAAICKXbFQ/1MvvfSSnn76ae3atUuWZalVq1Zq0KBBbcQGAAAAwIuRWwAAAAAXOVyol6R69eqpdevWzo4FAAAAQB1DbgEAAAA4WKh/+umnq1w/derUGgUDAAAAoG4gtwAAAAAucahQf+2119q9Lioq0o4dO5Sbm6sePXo4NTAAAAAA3ovcAgAAALjEoUJ9enp6hctff/11NWzY0CkBAQAAAPB+5BYAAADAJb7OeJN+/fopKyvLGW8FAAAAoA4jtwAAAEBd5JRC/Z49e5zxNgAAAADqOHILAAAA1EUODX0zfvx4u9eWZeno0aNauXKlHnzwQacGBgAAAMB7kVsAAAAAlzhUqN+xY4fda19fX4WGhuoPf/gDF9MAAAAAqo3cAgAAALjEoUL9zJkzaysOAAAAAHVITXOL48ePa+jQodq3b58CAwPVokULjR07VqGhodqwYYNGjx6tgoICNW/eXJMmTVJYWJgkVbkOAAAAMMUpY9QDAAAAgCv5+PjoySef1OLFi5WTk6Prr79emZmZKi0t1ZAhQzR69GgtXrxYCQkJyszMlKQq1wEAAAAmOXRH/aOPPiofH59qbfvxxx9fVUAAAAAAvF9Nc4uQkBDdfvvtttdt2rTRrFmztGXLFgUFBSkhIUGS1L9/f3Xv3l3p6elVrgMAAABMcqhQ36pVK+Xk5KhJkya69dZbJUmbNm3SsWPHlJSUJD8/v1oJEgAAAIB3cWZuUVpaqlmzZqlbt27Kzc1Vs2bNbOtCQ0NVWlqqEydOVLkuJCTEeScHAAAAOMihQn1gYKD69u2rESNG2N39MmHCBFmWpZEjR1a5P+NIAgAAAJBqnltcbty4capfv77S0tL05Zdf1ka4dsLCGtb6MZwtPDzYdAhehfZ0HtrSuWhP56EtnYe2dC4T7RkQ4FAJ2WO4W990qJWzs7M1e/bsco+opqamql+/fle8mC4bR7LsEdWMjAxlZmZq/PjxGjJkiNLT05WQkKB3331XmZmZSk9Pt40jWdE6AAAAAJ6pprlFmYyMDP3www+aOnWqfH19FRkZqYMHD9rW5+fny9fXVyEhIVWuc0Re3hmVlloO7WNSeHiwjh49bToMr0F7Og9t6Vy0p/PQls5DWzqXifYMDw9WUVGxS4/pKq5uS19fnypv+HBoMlnLsrRz585yyytaVpGKxpE8ePBghWNFLlq0SJKqXAcAAADAM9U0t5CkyZMna8uWLZoyZYoCAwMlSXFxcbpw4YLWrVsnSZo9e7YSExOvuA4AAAAwyaE76h988EGNHDlSP/zwg20cyY0bN2ratGl64IEHHDow40gCAAAAdVdNc4vvvvtO77//vlq2bKn+/ftLkq677jpNmTJFEydO1JgxY+yGzpQkX1/fStcBAAAAJjlUqB8yZIhCQ0P18ccfa/LkyZKk8PBwDRgwQI8//rhDB3blOJKmxpD0lvGb3G28prqCdkdN0H9QE/Qf1AT9B9VV09zipptu0o4dOypc165dO+Xk5Di8DgAAADDFoUqyr6+vBgwYoAEDBujMmTOSpIYNHS+Cu3ocSRNjSHrT+E2MJeZ6jOGGmqD/oCboP6gJb+w/VxpHElfPWbkFAAAA4A0cGqO+zObNm7Vy5Ur5+l7c/dy5cyourl5RmnEkAQAAAJSpSW4BAAAAeAuH7qg/duyYnnnmGW3atEk+Pj5asmSJ6tevr9dff12BgYEaOXJklfszjiQAAAAAqea5BQAAAOBNHCrUp6enKywsTGvWrFHXrl1tyxMTEzVu3Lgr7s84kgAAAACkmucWAAAAgDdxqFC/evVqffTRR2rcuLHd8uuvv165ublODQwAAACA9yK3AAAAAC5xaIz6CxcuKCAgoNzy48ePKygoyGlBAQAAAPBu5BYAAADAJQ4V6jt06KC5c+faLSspKdEHH3ygO+64w6mBAQAAAPBe5BYAAADAJQ4NfTNkyBClpaVp8+bNKioqUkZGhr777judOXNGs2bNqq0YAQAAAHgZcgsAAADgEocK9b/4xS+Uk5OjWbNmKTAwUAUFBUpMTNQjjzyiiIiI2ooRAAAAgJchtwAAAAAuqXahvqioSKmpqcrIyNALL7xQmzEBAAAA8GLkFgAAAIC9ao9RHxAQoAMHDsjHx6c24wEAAADg5cgtAAAAAHsOTSbbp08fffrpp7UVCwAAAIA6gtwCAAAAuMShMerPnz+vnJwcffPNN4qNjVX9+vXt1o8cOdKpwQEAAADwTuQWAAAAwCXVKtRv375dN910k3bv3q1bbrlFkrR//367bXhsFQAAAMCVkFsAAAAA5VWrUN+3b1+tWrVKM2fOlCQ99dRTGj9+vCIiImo1OAAAAADehdwCAAAAKK9aY9RblmX3et26dSooKKiVgAAAAAB4L3ILAAAAoDyHJpMt89OLawAAAAC4GuQWAAAAQDUL9T4+PowTCQAAAKDGyC0AAACA8qo1Rr1lWRoyZIgCAgIkSYWFhRo1apSuueYau+2mTp3q/AgBAAAAeA1yCwAAAKC8ak8me7nevXvXSjAAAAAAvBu5BQAAAFBetQr16enptR0HAAAAgDqA3AIAAAAo76omkwUAAAAAAAAAAM5BoR4AAAAAAAAAAIMo1AMAAAAAAAAAYBCFegAAAAAAAAAADKJQDwAAAAAAAACAQRTqAQAAAAAAAAAwiEI9AAAAAAAAAAAGUagHAAAAAAAAAMAgCvUAAAAAAAAAABhEoR4AAAAAAAAAAIMo1AMAAAAAAAAAYBCFegAAAAAAAAAADKJQDwAAAAAAAACAQRTqAQAAAAAAAAAwyN90AAAAAADgqIyMDC1evFg//vijcnJyFBUVJUnq1q2bAgMDFRQUJEkaPHiwOnXqJEnasGGDRo8erYKCAjVv3lyTJk1SWFiYsXMAAAAAynBHPQAAAACP0717d2VlZal58+bl1r311lvKzs5Wdna2rUhfWlqqIUOGaPTo0Vq8eLESEhKUmZnp6rABAACAClGoBwAAAOBxEhISFBkZWe3tt2zZoqCgICUkJEiS+vfvr0WLFtVWeAAAAIBDXDr0DY+nAgAAAKhtgwcPlmVZat++vV5++WU1atRIubm5atasmW2b0NBQlZaW6sSJEwoJCTEYLQAAAODiQn337t312GOP6ZFHHim37q233rIV7suUPZ6anp6uhIQEvfvuu8rMzFR6erqrQgYAAADgQbKyshQZGanCwkJNmDBBY8eOdfoQN2FhDZ36fq4QHh5sOgSvQns6D23pXLSn89CWzkNbOpeJ9gwI8M5pTt2tb7q0lcseM62uih5P7d69O4V6AAAAABUqGw4nMDBQqamp+t3vfmdbfvDgQdt2+fn58vX1vaq76fPyzqi01HJOwC4QHh6so0dPmw7Da9CezkNbOhft6Ty0pfPQls5loj3Dw4NVVFTs0mO6iqvb0tfXp8obPtxmjPrBgwcrOTlZr776qk6dOiVJVT6eCgAAAACXO3funE6fvphwWZalzz//XDExMZKkuLg4XbhwQevWrZMkzZ49W4mJicZiBQAAAC7nFs8t1PbjqaYeTfWWx0Lc7TGQuoJ2R03Qf1AT9B/UBP0HrjJ+/HgtWbJEx44d029/+1uFhIRo6tSpev7551VSUqLS0lK1atVKY8aMkST5+vpq4sSJGjNmjN38VwAAAIA7cItKcm0/nmri0VRveiyER5Rcj0fDUBP0H9QE/Qc14Y3950qPp8KckSNHauTIkeWWz5s3r9J92rVrp5ycnNoMCwAAALgqxoe+4fFUAAAAAAAAAEBd5tI76nk8FQAAAAAAAAAAey4t1PN4KgAAAAAAAAAA9owPfQMAAAAAAAAAQF1GoR4AAAAAAAAAAIMo1AMAAAAAAAAAYBCFegAAAAAAAAAADKJQDwAAAAAAAACAQRTqAQAAAAAAAAAwiEI9AAAAAAAAAAAGUagHAAAAAAAAAMAgCvUAAAAAAAAAABhEoR4AAAAAAAAAAIMo1AMAAAAAAAAAYBCFegAAAAAAAAAADKJQDwAAAAAAAACAQRTqAQAAAAAAAAAwiEI9AAAAAAAAAAAGUagHAAAAAAAAAMAgCvUAAAAAAAAAABhEoR4AAAAAAAAAAIMo1AMAAAAAAAAAYBCFegAAAAAAAAAADKJQDwAAAAAAAACAQRTqAQAAAAAAAAAwiEI9AAAAAAAAAAAGUagHAAAAAAAAAMAgCvUAAAAAAAAAABhEoR4AAAAAAAAAAIMo1AMAAAAAAAAAYBCFegAAAAAAAAAADKJQDwAAAAAAAACAQRTqAQAAAAAAAAAwiEI9AAAAAAAAAAAGUagHAAAAAAAAAMAgCvUAAAAAPE5GRoa6deum6Oho7dy507Z8z5496tevn3r16qV+/fpp79691VoHAAAAmEShHgAAAIDH6d69u7KystS8eXO75WPGjFFqaqoWL16s1NRUjR49ulrrAAAAAJNcWqjnrhcAAAAAzpCQkKDIyEi7ZXl5edq6dauSkpIkSUlJSdq6davy8/OrXAcAAACY5tJCPXe9AAAAAKgtubm5atq0qfz8/CRJfn5+ioiIUG5ubpXrAAAAANP8XXmwhISEcsvK7myZMWOGpIt3towbN075+fmyLKvSdaGhoa4MHQAAAAAkSWFhDU2H4LDw8GDTIXgV2tN5aEvnoj2dh7Z0HtrSuUy0Z0CAS0vILuNufdN4K1d1Z4tlWZWuo1APAAAA4HKRkZE6fPiwSkpK5Ofnp5KSEh05ckSRkZGyLKvSdY7Kyzuj0lKrFs6gdoSHB+vo0dOmw/AatKfz0JbORXs6D23pPLSlc5loz/DwYBUVFbv0mK7i6rb09fWp8oYP44V6VzB1x4u3fNvkbt8u1RW0O2qC/oOaoP+gJug/MCksLEwxMTFasGCBUlJStGDBAsXExNhu8qlqHQAAAGCS8UqyK+56MXHHizd928Q3n67HN86oCfoPaoL+g5rwxv5zpbteYM748eO1ZMkSHTt2TL/97W8VEhKihQsX6tVXX9Urr7yid999V40aNVJGRoZtn6rWAQAAACYZL9Rz1wsAAAAAR40cOVIjR44st7xVq1b6+9//XuE+Va0DAAAATHJpoZ67XgAAAAAAAAAAsOfSQj13vQAAAAAAAAAAYM/XdAAAAAAAAAAAANRlFOoBAAAAAAAAADCIQj0AAAAAAAAAAAZRqAcAAAAAAAAAwCAK9QAAAAAAAAAAGEShHgAAAAAAAAAAgyjUAwAAAAAAAABgEIV6AAAAAAAAAAAMolAPAAAAAAAAAIBBFOoBAAAAAAAAADCIQj0AAAAAAAAAAAZRqAcAAAAAAAAAwCAK9QAAAAAAAAAAGEShHgAAAAAAAAAAgyjUAwAAAAAAAABgEIV6AAAAAAAAAAAMolAPAAAAAAAAAIBBFOoBAAAAAAAAADCIQj0AAAAAAAAAAAZRqAcAAAAAAAAAwCAK9QAAAAAAAAAAGEShHgAAAAAAAAAAgyjUAwAAAAAAAABgEIV6AAAAAAAAAAAMolAPAAAAAAAAAIBBFOoBAAAAAAAAADCIQj0AAAAAAAAAAAZRqAcAAAAAAAAAwCB/0wEAAAAAAACY1qhxPQUFenaZJDw8uNyygsJinTp53kA0AABHePZfIAAAAAAAACcICvTXkD+vMB3GVQsI8FdRUXG55ZNe7GIgGgCAoxj6BgAAAAAAAAAAgyjUAwAAAAAAAABgEIV6AAAAAAAAAAAMYox6AAAAAF6nW7duCgwMVFBQkCRp8ODB6tSpkzZs2KDRo0eroKBAzZs316RJkxQWFmY4WgAAANR1blWo52IaAFyvUeN6Cgp0qz8HV6WgsFinTp43HQYAwI289dZbioqKsr0uLS3VkCFDlJ6eroSEBL377rvKzMxUenq6wSgBAAAANyvUS1xMA4CrBQX6a8ifV5gOo8YmvdjFdAgAADe3ZcsWBQUFKSEhQZLUv39/de/endwCAAAAxrn9GPUVXUwvWrTIcFQAAAAA3N3gwYOVnJysV199VadOnVJubq6aNWtmWx8aGqrS0lKdOHHCYJQAAACAG95RP3jwYFmWpfbt2+vll1+u8mI6JCTEYKQAAAAA3FVWVpYiIyNVWFioCRMmaOzYserRo4dT3jssrKFT3seVwsODTYfgVWhP53G3tgwIcLsyiUMqi9/d2tkT0GbOQ1s6l4n29PTfjZVxt77pVq1cWxfTpi6kvaUTu1unrStod/dXVFyqAH/3fDDJ0f7D7ytcjnZETdB/4C4iIyMlSYGBgUpNTdXvfvc7PfbYYzp48KBtm/z8fPn6+jp8A1Be3hmVllpOjbc2hYcH6+jR06bD8Bp1vT29ZX6jyhQVFZsO4aoFBPhXGn9d7rNXo67/nDsTbelcJtozPDzYo383VsXVbenr61Nlndqt/rrW1sW0iQtpb+rE/EJ1Pf6QeYbw8GC3HNu9qgv0ikx6sQu/r2DD7x/UhDf2nytdTMM9nTt3TiUlJQoODpZlWfr8888VExOjuLg4XbhwQevWrVNCQoJmz56txMRE0+ECHsWZ8xs5et1a25jzCABgktsU6rmYBgAAAOAMeXl5ev7551VSUqLS0lK1atVKY8aMka+vryZOnKgxY8aooKBAzZs316RJk0yHCwAAALhPoZ6LaQAAAADOcP3112vevHkVrmvXrp1ycnJcHBEAAABQNbcp1HMxDQAAAAAAAACoi9ymUA/gyrxl4qaCwmKdOnnedBgAAAAAAACAW/D8ih9Qhzhz4iaTmKQJAAAAAAAAuMTXdAAAAAAAAAAAANRl3FGPKhUVlyo8PNh0GDVWVFyiAH8/02E4xBvaHQAAAABglrfk9RXx1mFVvWXY2zKX9z9v/cwAZ/Cen3rUigB/X68ZasWTziMgwF9FRcXlljNkDAAAAADAEd6S11fEW3Nkbxn2Vipf3/jjs5288osjvoCAM1CoB+By3nxHB8zxln7FBR4AAABQPbWZA3hDbuGOvPWLI2/90giuRaGi/+YqAAAfXUlEQVQegMt5yx9m/hC7F/oVAAAAULfUVg5Q2VPurkJOANRNTCYLAAAAAAAAAIBBFOoBAAAAAAAAADCIoW8AAAAAAAAA4Cq5cs405k/wXhTqAQAAAAAAAOAquWrONBPzJzBngutQqAcAAAAAGNGocT0FBXpeWlqduxkLCot16uR5F0QDAAC8geddEQEAAAAAvEJQoL9L7kB0purezcgdiAAAwBFMJgsAAAAAAAAAgEEU6gEAAAAAAAAAMIhCPQAAAAAAAAAABlGoBwAAAAAAAADAIAr1AAAAAAAAAAAY5G86AAAAAAAAvE1RcanCw4NNhwEAADwEhXoAAAAAAJwswN9XQ/68wnQYTjfpxS6mQwAAwCsx9A0AAAAAAAAAAAZxRz0AAG7EHR6Td8bxCwqLderkeSdEAwAAAACA96NQDwCAGzH9mHxAgL+Kiopr/D48Fg8AAAAAQPUx9A0AAAAAAAAAAAZRqAcAAAAAAAAAwCAK9QAAAAAAAAAAGMQY9QAAwOncYVJcZ2BSXAAAAACAK1CoBwAATmd6UlxnYVJcAO6iUeN6Cgq8+vTNG748BQAA8GYU6gEAACrBkwEA3EVQoP9VfwEaEOCvoqJiJ0fkHHwhCgAAcBGFegAAgErwZAAAAAAAwBWYTBYAAAAAAAAAAIMo1AMAAAAAAAAAYBCFegAAAAAAAAAADKJQDwAAAAAAAACAQR5RqN+zZ4/69eunXr16qV+/ftq7d6/pkAAAAAB4KPILAAAAuBuPKNSPGTNGqampWrx4sVJTUzV69GjTIQEAAADwUOQXAAAAcDf+pgO4kry8PG3dulUzZsyQJCUlJWncuHHKz89XaGio4egAAADcX1FxqcLDg11yrNo8TkFhsU6dPF9r74+6gfwCAAAA7sjtC/W5ublq2rSp/Pz8JEl+fn6KiIhQbm5utS+kfX19ajPESl0bHGTkuM7Gebief4C/iov8KlznSedRFc6j9lTVfyrjjudxNTiPmrua/lMZPg/3EeDvqz9++O9aP87F/lNca+8//PE7XH5dZ+o6ErWnLuYXzvzdXhs87fesI+3paedWXc46L3fsm578mdWFPLIitXFu7tA3veUzq6gtveXcfsoV52Wqb3rrZ+ZuuYWPZVmWi2K5Klu2bNGwYcO0cOFC27L7779fkyZNUmxsrMHIAAAAAHga8gsAAAC4I7cfoz4yMlKHDx9WSUmJJKmkpERHjhxRZGSk4cgAAAAAeBryCwAAALgjty/Uh4WFKSYmRgsWLJAkLViwQDExMYwfCQAAAMBh5BcAAABwR24/9I0k7d69W6+88opOnTqlRo0aKSMjQzfeeKPpsAAAAAB4IPILAAAAuBuPKNQDAAAAAAAAAOCt3H7oGwAAAAAAAAAAvBmFegAAAAAAAAAADKJQDwAAAAAAAACAQRTqAQAAAAAAAAAwiEI9AAAAAAAAAAAGUah3suzsbCUnJ+uWW27RX//6V7t158+f16BBg9SjRw8lJiZq2bJlhqKEJ9izZ48effRRpaSk6L777tPbb79tOiR4mJkzZyoxMVHJyclKSUkxHQ480Jo1axQTE1Pu7xlQlddee02JiYnq3bu3+vfvr82bN5sOCajTnnnmGfXu3Vt9+vRRamqqtm3bZjokj/fOO+8oOjpaO3fuNB2KR+vWrZsSExOVkpKilJQUff3116ZD8lgFBQUaM2aMevbsqeTkZI0aNcp0SB7pwIEDtv6YkpKibt266bbbbjMdlkdbtmyZ+vTpo5SUFPXu3VtLliwxHZLHWr58ufr27avk5GSlpaVp//79pkPyGBkZGerWrVu5v9179uxRv3791KtXL/Xr10979+41F+T/5286AG8TExOjN954Q3/5y1/KrZs+fboaNmyoL7/8Unv37tUjjzyiJUuWqEGDBgYihbubNGmSevXqpbS0NJ09e1ZJSUnq0qWL4uPjTYcGD7BkyRItWrRIn332mRo2bKhjx46ZDgke5syZM8rMzFTnzp1NhwIP07lzZw0fPlwBAQFatmyZXnrpJX311VemwwLqrIyMDAUHB0uSvvrqKw0fPlxz5841HJXn+u9//6sNGzaoefPmpkPxCm+99ZaioqJMh+HxJk2apKCgIC1evFg+Pj5c+1+l6667TtnZ2bbXEyZMUElJicGIPJtlWRo6dKiysrIUFRWl7du36+GHH9a9994rX1/uG3bEyZMnNWzYMM2ePVs33HCDsrOz9eqrr2r69OmmQ/MI3bt312OPPaZHHnnEbvmYMWOUmpqqlJQUZWdna/To0fr4448NRXkRPxlOFhUVpV/84hcV/tL54osv1K9fP0lSy5YtFRcXp5UrV7o6RHgIHx8fnT59WpJ04cIF+fj4KDQ01HBU8BQffvihnnvuOTVs2FCS1KRJE8MRwdO8/vrreuKJJ3TttdeaDgUe5p577lFAQIAkqU2bNjp06JBKS0sNRwXUXWVFeunil7A+Pj4Go/FshYWFGjt2rF599VXToQA2Z8+e1bx58/Tiiy/afr659q+5wsJC5eTk6MEHHzQdikfz9fW11TVOnz6tiIgIivRX4YcfflCTJk10ww03SJK6dOmiVatWKT8/33BkniEhIUGRkZF2y/Ly8rR161YlJSVJkpKSkrR161bjbcod9S508OBBuzsvIiMjdejQIYMRwZ0NHz5cTz/9tP72t7/p1KlTGjp0qK677jrTYcFD7N69Wxs3btSf//xnFRYWqn///vr1r39tOix4iBUrVuj06dNKTEzU8uXLTYcDD5aVlaWuXbuSkAGGjRgxQv/6179kWZamTZtmOhyP9ec//1m9e/fmmtyJBg8eLMuy1L59e7388stq1KiR6ZA8zv79+xUSEqJ33nlHa9asUYMGDfTiiy8qISHBdGgebenSpWratKliY2NNh+KxfHx89Oabb+qZZ55R/fr1dfbs2QpHn8CV3XDDDTp27Jg2bdqk+Ph45eTkSJJyc3O5ofMq5ebmqmnTpvLz85Mk+fn5KSIiwnibUqh3UN++fXXw4MEK133zzTe2Dxi4kiv1pU8++UQpKSl68skndeTIET366KOKi4vTrbfe6uJI4Y6u1H9KSkqUm5urv/3tbzp+/Lgefvhh3XDDDerQoYOLI4U7qqr/LFq0SH/60580Y8YMF0cFT1Hda6GFCxcqJydHWVlZrgwPQAUmTJggSZo3b54mTpyoDz74wHBEnuc///mPtmzZosGDB5sOxWtkZWUpMjJShYWFmjBhgsaOHavMzEzTYXmckpIS7d+/X7fccouGDRumjRs36umnn9aXX35pe7oWjpszZw5309dQcXGx3n//fb377rtq37691q9fr0GDBmnhwoUMAe2g4OBgvfHGG0pPT1dBQYE6d+6sRo0aUYP0QhTqHVST8RybNWumH3/80fbNTG5urm6//XZnhQYPc6W+NHPmTNuYvhEREbrjjju0du1aCvWQdOX+06xZMyUlJcnX11dhYWHq2LGjNm3aRKEekqruP+vWrdPRo0f1q1/9SpJ0/PhxLVu2TCdOnNBzzz3nqhDhxqpzLfTll1/qjTfe0EcffcTj94Ab6dOnj0aPHq3jx48ztJmD1q5dq927d6t79+6SpEOHDumJJ55Qenq67r77bsPReaayYQgCAwOVmpqq3/3ud4Yj8kyRkZHy9/e3Dd9w66236tprr9WePXvUunVrw9F5psOHD2vt2rWaOHGi6VA82rZt23TkyBG1b99ektS+fXvVq1dPu3fvZu69q9CxY0d17NhRknTs2DFNnz5dP//5zw1H5bkiIyN1+PBhlZSUyM/PTyUlJTpy5Ei5IXJcjeeQXSgxMVGffPKJJGnv3r3avHmzOnXqZDgquKvrrrtOX3/9taSL44muX79eN910k+Go4CmSkpJs/efcuXNav369br75ZsNRwRMkJCRo9erVWrp0qZYuXapevXrp+eefp0iPalu2bJnS09M1ffp0hocADDt79qxyc3Ntr5cuXarGjRsrJCTEYFSe6amnntKqVatsfx9/9rOfafr06RTpr9K5c+ds41ZblqXPP/9cMTExhqPyTKGhobr99tv1r3/9S5K0Z88e5eXlqUWLFoYj81xz585Vly5d+EKzhn72s5/p0KFD+v777yVdHJ41Ly+P4vJVOnr0qCSptLRUkydPVv/+/VW/fn3DUXmusLAwxcTEaMGCBZKkBQsWKCYmxvhQQj6WZVlGI/AyCxYs0MSJE3Xq1CkFBASoXr16+vDDD/WLX/xC586d0yuvvKJt27bJ19dXQ4YM0b333ms6ZLipLVu2aPz48Tp37pyKi4t1//33UyhDtV24cEGjRo3S1q1bJUkpKSl66qmnDEcFT/TKK68oLi5OaWlppkOBh7jjjjsUEBBgd5H70UcfkewCBhw7dkzPPPOMzp8/L19fXzVu3FjDhg1jzGUn6Natm6ZOnaqoqCjToXik/fv36/nnn1dJSYlKS0vVqlUrjRw5UhEREaZD80j79+/X8OHDdeLECfn7+2vQoEHq0qWL6bA8Vq9evTRixAh17tzZdCgeb/78+frggw9sEx2/8MIL1MGu0ogRI/Ttt9+qqKhId911l4YPH66goCDTYXmE8ePHa8mSJTp27JiuvfZahYSEaOHChdq9e7deeeUVnTp1So0aNVJGRoZuvPFGo7FSqAcAAAAAAAAAwCCGvgEAAAAAAAAAwCAK9QAAAAAAAAAAGEShHgAAAAAAAAAAgyjUAwAAAAAAAABgEIV6AHDAxo0bNWPGDJWWlpoOBQAAAIAH27x5M7kFAMCGQj2AWvX2228rKSnJdBhOcejQIb344ou6+eab5etbvV+f0dHRWrRoUS1HVnP5+fmKjo7WmjVrTIfiltasWaPo6Gjl5+dXe58rffbOavOxY8fq0UcfrdF7AAAAuDNvyinKHD9+XIMGDdJNN91U7dyiDDmGdyDHAPBTFOoBVOjpp5/Wb37zmwrX7d69W9HR0Vq1apWLo3Ku6OhoRUdHa926dXbLS0pK1KlTJ7uLoMLCQg0aNEhDhw7VnXfeWe1jrFq1St26dXNq3O6srE1/+m/WrFmmQ6uRtm3batWqVbr22murvU9d++wBAAB+ipyiU4WFVcuy9Ic//EHPPPOM7r77boePWdeuM8kxLqlrnz1Q1/ibDgCAe3rooYf03HPP6cCBA7ruuuvs1n322Wdq3ry5Onbs6JJYioqKFBAQUCvvHRkZqTlz5ighIcG2bOXKlfL3t//1GBgYqNmzZzv8/uHh4TWO0dOMHz9eXbt2tVsWHBxcq8eszT4iXfz8Hf0s6+JnDwAAcDlyiopLLj4+Ppo6depVH68uXmeSY1xUFz97oC7hjnoAFeratauaNGmif/zjH3bLi4qKlJ2drQceeECWZWn48OHq1q2b4uPj1bNnT33wwQdVjrFYWlqqKVOmqEuXLoqLi1NycrK++uor2/oDBw4oOjpaCxYs0GOPPab4+Hh98sknkqQ5c+bo/vvvV+vWrdWrVy999NFHdseaPXu2evXqpdatW+v222/XE088oeLi4irPs2/fvlq0aJHOnj1rW/bZZ5+pb9++5bbt1q2bpk+fbnsdHR2tTz75RC+88ILatGmj7t27Kzs7226fy++gKTu3hQsXKi0tTfHx8erTp4+2b9+unTt3qn///mrTpo0efvhh7d+/3+59Zs+erR49eiguLk49evTQp59+Wm69I+e+adMmPfDAA2rdurX69OmjTZs2ldtm165deuqpp9S2bVvdeeedevnll3X06NEqWvOi4OBghYeH2/275pprJEnDhw/XL3/5S124cEHSxTuNUlNTNXDgQLs2ysnJ0cMPP6zWrVsrMTHR7k6rskdEV6xYoYceekhxcXFatWqVLMvSBx98oHvvvVfx8fFKTk4u93m88847uueeexQXF6e77rpLQ4cOta1bu3atfv3rX6tt27Zq3769HnroIe3cudPumPn5+Tpz5ozi4+O1dOlSu/detWqVYmNjlZeXJ6n8Y6lXavOSkpIr/jyVlJQoIyNDHTp0UIcOHTRhwgSVlJTYvU912gEAAMAVyCnK5xQzZsxQcnKy2rRpo06dOmnEiBE6deqUbf2VrpclcgxyDHIMwGtZAFCJSZMmWV27drVKSkpsyxYvXmzdfPPN1sGDB63CwkLrzTfftDZu3Gjt37/fWrhwodW+fXvr008/tW3/1ltvWb/85S9tr2fMmGG1bdvWmj9/vvX9999bb775pnXzzTdbW7dutSzLsvbv329FRUVZ99xzj/XFF19Y+/bts3Jzc61PPvnEuuuuu2zL/vnPf1odO3a0Zs6caVmWZW3atMmKiYmxsrOzrQMHDljbtm2zZsyYYRUVFVV6flFRUdYXX3xhPfDAA7aYjx07ZsXFxdni+OKLL2zb33PPPda0adPs9u/UqZM1b948a+/evVZmZqYVGxtr/fjjj+WOcfm59ezZ01q+fLm1a9cuKy0tzbr//vuttLQ0a/Xq1dbOnTutvn37WgMHDrS9x5IlS6xbbrnFmjlzpvX9999bH3/8sXXLLbdY//znP6/q3M+cOWPdcccd1vPPP2/t2LHDWrlypZWYmGhFRUVZ//73vy3LsqzDhw9bt912mzVx4kRr165d1rZt26yBAwdaDz30kF1/qKxNK3P27FmrZ8+e1quvvmpZlmW9/fbbVseOHa1jx47ZtVGnTp2shQsXWrt27bLGjh1rtW7d2jp06JBlWZb173//24qKirKSkpKsr7/+2tq3b5+Vl5dnTZ482erZs6e1YsUKa9++fdb8+fOtW2+91Vq2bJllWZa1aNEiq23bttayZcusH3/80dq0aZOt/xQVFVkJCQnW66+/bv3www/Wrl27rPnz51u7du2yO2ZeXp5lWZb1wgsvWIMGDbI7t6FDh1pPPvlkhW1RnTavzs/TX/7yF6tdu3Z2bdO2bVsrLS3Nts2V2gEAAMCVyCnsr49nzJhhffPNN9b+/futtWvXWikpKdbgwYNt6690vXz5MS8/V3IMcgxyDMDzUagHUKk9e/ZYUVFR1tdff21bNmDAAOuJJ56odJ9JkyZZv/nNb2yvf3pRfffdd1tvv/223T5paWnW73//e8uyLl1ETZ8+3W6bLl26WHPnzrVbNmPGDOu+++6zLOvixX67du2s06dPV/v8yi5ysrKyrH79+lmWZVnTpk2zxV+dQn1mZqbtdVFRkRUfH2/Nmzev3DEuP7dZs2bZ1i9dutSKioqyFi9ebFs2Z84cq02bNrbX/fr1s1555RW72IcNG2b179//qs599uzZVvv27a0zZ87Yls2bN8/ugu7NN9+0HnvsMbv9Tpw4YUVFRVkbN26s9L2joqKs1q1bW23atLH7t337dts2GzdutGJjY60333zTuuWWW6zly5fb1pW10bvvvmtbVlJSYvXs2dOaPHmyZVmXLmgXLVpk2+bs2bNW69atrbVr19rFM378eNuF7Ycffmj17NnTKiwsLBf38ePHraioKGvNmjUVntdPL6K/+uorKz4+3tbm58+ftyWLl7dF2WdfnTavyE9/nu66664K26bsIro67QAAAOBK5BRVF5lXrlxpxcbG2hWqq7pe/ul7kmNcRI5xETkG4NkYox5ApVq2bKnbbrtNc+bM0d13363Dhw9r1apVmjx5sm2bWbNm6e9//7sOHjyogoICFRUVqXnz5hW+35kzZ3TkyBG1b9/ebnm7du20cuVKu2VxcXG2/+fn5ys3N1djxozRa6+9ZlteXFwsy7IkSR07dlSzZs3UvXt33X333br77rvVo0cPNWzY8IrnmZycrIyMDH3//feaM2eOnnnmmSs3zv8XHR1t+7+/v79CQ0OVn59f7X3CwsIkSVFRUXbLzp07p/Pnz6tevXr6/vvv9eCDD9q9R/v27W2PRTp67mUTdzVo0MC2rG3btnbb/Pe//9W6devKLZekffv2KT4+vtLzGzp0qDp16mS3LDIy0vb/+Ph4Pf3003r77beVmpqqLl26lHuPNm3a2P7v6+ur+Ph47d69226by/vIrl27VFBQoCeffFI+Pj625Zf3x8TERH388ce2durUqZO6d++uwMBAhYSE6IEHHtATTzyhO++8U3feead69eqlZs2aVXiOnTt31jXXXKOvvvpKffr00dKlS2VZlu69994Kt69Om0tV/zydPn1aR48erbBtDh06VO12AAAAcCVyCnsrVqzQe++9p127dun06dO25UePHlXTpk0lVe96+afIMcgxJHIMwNNRqAdQpQcffFCjRo3SiRMnNHfuXDVu3Fjdu3eXJH3++ef64x//qGHDhqlt27Zq2LChsrKy7MaHrK7L/+BLUr169Wz/Lxs/77XXXqvwwkOSGjZsqLlz52rt2rX65ptv9P7772vy5Mn67LPPbBe8lQkODlaPHj00ZswYHTt2TD169Kh23D+dIMrHx6fK8TR/uk/ZeVe07ErvU7ZdTc69MqWlperSpYuGDRtWbl3ZhX9lmjRpohYtWlS63rIsrV+/Xn5+ftq3b58syyr3+VfH5X2kLLl67733yl34lrVtZGSkFi1apNWrV+ubb75RRkaGpkyZok8//VT169dXenq6fvOb32jlypVaunSp3njjDU2ZMqVcQiBJAQEBuu+++5STk6M+ffpo/vz56tGjh11MjnLGz1N12gEAAMDVyCku2r9/v5599lkNGjRIU6ZMUUhIiL799lulpaWpqKjItt3VXC+TY5BjVIQcA/AsTCYLoEqJiYkKCgrS/PnzNWfOHPXp00cBAQGSpPXr1+vWW29VWlqaYmNj1aJFC+3bt6/S92rYsKEiIiK0fv16u+XffvutWrVqVel+TZo0UUREhPbt26cWLVqU+1fG399fd955p37/+99r/vz5On/+vJYvX16t83zooYf0f//3f0pKSlJQUFC19nGVG2+8Ud9++63dsvXr19u1mSPn3qpVK+3cuVPnzp2zLduwYYPdNrGxsdq1a5eaNWtWrr2rc0dRVWbMmKGtW7fqr3/9qzZu3KiZM2eW22bjxo22/1uWpU2bNlXZR1q1aqXAwEAdPHiwXLyX3+URFBSkrl27avjw4frss8/03Xff2bXtzTffrKeeekozZ87Ubbfdpnnz5lV6zN69e2v16tXatWuXVq1apd69e1cZ35Xa/Eo/T2UTaFXUNo62AwAAgCuRU1z03//+VyUlJfrtb3+rsLAw+fn56T//+U+57apzvVxT5BjkGBI5BuBu+OoLQJWuueYaJSUl6Z133tHJkyf10EMP2da1bNlS//jHP7RixQq1aNFCCxcu1Nq1a9W4ceNK3++JJ57QW2+9pZYtWyo2Nlbz58/XunXrNHfu3CrjeOGFFzRu3Dg1atRInTt3VnFxsbZu3arDhw9r4MCBWrZsmfbt26cOHTqocePGWrNmjc6ePVvlhdfl7rjjDq1evbrGF4i14cknn9SLL76ouLg43XXXXfr666+Vk5Ojt99+W5IcPvekpCS98cYbGj58uJ599lkdOXJEU6dOtdsmNTVVn376qV566SUNGDBAoaGh2r9/v7744gsNGzasynYqe3zycvXr11eDBg20fft2vfHGG/rTn/6kdu3aacyYMRoxYoTuvPNO3XTTTbbtZ82apZYtWyoqKkp/+9vfdPDgQT388MOVHrNhw4Z6/PHHNXHiRFmWpQ4dOujcuXPasGGDfH191a9fP/3jH//4f+3czytscRjH8c9N5FeSJsMpNFiwoEY2ympoSjnJQjaa0Chs0DllMzILKYnNTFNDM9loUpOtjZU/wE6ykRo7IytpiuYuJko3nNstx633a3l6Ot/veepb3+fp9Ojl5UW9vb2qrq7WycmJysvL1dbWplwup6OjIwUCAXm9XuVyOV1dXX26Zl9fnwzDkGVZqq+v18DAwIexTnLu5DyFQiHt7e29y83d3Z0aGxsd5wEAAOC7UVOU+Hw+FYtFpVIpjYyM6Pz8XIeHh+9inN6X/xU1BjXGK2oM4OegUQ/gSxMTE8pkMvL7/e8uZpOTk7q8vJRt2yoWiwoGg5qZmdHx8fGH7wqFQnp8fNT29rbu7+/l8/kUi8XU1dX15R6qqqqUSqW0s7OjyspKdXZ2ampqSlLpT4DT01MlEgk9PT2ptbVVGxsb6u/vd/ydDQ0NjmO/0/DwsCKRiNLptDY3N2UYhtbX1xUIBCT9/bfX1NQomUwqGo1qfHxc7e3tsm1bCwsLbzFer1eZTEa7u7sKh8MqFApqbm7W4OCgKioqPt1vJBL549n8/LwWFxdl27ZGR0cVDAYllWZ5np2dybIsZbPZt3jLsnRwcKCLiwsZhqF4PK6mpqZP111eXpbH41E6nVY0GlVtba26u7sVDoclSXV1ddrf39fW1paen5/V0dGhWCymlpYW5fN53dzcaGlpSQ8PD/J4PDJNU3Nzc5+uaZqmEomEpqenVVZW9mGck5w7OU+zs7PK5/NvOR4bG5Npmrq+vnacBwAAADdQU5TmyK+trSmZTCoej8vv92t1dVUrKyuSpEKh8OV9+au7uFPUGNQYr6gxgJ/jV/F12BQAAC67vb3V0NCQstmsenp63N4OAAAAgP8cNQaA/wUz6gEAAAAAAAAAcBGNegAAAAAAAAAAXMToGwAAAAAAAAAAXMQf9QAAAAAAAAAAuIhGPQAAAAAAAAAALqJRDwAAAAAAAACAi2jUAwAAAAAAAADgIhr1AAAAAAAAAAC4iEY9AAAAAAAAAAAu+g1FGwRvKC29zgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 469 + }, + "id": "x6bWhEnKgfwP", + "outputId": "09272cc3-6668-46cd-c2ca-3141f3bdb6b3" + }, + "source": [ + "# Criação do Canva:\n", + "fig, axs = plt.subplots(figsize = (26, 7), ncols = 2)\n", + "\n", + "#Plot das Médias:\n", + "ax1 = sns.histplot(data = dados.loc[:,'c-0':'c-99'].describe().T['mean'], ax = axs[0])\n", + "ax1.set_title('Distribuição de Frequências dos Valores Médios de \"c\"', fontsize = 18)\n", + "ax1.set_xlabel('Valores Médios', fontsize = 14)\n", + "ax1.set_ylabel('Frequência', fontsize = 14)\n", + "\n", + "#Plot dos Desvios Padrões:\n", + "ax2 = sns.histplot(data = dados.loc[:,'c-0':'c-99'].describe().T['std'], ax = axs[1])\n", + "ax2.set_title('Distribuição de Frequências dos Desvios Padrões de \"c\"', fontsize = 18)\n", + "ax2.set_xlabel('Valores de Desvio Padrão', fontsize = 14)\n", + "ax2.set_ylabel('Frequência', fontsize = 14)\n", + "\n", + "plt.show()" + ], + "execution_count": 30, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABeMAAAHECAYAAAC6BzE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVxU1f/H8TcgaCiIIC6piZWDKCokprmUooWWuJuY+rWUfvVNi7I0s9SyFUVbzHJLLdfc0MDUXDK3tKzMTDO/5pJiLoAbogjc3x89ZnJkWEYYBvL1fDx8POSunzn33Dv3fObcc10MwzAEAAAAAAAAAAAcxtXZAQAAAAAAAAAA8G9HMh4AAAAAAAAAAAcjGQ8AAAAAAAAAgIORjAcAAAAAAAAAwMFIxgMAAAAAAAAA4GAk4wEAAAAAAAAAcDCS8QCQjwsXLujDDz/U5s2bnR0KUGwMw9Ds2bM1b948Z4cCAABQKtGOAABcj2Q8ityyZcsUGBioHTt2OHWfjoyjsNvetWuXWrdurfDwcK1evVq7du1S06ZNizjKvB07dkyBgYGaNGlSse63NBo1apS+/PJLxcTE6MiRI8W23/DwcPXv37/Y9lcQ/9Z6UxLL2tnef/99ffTRR2rSpEmB1ynua3Fh9O/fX+Hh4c4OAwBwDdoR+aMdUbrQjvgH9cZ+gYGBGjFihLPDcLgbrRsTJ05UaGioBg0apOPHj2v06NF66623HBTljSup7SE4D8l45GrHjh0KDAy0/AsKClLTpk3VqVMnvfjii9q0aZMMwyjSfU6aNEnr1q0r0m2WRLNnz1ZgYKA6deqkl19+WX369NEjjzzi7LCKxPX15vp/u3btcnaIdlm8eLH27NmjefPm6dFHH9Xzzz+vq1evOjusm868efMUGBio2bNn57nciy++qMDAQP3444/FE1gJYr7JCwwM1CeffGJzmb1791qWyevG/ssvv9TcuXM1Y8YM1atXz1Eh/yuFh4dbynbSpEkKDAy8oe2MGDHC8mOB+brKDTyA0oJ2hOPQjig9aEeULNfWpXr16ik0NFTt2rXT4MGDtXTpUl2+fNnZIZYo/fv3tyqzBg0aqHXr1ho6dKgOHDjg7PCUlpam6dOnKzo6Wu7u7rr//vuVkJCgrl27Oju0YnNtW8P8g8ayZcvs3s71bY1r2zNwjDLODgAlX6dOnXTvvffKMAylpaXp0KFDWr9+vZYvX64WLVro/fffl7e3t2X5Ll266KGHHpK7u7vd+/rwww/VrVs3tW/f3q71CrPPG1HY/b300ksqX768KlSooKeeekoXL15U5cqVizhK5zLXm+vddtttTojmxmRnZ+v8+fOaMmWKKlWqpKefflre3t76448/bjjBZo/Vq1c7fB+lRWRkpGJjY7Vs2TI9+uijNpe5ePGi1qxZo9tvv1133XVX8QZYgpQtW1bLli3ToEGDcsxbunSpypYtqytXruS6flZWlpKSkjRz5kw1atSo0PEU9/UZAFBy0I4o+v3RjigdaEeUTEFBQXrsscckSZcvX1ZSUpK2bt2qkSNHasqUKZo0aVKJ6oiye/duubo6rw+th4eH3njjDUnSlStX9PPPP2v58uXauHGjlixZottvv91psZUtW1arV69W7dq1JUkpKSm65ZZbdMsttzgtJqCgSMYjX/Xr11eXLl2spr300ksaP368Zs2apaFDh2rGjBmWeW5ubnJzcyuW2C5evKgKFSoU6z6lwn/GqlWrWv5frlw5lStXrijCKlFs1Zu8ZGVlKSMjo0R9ebq6ulolNF1cXHJNBDuCh4dHse2rpPP29tb999+vxMRE/frrr2rQoEGOZVatWqX09HT16NHDCRHmZL4+FTdzOe3evdsqmZ6RkaHExETL/Ny4ubkpOjq6yOIp7uszAKDkoB2RE+2I/NGOKDzaEbZVrVo1R9167rnntGrVKg0bNkzR0dFauXKlKlas6KQIrZUtW9ap+y9TpoxVeT388MO64447FBsbqzlz5mjMmDHFGo9hGLp06ZLKly+vMmXKWBLxkuTr61ussQCFwTA1uCFubm4aMWKEmjRpos2bN2vnzp2WebbGw7py5YomTZqkiIgINW7cWGFhYZaertI/j9RIUnx8vNXjUGbmYRW+/fZb9enTR6Ghofrvf/+b6z7NsrKyNGnSJLVt21bBwcGKjIzUypUrcyyX27AN9owjmZGRoenTp6tLly5q3LixmjRpou7du2vu3LmWZU6ePKl33nlHXbp0UdOmTdWwYUM9+OCDmjZtmrKysnLsPyUlRa+99pruu+8+BQcH67777tNrr72m1NTUHMvmZufOnYqKilKjRo3UokULjR07VpcuXbK5rGEYmj9/vrp3767GjRsrNDRU/fv31/bt2wu8v/yYy2/btm2aPHmy2rdvr0aNGmnVqlV2x3DlyhXFxsaqVatWatSokXr27KktW7ZoxIgROXqd5DZ2ovmxrOsf6crIyNCUKVP00EMPqWHDhgoLC9OTTz6pvXv35rr+0qVL9dBDDyk4OFht27bV9OnTbZbB3r179cwzz6hFixaW4zp06FAdPXo0z3i3bNmiZ599Vu3atVOjRo0UFhamgQMH6rvvvsuxjwMHDuiZZ55R69atFRwcrJYtW6p///7auHGjzZiuZ0+9uXTpkiZMmKD27dtb9jV8+HAdP37carns7GzNnj1bkZGRCg0N1V133aWIiAiNHDky38d2e/bsKenv3t22LF26VGXKlLE8mjhv3jwNHDjQ8vlbtWqlF154QceOHSvQ55ekdevWKSoqSiEhIQoNDVVUVJTNR+DNx2rv3r0aNGiQmjRpos6dO1vmHz58WMOGDVOrVq0UHBys8PBwxcbG5ijPEydO6KWXXrJcr+655x5FRUUpPj6+wDG3bdtWlSpVylFO69at09mzZ/P8sWLbtm0aOHCgwsLC1LBhQ0VGRmrBggU2l120aJE6dOig4OBg3X///Zo9e7bNIQdyu14W9NqW3/dHfs6dO6dXXnlFzZo1U0hIiPr37689e/bkuvwvv/yiwYMHq1mzZgoODlZERIQ+/vhjZWZmFmh/BXH69Gm98cYbateuneU4P/bYY9q6dWuR7QMASiraEbQjCoN2BO2IG2lH5Kdjx44aNGiQTp8+rXnz5lnNs6dOLV++XD179lRYWJhCQkLUrl07Pf/880pJSZEkPfvsswoODrZ5DpqfmnjzzTct03K7tixevFjdunVTo0aN1KRJEw0cONDqWmq2ceNG9evXT82aNVOjRo3Upk0bDRkyRIcOHbK7jMxatWolSZb6tnv3bo0YMcJyjTa3mdauXWtz/YLWjWvPjXnz5unBBx9Uw4YNNXPmTElSZmampk2bZpnerFkzDR48WPv377e53y+//NJy/W/cuLF69epl8wmSwpZZQdtI0t8veB4/frzuv/9+BQcHq3nz5ho6dKj+/PPPAu2rIAzD0KJFi9SrVy+FhoYqNDRUkZGRev/994tsH7AfPeNRKD179tQPP/ygb775RmFhYbku99prr2np0qXq2rWrQkNDlZWVpcOHD1tuQn19fTVu3DgNHz5cYWFhevjhh21uZ8+ePVqzZo0efvhhdevWrUAxxsXF6dKlS+rTp4+kv2/ghg4dqitXrqh79+52fuLcZWRkaNCgQfruu+/UqlUrde7cWWXLltXvv/+ur776Sv369ZMk7d+/X1999ZXuv/9+3Xbbbbp69ao2b96sCRMm6NixYxo7dqxlmxcuXFCfPn105MgR9ejRQ/Xr19e+ffu0YMECbd++XYsXL8635+3PP/+sxx57TOXLl9fjjz8uLy8vffnll3rxxRdtLj9s2DCtXLlSERER6t69uzIyMpSQkKCBAwdq0qRJateuXYHKIz093XLTYebh4WEVb2xsrDIzM/Xwww+rfPnyqlOnjt0xDB06VOvWrVPbtm3VunVrHT16VE8//bRq1qxZoDhzc/XqVQ0aNEg//fSTunTpor59++rixYtatGiR+vTpo7lz56phw4ZW6yxcuFBnzpxRz5495e3trS+++EJxcXGqVq2aIiMjLct9/fXXevrpp+Xp6amePXuqdu3aOn36tLZs2aLff/89z0dw4+Pjde7cOXXt2lXVqlXTyZMntXjxYj366KP67LPPLOdhamqqBgwYIEmKiorSrbfeqtTUVO3Zs0c///yz2rRpk+fnt6femMvqxx9/VEREhB577DEdOXJECxYs0NatW7V06VJVq1ZNkvTxxx/rgw8+UNu2bRUVFSU3NzcdO3ZMGzZsUEZGRp6PbDdv3lw1a9ZUYmKiRowYYdXj59ChQ/rpp5/Url07y6PaM2fOtCRffXx89Pvvv2vJkiXavn27EhISVKlSpTzLYN68eRo7dqxuv/12PfXUU5byHzx4sMaOHavevXtbLZ+UlKQBAwaoQ4cOeuCBByw3lXv27NGAAQPk7e2t3r17q2rVqvrtt980Z84c/fTTT5ozZ47c3d2VmZmpxx57TCdPntQjjzyigIAAXbx4Ufv379fOnTsLfM0rU6aMOnfurPj4eI0cOdLSo2bp0qWqX79+ro/efv755xozZoxCQkL05JNP6pZbbtG2bdv06quv6ujRo1bHfvbs2Xr77bdVr149DR06VOnp6Zo5c6b8/PwKFKM917b8vj/yYq6bv/zyiyW58dtvv+mxxx6Tj49PjuU3btyoIUOGqHbt2ho4cKAqVqyoXbt26YMPPtC+ffv0wQcfFOjz5eXYsWPq06ePkpOT1aVLFwUHBys9PV0///yztm3bppYtWxZ6HwBQGtCO+AftCGu0I2hHFHU7oiB69eqlKVOm6JtvvrHc+0sFr1PLly/Xiy++qLCwMD3zzDMqV66cTpw4oW+++UbJycny9fVVt27dtGrVKq1cudJyXputWLFCkvK9Po0fP14zZsxQo0aNNHToUEvdGjBggD766CPdd999kqTvvvtO//3vf1W3bl098cQT8vLy0qlTp/Ttt9/q6NGjlnPGXuYXEZvvpdeuXas//vhDHTp0UI0aNXT27FnFx8dryJAhiouLs6q/9l5TJOnTTz/V2bNn1atXL/n7+1vqwwsvvKBVq1apZcuW6tOnj86cOaN58+YpKipK8+bNU/369S3bePfddzVlyhS1bt1aMTExcnV11dq1axUTE6PRo0erb9++RVJm9rSRLly4oKioKCUlJalHjx6qW7euTp8+rfnz56tXr15aunSpatSoUcCjkrthw4YpISFBjRs31pNPPikvLy/98ccfWrNmjWJiYgq9fdwgA8jF9u3bDZPJZMyYMSPXZfbs2WOYTCZjyJAhlmlLly41TCaTsX37dsu0pk2bGtHR0fnu02QyGS+++GKu80wmk7F169Yc82zt0zytTZs2xvnz5y3Tz58/b7Rp08Zo2rSpkZ6enu++89r2tdOmTZtmmEwmY8KECTm2kZWVZfl/enq6kZ2dnWOZF154wahXr55x8uRJy7SJEycaJpPJmDt3rtWyc+fONUwmk/Huu+/m2M71evfubTRo0MD4448/LNOuXLli9OjRwzCZTMYHH3xgmf7VV18ZJpPJWLhwodU2rl69anTr1s1o27atzdivZa43tv49++yzhmH8U34PPPCAcenSJav17Ylh8+bNNo/b2rVrLfu8Vtu2bY1+/frlGvPSpUst02bNmmWYTCZj06ZNVsteuHDBuO+++6y2Y16/ZcuWVnXt0qVLRrNmzYyHH344x7TmzZsbf/31V45Yrq0rtuJNS0vLsc7p06eNu+++2+ocW7dunWEymYyVK1fmWL4g7Kk3n3/+uWEymYzY2FirbXz99deGyWQyXnjhBcu0rl27Gh07dryhmAzDMD788EObnysuLs4wmUzGunXrLNNsldW2bdsMk8lkTJs2zWr69WV99uxZIyQkxGjfvr1x4cIFy/QLFy4Y7dq1M0JCQoxz585ZrW8ymYxFixbl2GdkZKQRERFhtR3D+Keum+vdvn37bMZWUObzatWqVcZvv/1mmEwm44svvjAMwzBOnDhh1KtXz5gzZ46RnJyc47w5efKkERwcbAwdOjTHdl9//XWjXr16xtGjRw3DMIxz584ZjRs3Njp27Gh1/p44ccIICQkp0PXSnmtbQb8/bFm4cKFhMpmM999/32q6+fxu27atZdrly5eNFi1aGI888ohx9epVm8tf+xluVHR0tM1ri2FYn/8AUJrRjsh/27QjcqIdQTvCzBHtCJPJZPzf//1fnsuEhoYad999t+Vve+rU4MGDjdDQ0Bz3kdfKzMw0WrZsafTo0cNqenZ2ttGmTRujU6dOOWK+to4ePHjQCAwMNKKioowrV65Ypv/1119GkyZNjLZt2xqZmZmGYRjGW2+9ZZhMJuPMmTN5fubc9OvXzwgJCTGSk5ON5ORkIykpyVi1apVx7733WtVvW/Xq0qVLxgMPPJDjeNlTN8znRtOmTXN8hi1bthgmk8mIiYmxuq7s27fPCAoKMvr06WOZZv6usXV9/e9//2uEhoZa2mmFKTN720ivv/660bBhQ2Pfvn1W2zl27JgRGhqa6/eZPVauXGk5j65vZ9DucC6GqUGhmHsnXLx4Md/l/ve//+n3338v1P7q1aunFi1a2LVOnz595OXlZfnby8tLUVFROnfuXIF6VhZUQkKCKlasqMGDB+eYd+1LV8qVKycXFxdJf/eCOXv2rFJSUtSqVStlZ2dbDZ+wdu1a+fr65uiB27t3b/n6+tocLuNaycnJ+umnnxQeHm71K66Hh4fNMQu/+OILlS9fXu3bt1dKSorl3/nz5xUeHq7jx4/r8OHDBSkO9e7dW7NmzbL6Z34c2KxPnz45xna0Jwbz57/+RZXt27e/4V/6r43j9ttvV4MGDaziyMjIUIsWLfTDDz/o8uXLVuv06NHDqq7dcsstCgkJsSqzLVu2KDU1VY899pjVmJ9m+b2gx9PT0/L/tLQ0paamytXVVY0bN9bu3bst88xxbN68Od/z83r21pu1a9fK1dVVTzzxhNX0Nm3aKCgoSOvXr1d2drakv68FJ0+etPkYZUF0795drq6uVo8CZ2Vlafny5fL397f0BJH+Kavs7GxduHBBKSkpCgwMlJeXl1VZ2bJ161ZdunRJ/fv3t+qFVaFCBfXv31+XLl3Stm3brNbx8fHJ0Utu//792r9/vzp16qSMjAyrutSkSRN5enpahiYxH7MdO3YoOTn5BkrnH4GBgQoODraUU3x8vMqUKWPVM+Vaa9asUUZGhnr27GkVY0pKisLDw5WdnW35vFu2bFF6err69u1rdf5e33MrL/Zc2wrz/bFu3Tq5ublp4MCBVtMfeeSRHL0Bt27dqjNnzqh79+46f/68VRmYXyJX2GFkzp49q82bN6t169Zq3bp1jvnOfEEXABQ32hH/oB1hjXYE7QhHtCMKokKFClaf2Z465eXlpcuXL2vjxo25Dkvi5uamyMhI/fLLLzp48KBl+o4dO5SUlJRvr/j169fLMAxFR0dbPSVctWpVde/eXcePH7cMhWQ+jmvWrLnh4RYvXbqke+65R/fcc4/atGmjmJgYZWVl6Z133rHcy15br9LT05Wamqr09HQ1b95cBw8etJSnvXXDrEuXLjl6lpuHwHnyySct10Tp7+t827Zt9cMPP1ierklISJCLi4u6du1qs52TlpamXbt2FbrM7GkjGYahhIQENW3aVFWqVLGKyXzub9myxa7925KQkCBJevHFF3NcH2h3OBfD1KBQzBfW/B5xHDlypIYPH67IyEjVqlVLzZo1U9u2bRUeHm7XRSAgIMDuGG294fuOO+6QJLvGjs7PkSNHFBQUlO9LVsxjm61YsUJHjhzJ8UV9/vx5y/+PHTum4OBglSljfaqWKVNGAQEBOcYcvJ55rDFbZXDnnXfmmHbw4EGlpaXl2VBJTk4u0A1q7dq1823w2NqOPTH8+eefcnV1tVkv7rjjjkKNhXfw4EFdvnxZ99xzT67LpKamqnr16pa/bT3S6uPjo7Nnz1r+Nt+sXfvYnD2OHj2qd999V1u2bLGqK5KsbkTuvvtude3aVcuWLVNCQoKCg4PVokULPfjggzaP/bXsrTfHjh1TlSpVbL7o6M4779S+ffuUmpoqPz8/DR06VIMHD1bfvn1VpUoV3X333WrTpo0iIiIK9KKp6tWrq2XLltq6datOnjypqlWrasuWLTp16pSio6OtzpVvv/1WH330kX7++WdduXLFajvnzp3Lcz/ma0PdunVzzDNPu34sv1q1auV4IZv5JnvSpEmaNGmSzX2dOXNGklSjRg09+eSTmjZtmlq1aqWgoCA1b95cHTp0sHoRa0F1795db7zxho4fP674+Hi1a9dOFStWzPHY97Vx5nUjbI7TXDZ5XVvzY8+1rTDfH3/++af8/f1zfEd5eHioVq1aVueQuQxGjhyZ6/bMZXCjjh49KsMwbvj8B4B/E9oR/6AdYY12xN9oRxRtO6IgzC92NrOnTj3xxBP6/vvvNXjwYPn4+Ojuu+/Wvffeq44dO1pts2vXrpo5c6ZWrFihoUOHSvp7iBpzoj4vBW2jNGzYUH379tX69ev12muvKS4uTk2aNFHr1q3VqVOnAr/stGzZspoyZYqkv39IqFy5surUqWN17U1OTtZ7772n9evX2+xQdP78eVWoUMHuumFm6xw9duyYXF1dbbY97rzzTq1bt07Hjh2Tr6+vDh48KMMw1LFjx1z3Yb7HL0yZ2dNGSklJ0dmzZ7Vly5ZcrxNFkSw/cuSI/P39LcO4ouQgGY9CMb8cI7+bqvbt22vDhg365ptv9P3332vbtm1asmSJwsLCNGvWrAJ/eV7f+6E42HoZUmG88847mjNnjh588EE9+eST8vX1lbu7u3799VfFxcVZfvl3BsMw5OvrqwkTJuS6jK0v/htVrlw5p8cg2T7GhmHIZDLppZdeynW967+Qr0/EFrW0tDT17dtX6enpGjBggEwmk8qXLy9XV1dNnTo1x0uEYmNjNWjQIG3atEk7d+7UrFmzNGXKFI0cOTLHGIXFJTQ0VGvXrtWWLVu0Y8cO7dixQ4mJifr44481f/58m+N4X69Hjx7avHmz4uPj9eSTT1peVHrti0l3796tQYMG6bbbbtPzzz+vmjVrWnqTPffcc7n2VimMvK5P5hfJ2uLt7W35/3PPPaeePXtq48aN2rlzp5YsWaJPPvlE0dHRGjZsmF3xmF9uN2rUKB05ckSjRo3KdVlzecTGxqpKlSo2l6lVq5Zd+y8qRfX9kR9zGQwfPlxBQUE2l8mtbAAA9qMdYT/aEf+gHWEf2hH5O3bsmNLS0hQaGmqZZk+dCggI0Jdffqlvv/1W3377rb777ju98sor+uCDDzRv3jzLeP6BgYEKCgpSQkKCnnvuOV2+fFlr1qxRy5Yt5e/vX6jPcK1KlSppyZIl2rlzp7Zt26bvv/9eb7/9tiZNmqRp06ZZfc7cuLm55flDhGEYGjhwoA4ePKj//Oc/Cg4OlpeXl9zc3LR06VIlJiYW+rpU2Gu3YRhycXHR9OnTcz3PzD8GFEWZFTQmSWrRooUef/zxItkmSheS8SiUJUuWSJLV0BC58fHxUZcuXdSlSxcZhqG4uDjNmDFD69evz/NXysL6448/ckwz94C8tgfC9T0PzAr6JuuAgAD98ccfysjIyLNRsGLFCjVt2lTvvvuu1XTzi1CuVatWLR06dEiZmZlWvVoyMzN1+PDhfJNj5s9nqwz+97//5ZhWu3ZtHT58WI0bN1b58uXz3Laj2BNDrVq1lJ2drcOHD+e4sb72sT8ze45x7dq1lZqaqubNmxfpI1zmBue+ffssb6IvqG+//VanTp3SW2+9ZZV4lqT33nvP5jomk0kmk0nR0dE6f/68evXqpQkTJqhv375WPWCuZW+9qVWrljZv3qzz589bJZalv49DhQoVrF6WWr58eUVERCgiIkLSPy9KXbJkiaKjo/Mogb+1a9dOPj4+io+PV+/evbVhwwbdddddVr0QEhMTlZWVpenTp1udJ5cuXcrRE8gW8zoHDhzI0VvBXAYFSU7Xrl1b0t89Gwr6aHytWrXUv39/9e/fX1euXNGgQYM0Y8YMDRw4sMAvSJX+TvLff//9SkxMtDxRkBtzj5NKlSrlG+e19eP6srF13tli77XtRr8/atWqpa1bt+bo5ZSRkaE///zTqheWuQxuueUWu4cxKKjbbrtNLi4u2rdvn0O2DwClCe2If9COKBq0I3JHOyJ/ixcvlmR9TbK3Xnt4eOi+++6zbOObb77R//3f/2nWrFkaM2aMZbmuXbvq7bff1vbt23X69GmlpaUV6MXS17ZRrn9Zr602ipubm5o1a6ZmzZpJkn777Tf16NFDH3/8saZNm5bv/vKzf/9+/fbbbxo8eLCeeeYZq3nm8jSzt27kxXz+Hjx4UPXq1bOad/01OiAgQJs3b9att95aoKd4b7TM7Gkj+fr6ytvbWxcvXnRYu0P6+7OvX79eZ86coXd8CcMgQbghWVlZio2N1Q8//KD77rtPTZo0yXNZW4/BmR+vu3a4CE9PT5s3OYWxYMECXbhwwfL3hQsXtHDhQnl7e+vuu++2TA8ICNCuXbuUnp5umXbu3DmrsanzEhkZqXPnzumjjz7KMe/aXriurq45euVeunRJs2fPzrGeeWy667/IFi1apJSUFLVv3z7PmCpXrqyQkBBt2LDB6lHLjIwMm/vr2rWrsrOzNXHiRJvbK+wQDQVhTwzmN9d/8sknVsusW7fO5qOlAQEBOnTokE6ePGmZlpGRoXnz5tmM4/Tp05o1a1a+cdijZcuWqlSpkmbNmqVTp07lmJ9Xj23zL/nXL7Nlyxb9/PPPVtPOnj2boxeCt7e3atasqfT09BzDtlzL3nrTvn17ZWdn57g5+eabb7R3716rx8htDZHSoEEDSfkPHWPm4eGhLl266PDhw3r11Vd19epV9ezZ02qZ3Ho9TJ06tUC9M1q2bClPT0/NnTvXatzIixcvau7cufL09MwzuW1Wv359mUwmLVy40GZjLTMz03LNu3Dhgq5evWo1v2zZspYfGQpaPtd6/PHHNWTIEI0aNSrPxmDHjh3l4eGhSZMm5RjD1BxbRkaGpL/Lply5cpo3bxbeyjMAACAASURBVJ7V9fKvv/6yjEuYn4Je2+z5/rClXbt2ysrK0syZM62mz58/P8cYqK1atZKfn5+mT59u83vo8uXLdo+bej0fHx/de++92rRpU453Dkh5n/8A8G9BOyIn2hFFg3YE7YgbtWrVKn3yySeqUqWK+vbta5luT52yFV9u96yRkZEqU6aMVqxYoRUrVsjLy8tSJ/MSHh4uFxcXffLJJ1bthlOnTmnZsmWqUaOGZZ+24rn99ttVtmzZQpeXmfnYXF+vfv/9d8u47mb21o28mK9f06ZNs9r377//rg0bNqhJkyaWp086d+4sSZo4caLNJ1nyO4YFLTN72kiurq6KjIzU7t27tXr1apvbK+w7xCRZhj0aP358jnOadodz0TMe+dq7d69WrFgh6e/H2w4dOqT169fr+PHjatWqVZ6PbJnXadWqlcLDw1W/fn35+vrq2LFjWrBggSpWrKi2bdtalg0JCdG3336radOm6dZbb5WLi4seeuihQsVfqVIl9erVy/JixWXLlikpKUlvvPGG1SNPffv21bBhwzRgwAB16dJF58+f1+LFi3Xrrbfq9OnT+e7nP//5j77++mt9/PHH+uWXX9SqVSt5eHjof//7nw4dOmT5gomIiNDnn3+uZ599Vi1atNCZM2e0dOlSm4/VRUdHa/Xq1Ro7dqz27t2roKAg7du3T0uWLFGdOnUK9Ov/iBEj1L9/f/Xp00d9+/aVl5eXvvzyS5tfRB06dFD37t01d+5c/frrr2rbtq0qVaqkv/76S7t27dKRI0e0fv36fPdZGPbE0Lp1a7Vt21bx8fE6e/asWrdurT///FOff/65TCZTjhd99e3bVytXrtSjjz6qqKgoXb16VStWrLD56Nt//vMfbdu2TePGjdP27dvVvHlzVahQQUlJSdq+fbs8PDw0Z84cuz/fLbfcojfffFMxMTGKjIxUz549Vbt2baWkpGjLli169NFHc20cNWnSRP7+/oqNjdXx48dVrVo17du3TytWrMjxeZcvX65PP/1U7du3V+3atVWmTBl9//332rJlizp27Gjz0d5r2VNvunXrpvj4eE2fPl3Hjx9XWFiYjh49qvnz56ty5cqWsRAl6cEHH1RISIgaNWqkKlWq6PTp01q0aJHc3d3tOtd79uypTz/9VKtXr5anp2eOXnHt27fX7Nmz9fjjj6t3795yd3fX1q1btX//fqveNbnx9vbWCy+8oLFjx+rhhx+29FSJj4/XkSNHNHbsWKuXbOXGxcVF48aN04ABA9S5c2f16NFDd955py5fvqwjR45o7dq1Gjp0qLp3764dO3Zo1KhReuCBB1SnTh2VL19ee/bs0ZIlS9S4cWOb4w/mp169ejl6i9hSrVo1vfrqq3rllVf04IMPqnPnzqpRo4ZSUlL0+++/a926dVq5cqVq1qypihUrKiYmRrGxsYqKilLXrl2Vnp6uhQsXFmgMWqng1zZ7vj9s6d69uxYtWqTJkyfr2LFjCgkJ0b59+7R69WrddtttVvXZ09NTsbGxGjx4sDp06KAePXqodu3aOn/+vP744w+tXbtWH374oaWXzI0aNWqU9u7dq8cff1xdu3ZVgwYNdOXKFf3888+qUaOG3cMRAUBJRjuCdgTtCNoRJakdcfLkScs16cqVK0pKStLWrVu1e/du1a5dW5MmTbLqoW9PnRo0aJC8vLwUFham6tWr6/z584qPj5eLi4u6dOliFYefn59at26tNWvW6MqVK+rZs2e+74yQ/k4Mm5+a7devnzp27Ki0tDQtWrRIly5dUlxcnOWHl1GjRumvv/5Sq1atdOutt+ry5ctatWqV0tLScsRzo+644w7VrVtXM2bM0OXLl1WnTh0dOnTIch79+uuvVsvbUzfy0rJlS3Xs2FErV67UuXPn1LZtW50+fVrz589X2bJl9corr1iWbdSokZ5++mlNmjRJXbt2VUREhKpWrapTp07p119/1aZNmywvvy5MmdnbRnruuef0448/6tlnn1XHjh3VuHFjubu7KykpSZs2bVKDBg30zjvv2FUu1+vYsaO++uorLV++XEeOHFF4eLi8vb11+PBhbdmyRYmJiYXaPm4cyXjkKzExUYmJiXJ1dZWnp6eqVaumpk2b6tVXX9W9996b7/rlypXTgAEDLGOnpaWlqUqVKgoPD9cTTzxh9Sb4MWPGaOzYsZoyZYrS0tIkqdA30S+88IJ27typ+fPn68yZM6pTp47i4uJyvBylc+fOOnXqlObNm6e3335btWrV0lNPPSVXV9ccvQVs8fDw0MyZMzVz5kwlJiZaLpzBwcGWG3hJeumll1S+fHmtXr1a69evV/Xq1dW7d281bNgwx8sTvby8tGDBAn3wwQfasGGDli1bJj8/P0VFRenpp5/O94VX0t9j682aNUsTJkzQtGnT5OXlpYiICPXp08fmC2LefvttNWvWTIsWLdLUqVN19epV+fv7q379+nr++efz3V9RsCeG9957T++9954SEhK0bds2mUwmTZo0SYmJiTluops0aaJ33nlHU6ZM0fjx41WlShX16dNHwcHBOcre3d1dU6dO1fz587VixQrLyzerVKmihg0bFugxwty0a9dO8+fP15QpU7RkyRKlpaWpcuXKatKkiQIDA3Ndz9vbWzNmzND48eM1d+5cZWZmKjg4WNOnT9eSJUusPm+zZs20b98+bdy4UadPn5arq6tq1qypF198sUDjPNpTb9zd3fXJJ5/o448/1pdffqm1a9fKy8tLHTp00LPPPmv1cqqBAwfqm2++0Zw5c3ThwgX5+fmpcePGeuKJJwqUNDYzmUxq1KiRdu/erY4dO8rT09NqfpMmTTRp0iR99NFHev/991W2bFm1aNFCc+fOLfA4l+aXQ33yySeaPHmypL+T25MnT863N9m1goKCFB8fr6lTp2rDhg1auHChypcvrxo1aqhbt26WxxgDAwN1//3367vvvlNCQoKys7NVvXp1PfHEExo4cGCB93ejevTooYCAAM2cOVOff/65Lly4IB8fH9WpU0cxMTFWY1gOHDhQnp6eljpSvXp1DRw4UF5eXnm+ANWsoNc2e74/bDFfl8eNG6f169frq6++UsOGDS3Tjh8/brV869attWTJEk2bNk1ffPGFUlNT5e3trdtuu02PPvponudnQdWqVUtLly7V5MmTtWnTJq1YsULe3t6qV6+eevfuXejtA0BJQjuCdgTtCNoRJakdsW/fPg0fPlzS3x0xKlWqpHr16unNN99Up06dbP7QUNA61adPH61atUqff/65zp07Jx8fHwUFBemVV15R8+bNc2y3W7du+vrrryXJruT4sGHDVLt2bc2fP18TJkyQu7u7GjdurAkTJigsLMyyXJcuXbRs2TLFx8crJSVFFSpU0J133qkPPvjAMsxPYbm5uWnq1KmKjY1VfHy80tPTVbduXcXGxuq3337LkYy395qSl7i4ONWvX1/x8fF655135OnpqaZNmyomJibHuTBkyBAFBwdrzpw5+uyzz3Tp0iX5+fmpbt26evnlly3LFbbM7Gkjma/RM2fOtFzT3dzcVK1aNTVp0kS9evWyqzxyY64XS5Ys0eTJky3nc4cOHYpk+7gxLgbPJgAOcejQIfXt21erV6/OMf4dHG/EiBGKj4+3vBwMAAAAKA1oRzgX7QgAgCMxZjzgIHXq1FGVKlW0atUqZ4cCAAAAoJSgHQEAwL8Xw9QARezEiRNKSEhQuXLldPjwYctLDwEAAAAgN7QjAAD49yMZDxSxzMxMzZkzR2fPnlVISIjdY58BAAAAuPnQjgAA4N+PMeMBAAAAAAAAAHAwxowHAAAAAAAAAMDB/jXD1KSmpik7u3R38vfzq6Dk5IvODuOmx3EoGTgOJQfHomTgOJQcHIuSoSiPg6uriypVKl8k28K/R2HaF1wnih9l7hyUu3NQ7s5BuTsH5V78KPPCya9t8a9JxmdnG6U+GS/pX/EZ/g04DiUDx6Hk4FiUDByHkoNjUTJwHOBIhW1fUD+LH2XuHJS7c1DuzkG5OwflXvwoc8dhmBoAAAAAAAAAAByMZDwAAAAAAAAAAA5GMh4AAAAAAAAAAAcjGQ8AAAAAAAAAgIORjAcAAAAAAAAAwMFIxgMAAAAAAAAA4GAk4wEAAAAAAAAAcDCS8QAAAAAAAAAAOBjJeAAAAAAAAAAAHIxkPAAAAAAAAAAADkYyHgAAAAAAAAAAByMZDwAAAAAAAACAg5VxdgAAAAAAcCOeeuopHTt2TK6urvL09NSoUaMUFBSkQ4cOacSIETp79qx8fHwUGxurgIAAZ4cLAACAmxzJeAAAAAClUmxsrLy8vCRJ69at08iRIxUfH68xY8bokUceUZcuXbRixQqNHj1an332mZOjBQAAwM2OYWoAAAAAlErmRLwkXbx4US4uLkpOTtbevXvVqVMnSVKnTp20d+9epaSkOCtMAAAAQBI944FC8a54i8p6lPzT6EpGps6fS3d2GAAAAEXu5Zdf1tatW2UYhmbMmKETJ06oatWqcnNzkyS5ubmpSpUqOnHihHx9fQu8XT+/CoWKy9/fK/+FUKQoc+eg3J2DcncOyr1grmZmy71M0fX/LSnlXtSfqyQrKWX+b1Tys4hACVbWo4yGvf+Ns8PI1/iY+5wdAgAAgEO8+eabkqTly5dr3LhxiomJKZLtJidfVHa2cUPr+vt76fTpC0USBwqGMncOyt05KHfnoNwLzt/fq8hyJe7uZXT1amaRbKuwxsfcd1PUAep64bi6uuTZqePm+DkHAAAAwL9a165dtWPHDlWrVk0nT55UVlaWJCkrK0unTp1S9erVnRwhAAAAbnYk4wEAAACUOmlpaTpx4oTl7w0bNqhixYry8/NTUFCQEhMTJUmJiYkKCgqya4gaAAAAwBEYpgYAAABAqZOenq6YmBilp6fL1dVVFStW1JQpU+Ti4qJXX31VI0aM0EcffSRvb2/FxsY6O1wAAACAZDwAAACA0qdy5cpatGiRzXl33HGHFi9eXMwRAQAAAHljmBoAAAAAAAAAAByMZDwAAAAAAAAAAA5GMh4AAAAAAAAAAAcjGQ8AAAAAAAAAgIORjAcAAAAAAAAAwMFIxgMAAAAAAAAA4GAk4wEAAAAAAAAAcDCS8QAAAAAAAAAAOBjJeAAAAAAAAAAAHIxkPAAAAAAAAAAADkYyHgAAAAAAAAAAByMZDwAAAAAAAACAg5GMBwAAAAAAAADAwUjGAwAAAAAAAADgYCTjAQAAAAAAAABwMJLxAAAAAAAAAAA4GMl4AAAAAAAAAAAcjGQ8AAAAAAAAAAAORjIeAAAAAAAAAAAHIxkPAAAAAAAAAICDkYwHAAAAAAAAAMDBSMYDAAAAAAAAAOBgJOMBAAAAAAAAAHAwkvEAAAAAAAAAADhYmeLe4VNPPaVjx47J1dVVnp6eGjVqlIKCgnTo0CGNGDFCZ8+elY+Pj2JjYxUQEFDc4QEAAAAAAAAAUOSKPRkfGxsrLy8vSdK6des0cuRIxcfHa8yYMXrkkUfUpUsXrVixQqNHj9Znn31W3OEBAAAAAAAAAFDkin2YGnMiXpIuXrwoFxcXJScna+/everUqZMkqVOnTtq7d69SUlKKOzwAAAAAAAAAAIpcsfeMl6SXX35ZW7dulWEYmjFjhk6cOKGqVavKzc1NkuTm5qYqVaroxIkT8vX1LdA2/fwqODLkYuPv75X/QnA4e46Du7tTTiO7lca6VRpj/rfiWJQMHIeSg2NRMnAcAAAAAJQmTskivvnmm5Kk5cuXa9y4cYqJiSn0NpOTLyo72yj0dpzJ399Lp09fcHYYNz17joO/v5euXs10cERFo7TVLc6HkoNjUTJwHEoOjkXJUJTHwdXV5V/TsQMAAABAyVXsw9Rcq2vXrtqxY4eqVaumkydPKisrS5KUlZWlU6dOqXr16s4MDwAAAAAAAACAIlGsyfi0tDSdOHHC8veGDRtUsWJF+fn5KSgoSImJiZKkxMREBQUFFXiIGgAAAAAAAAAASrJiHaYmPT1dMTExSk9Pl6urqypWrKgpU6bIxcVFr776qkaMGKGPPvpI3t7eio2NLc7QAAAAAAAAAABwmGJNxleuXFmLFi2yOe+OO+7Q4sWLizMcAAAAAAAAAACKhVPHjAcAAAAAAAAA4GZAMh4AAAAAAAAAAAcjGQ8AAAAAAAAAgIORjAcAAAAAAAAAwMFIxgMAAAAAAAAA4GAk4wEAAAAAAAAAcDCS8QAAAAAAAAAAOBjJeAAAAAAAAAAAHIxkPAAAAAAAAAAADkYyHgAAAAAAAAAAByMZDwAAAAAAAACAg5GMBwAAAAAAAADAwUjGAwAAAAAAAADgYCTjAQAAAAAAAABwMJLxAAAAAAAAAAA4GMl4AAAAAAAAAAAcjGQ8AAAAAAAAAAAORjIeAAAAAAAAAAAHK+PsAAAAAADAXqmpqRo+fLiOHj0qDw8P1a5dW2PHjpWvr68CAwNlMpnk6vp336Nx48YpMDDQyREDAADgZkcyHgAAAECp4+LioujoaDVr1kySFBsbq7i4OL311luSpIULF6p8+fLODBEAAACwwjA1AAAAAEodHx8fSyJekkJCQpSUlOTEiAAAAIC80TMeAAAAQKmWnZ2tBQsWKDw83DKtf//+ysrK0r333qunn35aHh4edm3Tz69CoWLy9/cq1PqwH2XuHJS7c1DuzkG5F5y7e9GlHItyW4V1s9SBm+VzOkPJqc0AAAAAcANef/11eXp6ql+/fpKkjRs3qnr16rp48aKGDRumyZMn67nnnrNrm8nJF5WdbdxQPP7+Xjp9+sINrYsbQ5k7B+XuHJS7c1DuBefv76WrVzOLZFvu7mWKbFtF4WaoA9T1wnF1dcmzUwfD1AAAAAAotWJjY3XkyBG99957lhe2Vq9eXZJUoUIF9erVSz/++KMzQwQAAAAkkYwHAAAAUEpNnDhRe/bs0eTJky3D0Jw7d06XL1+WJGVmZmrNmjUKCgpyZpgAAACAJIapAQAAAFAKHThwQFOnTlVAQICioqIkSTVr1lR0dLRGjx4tFxcXZWZmKjQ0VDExMU6OFgAAACAZDwAAAKAUqlu3rvbv329zXkJCQjFHAwAAAOSPYWoAAAAAAAAAAHAwkvEAAAAAAAAAADgYyXgAAAAAAAAAAByMZDwAAAAAAAAAAA5GMh4AAAAAAAAAAAcjGQ8AAAAAAAAAgIORjAcAAAAAAAAAwMFIxgMAAAAAAAAA4GAk4wEAAAAAAAAAcDCS8QAAAAAAAAAAOBjJeAAAAAAAAAAAHIxkPAAAAAAAAAAADkYyHgAAAAAAAAAAByMZDwAAAAAAAACAg5GMBwAAAAAAAADAwUjGAwAAAAAAAADgYCTjAQAAAAAAAABwMJLxAAAAAAAAAAA4GMl4AAAAAAAAAAAcrExx7iw1NVXDhw/X0aNH5eHhodq1a2vs2LHy9fVVYGCgTCaTXF3//n1g3LhxCgwMLM7wAAAAAAAAAABwiGJNxru4uCg6OlrNmjWTJMXGxiouLk5vvfWWJGnhwoUqX758cYYEAAAAAAAAAIDDFeswNT4+PpZEvCSFhIQoKSmpOEMAAAAAAAAAAKDYFWvP+GtlZ2drwYIFCg8Pt0zr37+/srKydO+99+rpp5+Wh4dHgbfn51fBEWEWO39/L2eHANl3HNzdnXYa2aU01q3SGPO/FceiZOA4lBwci5KB4wAAAACgNHFaFvH111+Xp6en+vXrJ0nauHGjqlevrosXL2rYsGGaPHmynnvuuQJvLzn5orKzDUeFWyz8/b10+vQFZ4dx07PnOPj7e+nq1UwHR1Q0Slvd4nwoOTgWJQPHoeTgWJQMRXkcXF1d/jUdOwAAAACUXMU6TI1ZbGysjhw5ovfee8/ywtbq1atLkipUqKBevXrpxx9/dEZoAAAAAAAAAAAUuWJPxk+cOFF79uzR5MmTLcPQnDt3TpcvX5YkZWZmas2aNQoKCiru0AAAAAAAAAAAcIhiHabmwIEDmjp1qgICAhQVFSVJqlmzpqKjozV69Gi5uLgoMzNToaGhiomJKc7QAAAAAAAAAABwmGJNxtetW1f79++3OS8hIaE4QwEAAAAAAAAAoNg4Zcx4AAAAAAAAAABuJiTjAQAAAAAAAABwMJLxAAAAAAAAAAA4GMl4AAAAAAAAAAAcjGQ8AAAAAAAAAAAORjIeAAAAAAAAAAAHIxkPAAAAAAAAAICDkYwHAAAAAAAAAMDBSMYDAAAAAAAAAOBgJOMBAAAAAAAAAHAwkvEAAAAAAAAAADgYyXgAAAAAAAAAAByMZDwAAAAAAAAAAA5GMh4AAAAAAAAAAAcjGQ8AAAAAAAAAgIORjAcAAAAAAAAAwMFIxgMAAAAAAAAA4GAk4wEAAAAAAAAAcDCS8QAAAAAAAAAAOBjJeAAAAAAAAAAAHIxkPAAAAAAAAAAADkYyHgAAAAAAAAAAByMZDwAAAAAAAACAg5GMBwAAAAAAAADAwco4OwAAAAAAsFdqaqqGDx+uo0ePysPDQ7Vr19bYsWPl6+urXbt2afTo0bpy5Ypq1Kih8ePHy8/Pz9khAwAA4CZHz3gAAAAApY6Li4uio6O1Zs0aJSQkqFatWoqLi1N2draGDRum0aNHa82aNQoLC1NcXJyzwwUAAABIxgMAAAAofXx8fNSsWTPL3yEhIUpKStKePXtUtmxZhYWFSZKioqK0evVqZ4UJAAAAWDBMDQAAAIBSLTs7WwsWLFB4eLhOnDihW2+91TLP19dX2dnZOnv2rHx8fAq8TT+/CoWKyd/fq1Drw36UuXNQ7s5BuTsH5V5w7u5Fl3Isym0V1s1SB26Wz+kMJac2AwAAAMANeP311+Xp6al+/fpp7dq1RbLN5OSLys42bmhdf38vnT59oUjiQMFQ5s5BuTsH5e4clHvB+ft76erVzCLZlrt7mSLbVlG4GeoAdb1wXF1d8uzUQTIeAAAAQKkVGxurI0eOaMqUKXJ1dVX16tWVlJRkmZ+SkiJXV1e7esUDAAAAjsCY8QAAAABKpYkTJ2rPnj2aPHmyPDw8JEnBwcG6fPmydu7cKUlauHChOnTo4MwwAQAAAEn0jAcAAABQCh04cEBTp05VQECAoqKiJEk1a9bU5MmTNW7cOI0ZM0ZXrlxRjRo1NH78eCdHCwAAAJCMBwAAAFAK1a1bV/v377c576677lJCQkIxRwQAAADkjWFqAAAAAAAAAABwMJLxAAAAAAAAAAA4GMl4AAAAAAAAAAAcjGQ8AAAAAAAAAAAORjIeAAAAAAAAAAAHIxkPAAAAAAAAAICDkYwHAAAAAAAAAMDBSMYDAAAAAAAAAOBgJOMBAAAAAAAAAHAwkvEAAAAAAAAAADgYyXgAAAAAAAAAABysjL0rnDt3Tps2bdKJEyeUkZFhNW/IkCFFFhgAAACAfzfaFgAAALiZ2JWM37Vrl5544gm5u7srNTVVVatW1alTp+Th4aEaNWpwwwwAAACgQGhbAAAA4GZj1zA148aNU2RkpDZv3iwPDw99+umn2rhxo4KDg/X444/nu35qaqoef/xxRUREKDIyUkOGDFFKSoqkv2/GO3furIiICA0cOFDJyck39okAAAAAlHiFbVsAAAAApY1dyfj9+/erb9++cnFxkZubmzIyMlS5cmW98MIL+vDDD/Nd38XFRdHR0VqzZo0SEhJUq1YtxcXFKTs7W8OGDdPo0aO1Zs0ahYWFKS4u7oY/FAAAAICSrbBtCwAAAKC0sSsZ7+7ubvm/n5+fjh8/LkkqX768Tp06le/6Pj4+atasmeXvkJAQJSUlac+ePSpbtqzCwsIkSVFRUVq9erU9oQEAAAAoRQrbtgAAAABKG7vGjG/QoIF++eUX1alTR82aNdN7772n5ORkffHFFwoMDLRrx9nZ2VqwYIHCw8N14sQJ3XrrrZZ5vr6+ys7O1tmzZ+Xj41Og7fn5VbBr/yWVv7+Xs0OA7DsO7u52vwfZKUpj3SqNMf9bcSxKBo5DycGxKBk4DqVbUbYtAAAAgNLArizis88+q7S0NMv/hw8frtdff10BAQF6++237drx66+/Lk9PT/Xr109r1661a11bkpMvKjvbKPR2nMnf30unT19wdhg3PXuOg7+/l65ezXRwREWjtNUtzoeSg2NRMnAcSg6ORclQlMfB1dXlX9OxozQpyrYFAAAAUBrYlYxv2LCh5f++vr6aMWPGDe00NjZWR44c0ZQpU+Tq6qrq1asrKSnJMj8lJUWurq4F7hUPAAAAoHQpqrYFAAAAUFrYNWZ8UZg4caL27NmjyZMny8PDQ5IUHBysy5cva+fOnZKkhQsXqkOHDsUdGgAAAAAAAAAADpFvz/jIyEjNnTtXFStWVGRkZJ7LJiQk5Dn/wIEDmjp1qgICAhQVFSVJqlmzpiZPnqxx48ZpzJgxunLlimrUqKHx48fb8TEAAAAAlHRF2bYAAAAASpt8k/ERERGWHuwRERGF2lndunW1f/9+m/PuuusubrgBAACAf7GibFsAAAAApU2+yfghQ4bY/D8AAAAA2IO2BQAAAG5mdo0Zf+DAAf1/e3cf33Pd////vlOUSdO2hkpWWw45a5QcHDJEbE7TOkYkdKIomoM0rTK0dCiUJI7Ojh06cjbGojrqQzoROkpHpIgsZGzOZtrJ+/36/eFn397GvN/b+/U+vV0vly6X3q/36+T+ej7fe3s9H3vt+frhhx8qLf/hhx+0a9cup4UCAAAA4NsYWwAAAMDfOFSMnzJlin766adKy3fv3q0pU6Y4LRQAAAAA38bYAgAAAP7GoWL8zp071bJly0rLW7RooR9//NFpoQAAAAD4NsYWAAAA8DcOFeODgoJ08uTJSsuPHz8uwzCcFgoAAACAb2NsAQAAAH/jUDG+Xbt2mj9/viwWS8Wy8vJyzZ8/X+3atXN6OAAAAAC+ibEFAAAA/E2wIytPmDBBKSkp+zHjqgAAIABJREFU6t69u+Lj4yVJW7duVXFxsbKyskwJCAAAAMD3MLYAAACAv3HozvimTZtq1apVSkpK0vHjx3X8+HElJSVp5cqViomJMSsjAAAAAB/D2AIAAAD+xqE74yUpMjJS48aNMyMLAAAAAD/C2AIAAAD+xOFi/OnTp7Vjxw4VFhbKarXavHf77bc7LRgAAAAA38bYAgAAAP7EoWL8559/rvHjx+vYsWOV3gsICNCOHTucFgwAAACA72JsAQAAAH/jUDF+2rRpuu222zRu3DhFRUWZlQkAAACAj2NsAQAAAH/jUDF+//79evXVV7lYBgAAAFAjjC0AAADgbwIdWfmmm27Snj17zMoCAAAAwE8wtgAAAIC/cejO+LvvvluZmZnKz89XbGysgoNtN2/evLlTwwEAAADwTYwtAAAA4G8cKsaPHTtWkjRlypRK7/GQJQAAAAD2YmwBAAAAf+NQMf4///mPWTkAAAAA+BHGFgAAAPA3DhXjGzVqZFYOAAAAAH6EsQUAAAD8jUMPcJWk9evX64EHHlCvXr108OBBSdKSJUv0xRdfOD0cAAAAAN/F2AIAAAD+xK5i/JYtWyRJq1at0mOPPaZrrrlGv/76q8rLyyVJFotFCxcuNC8lAAAAAJ/A2AIAAAD+qspifElJiTIyMvTqq69Kkl5//XVlZGRo8uTJCgoKqlivdevWPGAJAAAAwAUxtgAAAIC/q7IYv3DhQv36669atGiRJGnfvn1q3bp1pfUuueQSFRUVmZMQAAAAgNdjbAEAAAB/V2Uxvk+fPjpx4oSef/55SVJkZKT27t1bab3Nmzfr6quvNiUgAAAAAO/H2AIAAAD+rspi/FVXXaWsrCxFRkZKku666y5lZGRo69atkqSDBw9qxYoVmjlzpv7617+anxYAAACAV2JsAQAAAH8XfLEVAgICdO+990qSRo0apaKiIt13330qKSnR0KFDFRoaqvvuu0+DBw82OysAAAAAL8bYAgAAAP7sosX4c40bN04PPvigdu3aJcMwFBMTo0svvdSMbAAAAAB8GGMLAAAA+BOHi/GSVKdOHbVo0cLZWQAAAAD4GcYWAAAA8BcOFeMffPDBKt+fP39+jcIAAAAA8A+MLQAAAOBvHCrGX3755Tavy8rKtHPnTh08eFDdu3d3ajAAAAAAvouxBQAAAPyNQ8X4GTNmnHf5c889p7p16zolEAAAAADfV9OxRWZmptatW6f9+/crJydHsbGxkqSEhASFhoaqVq1akqTU1FR16tTJecEBAACAagp0xk6Sk5OVlZXljF0BAAAA8GP2ji26du2qrKwsNWrUqNJ7c+bM0cqVK7Vy5UoK8QAAAPAY1XqA67n27NnjjN0AAAAA8HP2ji3atm1rchIAAADAuRwqxmdkZNi8NgxDhw8f1oYNGzRw4ECnBgMAAADgu8wcW6SmpsowDMXHx2v8+PGqV6+ew/to0KBm03BGRITVaHs4jjZ3D9rdPWh396Dd7RcS4pT7f52+r5ryl8+Av5ynOzj0ad65c6fN68DAQIWHh+uJJ56gGA8AAADAbmaNLbKyshQdHa3S0lJNmzZNzz77rF544QWH91NQUCSr1ahWhoiIMB0+fLJa26J6aHP3oN3dg3Z3D9rdfhERYSorK3fKvkJCgp22L2fwh88An/WaCQwMqPKmDoeK8e+8806NAwEAAACAWWOL6OhoSVJoaKhSUlL00EMPmXIcAAAAwFFOeYArAAAAALhbcXGxTp48cyeXYRjKzc1Vs2bN3JwKAAAAOMOhO+PvueceBQQE2LXu22+/Xa1AAAAAAHxfTccWGRkZ+uCDD3TkyBENHz5c9evX1/z58zVmzBhZLBZZrVbFxMQoPT3d2dEBAACAanGoGB8TE6OcnBxdccUVatWqlSRp27ZtOnLkiBITExUUFGRKSAAAAAC+paZji7S0NKWlpVVanp2dbUpeAAAAoKYcKsaHhoaqf//+evLJJ23uYpk2bZoMwzjvxTAAAAAAnIuxBQAAAPyNQ3PGr1y5UoMHD67056QpKSlatWqVU4MBAAAA8F2MLQAAAOBvHCrGG4ahH3/8sdLy8y0DAAAAgAthbAEAAAB/49A0NQMHDlRaWpp++eWXinkdv/32Wy1cuFADBgwwJSAAAAAA38PYAgAAAP7GoWL8hAkTFB4errfffluzZs2SJEVERGjUqFG67777TAkIAAAAwPcwtgAAAIC/cagYHxgYqFGjRmnUqFEqKiqSJNWtW9eUYAAAAAB8F2MLAAAA+BuHivFnfffdd8rLy9Ntt90mSSouLlZoaKiCg6u1OwAAAAB+irEFAKAq9S6ro1qhnvFvQkREmNP2VVZuUUhwkNP2B8A7OPRtduTIEY0ePVrbtm1TQECAPvjgA11yySV67rnnFBoaqrS0tCq3z8zM1Lp167R//37l5OQoNjZWkpSQkKDQ0FDVqlVLkpSamqpOnTpV85QAAAAAeLqaji0AAP6hVmiwJsxe7+4YCgkJVllZudP2N/PRzh5xXmaY+Whnd0cAPFagIyvPmDFDDRo00KZNm1S7du2K5T179tRnn3120e27du2qrKwsNWrUqNJ7c+bM0cqVK7Vy5UoK8QAAAICPq+nYAgAAAPA2Dt0Z/8UXX+jNN9/UZZddZrP8qquu0sGDBy+6fdu2bR1LBwAAAMAn1XRsAQAAAHgbh4rxv//+u0JCQiotP3r0aMUUM9WVmpoqwzAUHx+v8ePHq169ejXaHwAAAADPZebYAgAAAPBEDhXj27VrpxUrVmj8+PEVyywWi15//XW1b9++2iGysrIUHR2t0tJSTZs2Tc8++6xeeOEFh/bRoEHdah/fkzjzYSDeqqzcqpBgh2ZQcjpH+iEkxDMeJHMx3vjZ8sbMvoq+8Az0g+egLzwD/eDdzBpbAAAAAJ7KoSrihAkTNGTIEH333XcqKytTZmamfvrpJxUVFWnx4sXVDhEdHS1JCg0NVUpKih566CGH91FQUCSr1ah2Bk8QERGmw4dPujuG20VEhLn1ISaOPJRl5qOdnfoAFzN522eLnwfPQV94BvrBc9AXnsGZ/RAYGOAzN3Z4E7PGFgAAAICncqgYf9111yknJ0eLFy9WaGioSkpK1LNnTw0ePFiRkZHVClBcXCyLxaKwsDAZhqHc3Fw1a9asWvsCAAAA4B3MGFsAAAAAnszuYnxZWZlSUlKUmZmpsWPHVutgGRkZ+uCDD3TkyBENHz5c9evX1/z58zVmzBhZLBZZrVbFxMQoPT29WvsHAAAA4PmcMbYAAAAAvI3dxfiQkBD9+uuvCggIqPbB0tLSlJaWVml5dnZ2tfcJAAAAwLs4Y2wBAAAAeBuHnpLZr18/vffee2ZlAQAAAOAnGFsAAADA3zg0Z/zp06eVk5Ojzz//XM2bN9cll1xi8/757noHAAAAgHMxtgAAAIC/sasY/8MPP+j666/X7t279ac//UmSlJeXZ7MOf2IKAAAA4GIYWwAAAMBf2VWM79+/vzZu3Kh33nlHknT//fcrIyNDkZGRpoYDAAAA4FsYWwAAAMBf2TVnvGEYNq+3bNmikpISUwIBAAAA8F2MLQAAAOCvHHqA61nnXkADAAAAQHUwtgAAAIC/sKsYHxAQwLyNAAAAAGqMsQUAAAD8lV1zxhuGoQkTJigkJESSVFpaqilTpqh27do2682fP9/5CQEAAAD4DMYWAAAA8Fd2P8D1j/r06WNKGAAAAAC+jbEFAAAA/JVdxfgZM2aYnQMAAACAH2BsAQAAAH9VrQe4AgAAAAAAAAAA+1GMBwAAAAAAAADAZBTjAQAAAAAAAAAwGcV4AAAAAAAAAABMZtcDXAEAAAAAAADAX5WVWxUREebuGKYoKS3XieOn3R3DL1CMBwAAAAAAAIAqhAQHasLs9e6OYYqZj3Z2dwS/wTQ1AAAAAAAAAACYjGI8AAAAAAAAAAAmoxgPAAAAAAAAAIDJKMYDAAAAAAAAAGAyivEAAAAAAAAAAJiMYjwAAAAAAAAAACajGA8AAAAAAAAAgMkoxgMAAAAAAAAAYDKK8QAAAAAAAAAAmIxiPAAAAAAAAAAAJqMYDwAAAAAAAACAySjGAwAAAAAAAABgsmB3BwCAP6p3WR3VCj3z1RQREebmNFUrKS3XieOn3R0DAAAAAAAAXoBiPACPUis0WBNmr1dISLDKysrdHadKMx/t7O4IAAAAAAAA8BJMUwMAAAAAAAAAgMkoxgMAAAAAAAAAYDKK8QAAAAAAAAAAmIxiPAAAAAAAAAAAJqMYDwAAAAAAAACAySjGAwAAAPA6mZmZSkhIUFxcnH788ceK5Xv27FFycrJ69Oih5ORk7d27130hAQAAgD+gGA8AAADA63Tt2lVZWVlq1KiRzfL09HSlpKRo3bp1SklJ0VNPPeWmhAAAAIAtivEAAAAAvE7btm0VHR1ts6ygoEDbt29XYmKiJCkxMVHbt29XYWGhOyICAAAANijGAwAAAPAJBw8eVFRUlIKCgiRJQUFBioyM1MGDB92cDAAAAJCC3R0AgPnKyq2KiAhzdwwAAACv0aBB3Rptz7WX69Hm7kG7u8e57V5WblVIsO/ebxkS4hnlK2fn8JTzMoMzz82T2smTsjjbH79X+G43j+9+ggBUCAkO1ITZ690dwy4zH+3s7ggAAMBLRUdH69ChQ7JYLAoKCpLFYlF+fn6l6WzsUVBQJKvVqFaOiIgwHT58slrbonpoc/eg3d3jfO0eERHmNWM+R818tLPKysrdHUMhIcFOz+EJ52UWZ52bGe1eE56UxdnOfq/w3V4zgYEBVd7U4bu/NgUAAADgVxo0aKBmzZpp9erVkqTVq1erWbNmCg8Pd3MyAAAAgDvjAQAAAHihjIwMffDBBzpy5IiGDx+u+vXra82aNXr66ac1adIkzZs3T/Xq1VNmZqa7owIAAACSKMYDAAAA8EJpaWlKS0urtDwmJkZLlixxQyIAAACgakxTAwAAAAAAAACAySjGAwAAAAAAAABgMpcW4zMzM5WQkKC4uDj9+OOPFcv37Nmj5ORk9ejRQ8nJydq7d68rYwEAAAAAAAAAYCqXFuO7du2qrKwsNWrUyGZ5enq6UlJStG7dOqWkpOipp55yZSwAAAAAAAAAAEzl0mJ827ZtFR0dbbOsoKBA27dvV2JioiQpMTFR27dvV2FhoSujAQAAAAAAAABgmmB3Bzh48KCioqIUFBQkSQoKClJkZKQOHjyo8PBwu/fToEFdsyK6VEREmLsjeISQEPd+NB05vruz2stbckr/L6s3ZPaXn1l/OU9PRz94DvrCM9APAAAAALyJ51e67FRQUCSr1XB3jBqJiAjT4cMn3R3D7SIiwlRWVu6244eEBDt0fHdmdYS35JTOZHW0H9zFH35m+W7yDPSD56AvPIMz+yEwMMBnbuwAAAAA4LlcOk3N+URHR+vQoUOyWCySJIvFovz8/ErT2QAAAAAAAAAA4K3cXoxv0KCBmjVrptWrV0uSVq9erWbNmjk0RQ0AAAAAAAAAAJ7MpdPUZGRk6IMPPtCRI0c0fPhw1a9fX2vWrNHTTz+tSZMmad68eapXr54yMzNdGQsAAAAAAAAAAFO5tBiflpamtLS0SstjYmK0ZMkSV0YBAAAAAAAAAMBl3D5NDQAAAAAAAAAAvo5iPAAAAAAAAAAAJqMYDwAAAAAAAACAySjGAwAAAAAAAABgMorxAAAAAAAAAACYLNjdAQAA5qt3WR3VCq3+V35ERJgT01StpLRcJ46fdtnxAAAAAAAAXIFiPAD4gVqhwZowe321tg0JCVZZWbmTE13YzEc7u+xYAAAAAAAArsI0NQAAAAAAAAAAmIxiPAAAAAAAAAAAJqMYDwAAAAAAAACAySjGAwAAAAAAAABgMorxAAAAAAAAAACYjGI8AAAAAAAAAAAmoxgPAAAAAAAAAIDJKMYDAAAAAAAAAGAyivEAAAAAAAAAAJgs2N0BAMBblZVbFRER5u4YAAAAAAAA8AIU4wGgmkKCAzVh9np3x7DLzEc7uzsCAAAAAACAX2OaGgAAAAAAAAAATEYxHgAAAAAAAAAAkzFNDQAAAAAAAAD4qXOfiecrz8crKS3XieOn3R3DBsV4AAAAAAAAAPBTf3wmXkhIsMrKyt2cyDk88fl5TFMDAAAAAAAAAIDJKMYDAAAAAAAAAGAyivEAAAAAAAAAAJiMYjwAAAAAAAAAACajGA8AAAAAAAAAgMkoxgMAAAAAAAAAYDKK8QAAAAAAAAAAmIxiPAAAAAAAAAAAJqMYDwAAAAAAAACAySjGAwAAAAAAAABgMorxAAAAAAAAAACYjGI8AAAAAAAAAAAmoxgPAAAAAAAAAIDJKMYDAAAAAAAAAGAyivEAAAAAAAAAAJiMYjwAAAAAAAAAACajGA8AAAAAAAAAgMkoxgMAAAAAAAAAYDKK8QAAAAAAAAAAmCzY3QEAAAAAwNkSEhIUGhqqWrVqSZJSU1PVqVMnN6cCAACAP6MYDwAAAMAnzZkzR7Gxse6OAQAAAEhimhoAAAAAAAAAAEzHnfEAAAAAfFJqaqoMw1B8fLzGjx+vevXq2b1tgwZ1a3TsiIiwGm0Px9HmzlNWblVIsH337nlbu5eVWxQSHOTuGDV2vnYPCfHdEo+nnJuzc3jKeZnBmefmSe3kSVmc7Y/n5kvn6Wn/TvlOywIAAADA/y8rK0vR0dEqLS3VtGnT9Oyzz+qFF16we/uCgiJZrUa1jh0REabDh09Wa1tUD23uXBERYZowe/1F1wsJCVZZWbkLEjnPzEc723Vunux87T7z0c5e1xeO8IRzM+Pz7gnnZRZnnZunfc94UhZnO3tuntbmNeXq64PAwIAqb+rwqGI8D1kCAAAA4AzR0dGSpNDQUKWkpOihhx5ycyIAAAD4O48qxks8ZAkAAABAzRQXF8tisSgsLEyGYSg3N1fNmjVzdywAAAD4OY8rxgMAAABATRQUFGjMmDGyWCyyWq2KiYlRenq6u2MBAADAz3lcMb66D1mq6QOWqsORh9rYy6yHCpiR1UzuflCEI8d3d1Z7eUtO6f9l9YbM3pDxrJpkdfV5etoDVjwF7eI56AvPQD/gQq666iplZ2e7OwYAAABgw6OqSDV5yFJNHrBUXfY+1MZeZj4gYeajnb3mgUYREWFufVCEo/3gLQ+18Jac0pms3vLAEG/IeFZ1s7qjL7zl+8qVeDCd56AvPIMz++FiD1kCAAAAAGfwqFulz33I0tdff+3mRAAAAAAAAAAA1JzHFOOLi4t18uSZu5t4yBIAAAAAAAAAwJd4zDQ1PGQJAAAAAAAAAOCrPKYYz0OWAAAAAAAAAAC+ymOmqQEAAAAAAAAAwFdRjAcAAAAAAAAAwGQU4wEAAAAAAAAAMBnFeAAAAAAAAAAATEYxHgAAAAAAAAAAkwW7OwBco6zcqoiIMHfHAAAAAAAAAAC/RDHeT4QEB2rC7PXujmGXmY92dncEAAAAAAAAAHAqpqkBAAAAAAAAAMBkFOMBAAAAAAAAADAZxXgAAAAAAAAAAExGMR4AAAAAAAAAAJNRjAcAAAAAAAAAwGQU4wEAAAAAAAAAMBnFeAAAAAAAAAAATEYxHgAAAAAAAAAAk1GMBwAAAAAAAADAZBTjAQAAAAAAAAAwGcV4AAAAAAAAAABMRjEeAAAAAAAAAACTUYwHAAAAAAAAAMBkFOMBAAAAAAAAADAZxXgAAAAAAAAAAExGMR4AAAAAAAAAAJNRjAcAAAAAAAAAwGQU4wEAAAAAAAAAMBnFeAAAAAAAAAAATEYxHgAAAAAAAAAAk1GMBwAAAAAAAADAZBTjAQAAAAAAAAAwGcV4AAAAAAAAAABMRjEeAAAAAAAAAACTUYwHAAAAAAAAAMBkFOMBAAAAAAAAADAZxXgAAAAAAAAAAExGMR4AAAAAAAAAAJNRjAcAAAAAAAAAwGQU4wEAAAAAAAAAMFmwuwMAAAAAAKR6l9VRrVDfG6KVlVsUEhxk+nEiIsJMP8a5XHVuAADAN/jelR4AwKuVlVvdMpiuDlcPwKvbLiWl5Tpx/LST08CbeFOBj88r/Fmt0GBNmL3e3TGcbuajnU0/r5CQYJWVlZt6jPNxxbm5w8xHO7s7AgAAPsk7RmUAAL8REhzoNYNaVw7Aa1JkYEANbyrw8XkFAAAA4KuYMx4AAAAAAAAAAJNRjAcAAAAAAAAAwGQU4wEAAAAAAAAAMBnFeAAAAAAAAAAATEYxHgAAAAAAAAAAk1GMBwAAAAAAAADAZB5TjN+zZ4+Sk5PVo0cPJScna+/eve6OBAAAAMBLMb4AAACAp/GYYnx6erpSUlK0bt06paSk6KmnnnJ3JAAAAABeivEFAAAAPE2wuwNIUkFBgbZv36433nhDkpSYmKipU6eqsLBQ4eHhdu0jMDDAzIgXdHlYLaftKzgkWOVlQU7b37mcmdVs7szqaD94S7t6S07pTFazfx6cxdvatTrc0Rf+0K6Oqmk/uOvfSV/lje3pTT9X9ravs/rBG/sTVfOE8UV1t/emn1VHmH1e7rx29Oc+85Zr9nN5e59dqN29/byq4gnnZsbn3RPOyyzOOjdP+57xhz7ztDavKVdf61/seAGGYRguynJB//vf/zRx4kStWbOmYlmvXr00c+ZMNW/e3I3JAAAAAHgbxhcAAADwRB4zTQ0AAAAAAAAAAL7KI4rx0dHROnTokCwWiyTJYrEoPz9f0dHRbk4GAAAAwNswvgAAAIAn8ohifIMGDdSsWTOtXr1akrR69Wo1a9bM7vkcAQAAAOAsxhcAAADwRB4xZ7wk7d69W5MmTdKJEydUr149ZWZmqmnTpu6OBQAAAMALMb4AAACAp/GYYjwAAAAAAAAAAL7KI6apAQAAAAAAAADAl1GMBwAAAAAAAADAZBTjAQAAAAAAAAAwGcV4AAAAAAAAAABMRjEeAAAAAAAAAACTUYx3k9OnT+uxxx5T9+7d1bNnT33yyScXXHfHjh0aPHiwevXqpV69emn9+vUuTOr77O2LTZs2qVWrVurbt6/69u2rQYMGuTipb3PkZ0KSSkpK1Lt3bw0YMMBFCf2HvX2xY8cO9e/fX3379lXv3r01ZcoUlZaWujit77K3Hz766CMNGDBAiYmJ6t27t/7xj3+4OKlvs7cfDh06pHvuuUfx8fF8LznRnj17lJycrB49eig5OVl79+6ttI7FYtEzzzyjbt26qXv37lqyZInrg8LvZGZmKiEhQXFxcfrxxx/Puw6fTeezp91feeUV9e7dW0lJSRowYIA+/fRTF6f0Pfa0+1k///yzWrVqpczMTBel8132tntubq6SkpKUmJiopKQkHTlyxIUpfYs9bV5QUKD7779fSUlJuuOOO/T000+rvLzcxUl9y9GjRzVq1Cj16NFDSUlJeuSRR1RYWFhpPUdrBqiave3+zDPPqGfPnurTp4/uvvtufffdd25I62MMuMXcuXONJ5980jAMw9izZ4/RoUMHo6ioqNJ6p06dMhISEoz//ve/hmEYRllZmVFYWOjSrL7O3r748ssvjf79+7s6nt+wtx/OmjFjhvHEE0/QJyawty9Onz5tlJSUGIZhGBaLxXjkkUeMt956y6VZfZm9/fDNN98Yv/32m2EYhnHixAmjW7duxubNm12a1ZfZ2w8nTpwwNm/ebHzyySd8LznRPffcY2RnZxuGYRjZ2dnGPffcU2mdFStWGPfdd59hsViMgoICo1OnTkZeXp6ro8LPbN682Thw4IDRpUsXY+fOneddh8+m89nT7hs2bDCKi4sNwzCMHTt2GPHx8cbp06ddGdPn2NPuhmEY5eXlxpAhQ4zx48cbzz33nAsT+iZ72n3btm3GHXfcYeTn5xuGceZ65Pfff3dlTJ9iT5tnZGRUfL5LS0uNO++801izZo0rY/qco0ePGl9++WXF6+eee8544oknKq3naM0AVbO33T/++GOjtLS04v+7du3qsoy+ijvj3eT9999XcnKyJKlJkya68cYbtWHDhkrrrV69WvHx8WrdurUkKTg4WJdffrlLs/o6e/sC5nKkH7Zs2aK9e/eqb9++rozoN+zti9q1ays0NFSSVF5ert9//12Bgfyz4iz29kOrVq0UFRUlSQoLC1NMTIz279/v0qy+zN5+CAsLU9u2bVWnTh1XR/RZBQUF2r59uxITEyVJiYmJ2r59e6U7dnJzczVo0CAFBgYqPDxc3bp109q1a90RGX6kbdu2io6OrnIdPpvOZ0+7d+rUqeK7OC4uToZh6NixY66I57PsaXdJWrBggW677TY1adLE/FB+wJ52f/PNN3XfffcpIiJC0pnrkVq1arkink+yp80DAgJ06tQpWa1WlZaWqqysrOJaHNVTv3593XLLLRWvW7durQMHDlRaj9qNc9nb7l26dFFISEjFOr/99pusVqvLcvoiqiZucuDAATVq1KjidXR0tH777bdK6+3atUvBwcEaNWqU+vbtq8mTJ+v48eOujOrz7O0LSdq7d6/69++vQYMGacWKFa6K6Bfs7Yfi4mJNnz5dzzzzjCvj+RVHfiYOHTqkvn376pZbbtGll16qu+66y1UxfZ4j/XDW7t279c0336h9+/Zmx/Mb1ekHOMfBgwcVFRWloKAgSVJQUJAiIyN18ODBSus1bNiw4jV9BE/BZ9P9srOzdfXVV+vKK690dxSf98MPP2jjxo2699573R3Fr+zevVt5eXkaPHiw+vfvr3nz5skwDHfH8mmjR4/Wnj171LFjx4r/4uPj3R3LZ1itVi1evFgJCQmV3uO63DxVtfsfZWVl6bbbbuMmvBoKdncAX9W/f//z/kZJkj7//HO792O1WvXll1/q3Xff1RVXXKEZM2boueee04wZM5wV1ec5qy+aN2+u9evXKywsTHl5eRo+fLiioqLUoUMHZ0X1ac7qh+eff14pKSmKioo679zBuDhn9YUkRUVFaeXKlSouLtYqaxMuAAAWMUlEQVSECRP04Ycfqnfv3s6I6fOc2Q+SlJ+fr9GjRys9PZ27cxzg7H4AAHiGr776SrNnz+ZZKi5QVlamKVOmaMaMGRW/QIVrWCwW7dy5U2+88YZKS0s1cuRINWzYUP369XN3NJ+1du1axcXF6a233tKpU6c0atQorV27Vj179nR3NJ8wdepUXXLJJRoyZIi7o/gVe9p9zZo1ysnJUVZWlguT+SaK8Sa52F3TDRs21P79+xUeHi7pzJ0zf/zzkLOio6N1yy23KDIyUpKUlJSkyZMnOz+wD3NWX9StW7fi/6+66ip169ZNX3/9NcV4OzmrH7Zu3aoNGzZo3rx5Kikp0fHjx5WUlKScnBxTcvsiZ/XFH11yySXq1auXcnJyKMbbyZn9UFBQoOHDh2vkyJG64447nJ7Vl5nx8wDniI6O1qFDh2SxWBQUFCSLxaL8/PxKfz4eHR2tAwcOqGXLlpIq340MuAufTff573//qwkTJmjevHlq2rSpu+P4vMOHD2vfvn26//77JUknTpyQYRgqKirS1KlT3ZzOtzVs2FA9e/ZUaGioQkND1bVrV23bto1ivIn++c9/avr06QoMDFRYWJgSEhK0adMmivFOkJmZqV9++UXz588/753XXJeb42LtLkkffvihXnzxRb355pu64oorXJzQ9/B3BW7Ss2dP/fvf/5Z0ZuqT7777Tp06daq03h133KFt27apqKhIkrRhwwbFxcW5NKuvs7cv8vPzK/7k79ixY/rss890ww03uDSrL7O3H3JycvTxxx/r448/1qxZsxQbG0sh3sns7Yu8vDyVlpZKkkpLS/Wf//xHsbGxLs3qy+zth6NHj2r48OEaPHiwBg0a5OqYPs/efoDzNWjQQM2aNdPq1aslnXmOTrNmzSoGYGf17NlTS5YskdVqVWFhoT766CP16NHDHZEBG3w23WPbtm0aN26c5syZo+bNm7s7jl9o2LChNm3aVHGNPmzYMN11110U4l0gMTFRGzdulGEYKisr05dffskY1WSNGzeumKe8tLRUX3zxha6//no3p/J+s2bN0v/+9z+98sorFc8lOxfX5c5nT7t/8sknmjFjhhYtWqTGjRu7OKFvCjCYUMwtiouLNWnSJO3YsUOBgYGaMGGCunXrJkmaPXu2IiMj9de//lXSmbkOFy5cqICAADVu3FhTp07lN1FOZG9f/POf/9TixYsVHBwsi8Wifv36aeTIkW5O7zsc+Zk4a9OmTcrMzNTy5cvdEdln2dsXK1eurPhuslqtateunSZOnKjatWu7+Qx8g739kJmZqaysLF177bUV2w4dOlQDBw50V3SfYm8/WCwWdenSRaWlpSoqKlJ4eLgGDRqkMWPGuPkMvNvu3bs1adIknThxQvXq1VNmZqaaNm2qUaNGaezYsWrRooUsFoueffZZffbZZ5KkUaNGVTzcCzBLRkaGPvjgAx05ckSXX3656tevrzVr1vDZNJk97T5w4EDt37/fZsq2559/nhuaasCedv+juXPnqri4WBMnTnRTYt9gT7tbrVZlZmZqw4YNCgwMVMeOHTVx4kTmc64me9p83759Sk9P15EjR2SxWHTLLbfoySefVHAwE09U108//aTExEQ1adKkYizZuHFjvfLKK+rbt68WLFigqKioKq/L4Th72719+/YKCQmxuSHmzTff1OWXX+6u6F6PYjwAAAAAAAAAACbj16UAAAAAAAAAAJiMYjwAAAAAAAAAACajGA8AAAAAAAAAgMkoxgMAAAAAAAAAYDKK8QAAhxQVFenll1/W/v373R0FAAAAAADAa1CMBwCTzJ07V4mJie6O4XSTJ0/WsWPH1KhRoyrXW7t2reLi4ipeL1++XG3atDE7HgAAAFBj3nQtX1hYqLi4OG3atMndUZwmISFBixYtcneMShYtWqSEhISLrme1WjV48GD16NFDO3fu1IgRI7R3717zAwLweBTjAeAcDz74oIYNG3be93bv3q24uDht3LjRxamcKy4uTnFxcdqyZYvNcovFok6dOikuLk5r166ttN3bb78t6UxB3lG9evXSRx99VL3AAAAAgB384VreLGfHCHFxcWrVqpW6du2qxx9/vNKYwRWWLl2qlJSUGu0jISHB5nwSExP173//20kJq7Znzx5deumlmjx5slJTU1WnTh01adLEJccG4NkoxgPAOe68805t2rRJv/76a6X3li5dqkaNGqlDhw4uyVJWVmbavqOjo7Vs2TKbZRs2bFBwcPAFtxk6dKjmzJmjwEDH//moXbu2GjRo4PB2AAAAgL385VreLBkZGdq4caNyc3M1bdo0hYSEaMiQIVq4cKFLc4SHh6tOnTo13s/DDz+sjRs3atWqVerataueeuop5ebmOiHh+ZWWlkqSYmJitGDBAnXu3Fk5OTl6+eWXTTsmAO9CMR4AznHbbbfpiiuu0PLly22Wl5WVaeXKlRowYIAMw9DkyZOVkJCgli1b6vbbb9frr78uq9V6wf1arVa98sor6ty5s2688UYlJSXZ3Cn+66+/Ki4uTqtXr9bQoUPVsmXLijs3li1bpl69eqlFixbq0aOH3nzzTZtjvfvuu+rRo4datGihW265RSNGjFB5eXmV59m/f3+tXbtWp06dqli2dOlS9e/fv9K6J0+e1JQpU3TrrbeqTZs2GjJkiL777jubdbKzs9WlSxe1atVKDzzwgAoKCmzeP980Ne+++666d++uG2+8Ud27d9d7771X6X1HzwsAAAD+yx+u5bdt26YBAwaoRYsW6tevn7Zt21ZpnV27dun+++9XmzZtdOutt2r8+PE6fPjwRdsvLCxMERERatSokdq3b6/nnntO999/v2bNmqVffvnF7v3v3LlTw4YN00033aQ2bdqoT58++vLLL2W1WtW5c2e98847Nsfds2eP4uLi9P3330uqPE3NgQMH9PDDD6tNmzZq06aNHnnkEf32228XPZ9LL71UERERuuaaazRu3Dg1adKkot9eeOEF9ejRQy1btlRCQoKef/55lZSU2Gz/+uuv689//rPatGmjv/3tbyouLrZ5f9KkSXrggQe0YMEC/eUvf1Hnzp0lSStXrtTAgQMr2mfs2LE6dOiQzbabN2/WoEGD1KJFC3Xo0EHTp0+vKOYD8F0U4wHgHMHBwerXr59WrFhhc5H8ySef6OjRoxo4cKCsVquioqL00ksvKTc3V4899phee+21Snea/9Hbb7+tRYsWKTU1VTk5OerWrZvGjBmjHTt22Kw3a9YspaSkaM2aNerWrZvee+89vfjiixo7dqxyc3M1ceJEvf766/rXv/4lSfruu+/07LPP6uGHH9batWv11ltvqVOnThc9z7i4ODVt2rTizpCCggJt2LBBAwYMsFnPMAzdf//9OnTokF577TVlZ2erbdu2GjZsmPLz8yVJ3377rSZNmqS77rqroig/Z86cKo//4YcfaurUqRo2bJhycnI0dOhQPfPMM/r4449rdF4AAADwX75+LX/q1Ck98MADaty4sZYtW6bHH39cmZmZNuvk5+dr8ODBuv7667V06VK98cYbKi4u1ujRo6v8hcOFDB8+XFartaKIbc/+U1NTFRERoSVLlig7O1tjxoxRrVq1FBgYqN69eysnJ8fmGDk5OYqJiVHz5s0rHd9qtWr06NEqKCjQ22+/rbffflv5+fkaPXq0DMNw6FxCQ0MrftFRp04dTZ8+Xbm5uUpPT1dubq5effXVinVzc3M1e/ZsjRkzRsuXL9e1116rN954o9I+v/rqK+3cuVMLFy7Um2++KenML3/Gjh2rVatW6bXXXtPRo0c1fvz4im0OHTqkUaNGqVmzZsrOzta0adO0Zs0azZo1y6HzAeCFDABAJXv27DFiY2ONTz/9tGLZqFGjjBEjRlxwm5kzZxrDhg2reD1nzhyjd+/eFa87duxozJ0712abIUOGGI8//rhhGIaRl5dnxMbGGosWLbJZp3PnzsaKFStslr3xxhvGHXfcYRiGYaxbt8646aabjJMnT9p9frGxscb7779vZGVlGcnJyYZhGMbChQsr8p993zAM4/PPPzdat25tnD592mYfffr0MRYsWGAYhmGMHz/euPfee23enzx5shEbG1vxetmyZUbr1q0rXicnJxuTJk2y2WbixInG3XffXe3zAgAAAHz5Wv7dd9814uPjjaKioopl2dnZRmxsrPHll18ahmEYL730kjF06FCb7Y4dO2bExsYa33777QX3/ccxwLk6dOhgpKen273/Nm3aGMuXLz/vvnbs2GHExsYav/zyS8Wy7t27G6+++mrF6y5duhgLFy40DMMwNm7caNxwww1GXl5exfv79u0z4uLijM8+++yC5/PHfZSVlRnLli0zYmNjjaysrPOu/69//cvo1q1bxevk5GTjySeftFln2LBhRpcuXSpeT5w40bjllluMkpKSC+YwDMPYtWuXERsbaxw8eNAwDMOYNWuW0b17d8NisVSss2zZMqN58+ZGcXFxlfsC4N0uPDEwAPixJk2a6Oabb9ayZcvUsWNHHTp0SBs3brS5U2Hx4sVasmSJDhw4oJKSEpWVlalRo0bn3V9RUZHy8/MVHx9vs/ymm27Shg0bbJbdeOONFf9fWFiogwcPKj09Xc8880zF8vLy8oq7QDp06KCGDRuqa9eu6tixozp27Kju3burbt26Fz3PpKQkZWZm6ueff9ayZcs0evToSut8//33On36tG699Vab5SUlJcrLy5N05mFYXbp0sXm/devWWrp06QWP/fPPP2vgwIE2y+Lj4yvujK/JeQEAAMB/+fK1/NmH0F566aUVy86dCvL777/Xli1bKi2XpH379qlly5bn3XdVDMNQQECA3fsfPny40tLStGLFCt166626/fbbFRMTI0m64YYbFBsbq1WrVumRRx7Rt99+q3379ikpKemC5xwZGanGjRtXLLvqqqsUGRmpXbt2VfkMgBdffFEvv/yySktLFRISohEjRujuu++WpIq/RNi3b5+Ki4tlsVhs/nJg9+7duvPOO23217p1a+3bt89m2fXXX6/Q0FCbZd9//71efvll/fDDDzp27FjF8gMHDujKK6/U7t271apVK5tnccXHx6usrEy//PKLbrjhhgueEwDvRjEeAC5g4MCBmjJlio4dO6YVK1bosssuU9euXSWd+ZPF6dOna+LEiWrTpo3q1q2rrKwsm3kj7XX2ovasPz6o6OzF4DPPPHPei11Jqlu3rlasWKHNmzfr888/12uvvaZZs2Zp6dKlioqKqvLYYWFh6t69u9LT03XkyBF179690jpWq1VXXHGFsrKyzntsZzvbHjU5LwAAAPg3f7iWv5Cz87JPnDix0nsNGjRweH+FhYUqLCzUVVddZff+x4wZo6SkJG3YsEEbN27UK6+8oqeffrqiuN2nTx8tXbpUjzzyiHJychQfH3/BX4ZU5dz2P9fw4cN15513qnbt2oqMjKxY/5tvvtH48eP18MMPq1OnTqpXr54+/vjjSlP+2OOSSy6xeV1cXKwRI0aoQ4cOev755xUeHq6jR49q8ODBdj3U92LnBMC7MWc8AFxAz549VatWLa1atUrLli1Tv379FBISIknaunWrWrVqpSFDhqh58+a65pprKt0h8Ud169ZVZGSktm7darP866+/rrhD5HyuuOIKRUZGat++fbrmmmsq/XdWcHCwbr31Vj3++ONatWqVTp8+rf/7v/+z6zzvvPNOffXVV0pMTFStWrUqvd+8eXMdOXJEgYGBlY5/9mI7JiZG3377rc12574+V9OmTfX111/bLNu6datNe9TkvAAAAOC/fPVaPiYmRj/++KPNg0S/+eYbm3WaN2+uXbt2qWHDhpWOWZ2bad544w0FBgaqW7duDu2/SZMmGjp0qBYsWKCBAwfa/NVsUlKS9u3bp2+++Ua5ubnq06fPBY8fExOj/Px8/frrrxXL8vLylJ+fr+uuu67K7PXr19c111yjqKgomyL3119/raioKD388MNq2bKlmjRpogMHDlQ6rqNjHOnMXwAfPXpU48aNU7t27RQTE6PCwsLz7vuPd+Jv3bpVISEhuvrqqy96DADeizvjAeACateurcTERL388ss6fvy4zZ8oNmnSRMuXL9f69et1zTXXaM2aNdq8ebMuu+yyC+5vxIgRmjNnjpo0aaLmzZtr1apV2rJli1asWFFljrFjx2rq1KmqV6+e/vKXv6i8vFzbt2/XoUOH9MADD+iTTz7Rvn371K5dO1122WXatGmTTp06VeXA4I/at2+vL7744oIX5h06dNBNN92k0aNHKzU1VU2bNtWRI0f06aefqkOHDmrbtq3uuece3X333XrttdfUo0cPffXVV/rwww+rPO7IkSP16KOP6sYbb9Sf//xnffrpp8rJydHcuXMlqcbnBQAAAP/lq9fyiYmJevHFFzV58mQ9/PDDys/P1/z5823WSUlJ0Xvvvadx48Zp1KhRCg8PV15ent5//31NnDixyoL8yZMndfjwYZWVlWnfvn3Kzs5Wdna2JkyYUFEkvtj+g4ODlZmZqZ49e6pRo0YqKCjQ119/bTM9zpVXXql27dopPT1dJ0+eVM+ePS+YqUOHDoqLi1NqaqqefPJJSVJGRob+9Kc/qX379lW2/4U0adJEhw4d0qpVq9SmTRt9+umnWr16tc06Q4cO1d/+9je1aNFCN998s9atW6dvv/1W9evXr3LfDRs2VGhoqLKysjR48GDt3r1bs2fPtlknJSVFb731lp5++mkNGzZMeXl5+vvf/64hQ4bY/HUFAN9DMR4AqjBo0CAtXrxYbdq0sbkgTk5O1o4dO5SamirDMHT77bdr+PDhWr58+QX3NXToUJ06dUozZ85UQUGBrr32Ws2dO/ei8wEOGjRIderU0aJFi/T3v/9dtWvX1nXXXachQ4ZIOjPVzEcffaR58+bp9OnTuvrqq5WRkaG2bdvafZ7h4eEXfC8gIEALFizQSy+9pClTpqiwsFANGjTQTTfdpH79+kk6M3fitGnTNHfuXL3yyiu6+eabNWbMGE2dOvWC++3WrZvS0tL0j3/8Q9OnT1fDhg2Vnp6uhIQEp50XAAAA/JcvXstfeumleu211/T000+rf//+atq0qVJTU/XQQw9VrBMVFaXFixdr1qxZGjlypEpKShQdHa2OHTtWmtv8XGlpaZKk0NBQRUREqHXr1nrnnXfUrl07h/Z/4sQJPfHEE8rPz1f9+vXVpUuXStPa9OnTR08++aS6d+9e5S9CAgICNG/ePGVkZGjo0KGSzhTop0yZUu0pXRISEjRixAhNnz5dJSUl+vOf/6yxY8fazO3fq1cv5eXl6cUXX9Tvv/+uhIQEDR8+/KK/gAkPD1dmZqZmzZqlrKwsxcXFadKkSRo5cmTFOlFRUXr99df1/PPPq2/fvqpXr54SExM1fvz4ap0PAO8RYJx9aggAAAAAAAAAADAFc8YDAAAAAAAAAGAyivEAAAAAAAAAAJiMYjwAAAAAAAAAACajGA8AAAAAAAAAgMkoxgMAAAAAAAAAYDKK8QAAAAAAAAAAmIxiPAAAAAAAAAAAJqMYDwAAAAAAAACAyf4/Gku5kkT/gsYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iYMajXha6RDF" + }, + "source": [ + "## **Desafio 04: Estudar sobre as estatíticas retornadas no .describe()**" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "xdsCamz5hfuf", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 331 + }, + "outputId": "6b957106-e733-4f58-ff9d-9bafd4dfecff" + }, + "source": [ + "dados.describe()" + ], + "execution_count": 31, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tempog-0g-1g-2g-3g-4g-5g-6g-7g-8g-9g-10g-11g-12g-13g-14g-15g-16g-17g-18g-19g-20g-21g-22g-23g-24g-25g-26g-27g-28g-29g-30g-31g-32g-33g-34g-35g-36g-37g-38...c-60c-61c-62c-63c-64c-65c-66c-67c-68c-69c-70c-71c-72c-73c-74c-75c-76c-77c-78c-79c-80c-81c-82c-83c-84c-85c-86c-87c-88c-89c-90c-91c-92c-93c-94c-95c-96c-97c-98c-99
count23814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.000000...23814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.00000023814.000000
mean48.0201560.248366-0.0956840.1522530.0819710.057347-0.1388360.035961-0.202651-0.1900830.119905-0.1233210.1823070.1432030.209402-0.173884-0.0244320.126823-0.1466630.087687-0.082982-0.111908-0.0873790.047548-0.117474-0.113212-0.052746-0.0910550.112176-0.046458-0.076239-0.1976990.382177-0.1894320.078791-0.0933120.135729-0.188616-0.6067100.534425...-0.517397-0.360770-0.435752-0.613591-0.402083-0.619682-0.452265-0.497164-0.413836-0.277029-0.547845-0.358611-0.442906-0.475194-0.010404-0.467001-0.276963-0.455848-0.412918-0.456404-0.472514-0.505481-0.492735-0.446836-0.463029-0.409310-0.333124-0.295009-0.328342-0.401615-0.469244-0.461411-0.513256-0.500142-0.507093-0.353726-0.463485-0.378241-0.470252-0.301505
std19.4028071.3933990.8123631.0357310.9500121.0320911.1793880.8823951.1254941.7498851.0871801.2915011.2536041.2345901.2730681.2471780.6598391.4189971.1796880.7433010.8447961.2195290.8244010.9248380.7601591.2031860.8669771.1037651.0016871.0277581.2793991.3025671.5591740.9335141.1722701.1743251.0617191.3976772.2002772.003317...2.1223181.7107251.8988712.3078201.7850552.2255961.9910212.0638961.8870011.4596392.1878351.7306341.9247162.0219271.0298202.0043171.4293401.9242631.8887881.8328632.0113962.0913532.0556241.9874762.0140451.8839741.6472411.6340731.6631701.8327942.0004882.0424752.0017142.1071052.1595891.6292912.0597251.7036151.8348281.407918
min24.000000-5.513000-5.737000-9.104000-5.998000-6.369000-10.000000-10.000000-10.000000-10.000000-8.337000-10.000000-5.870000-8.587000-5.018000-10.000000-10.000000-10.000000-10.000000-4.226000-10.000000-10.000000-5.700000-10.000000-10.000000-10.000000-8.272000-8.184000-4.835000-7.913000-10.000000-10.000000-2.956000-8.356000-7.182000-10.000000-9.261000-10.000000-10.000000-10.000000...-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-9.839000-10.000000-10.000000-10.000000-10.000000-6.452000-10.000000-9.938000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000-10.000000
25%24.000000-0.473075-0.562200-0.437750-0.429575-0.470925-0.602225-0.493900-0.525175-0.511675-0.360200-0.511475-0.489675-0.447500-0.481200-0.607975-0.404150-0.391950-0.513775-0.272200-0.488675-0.524600-0.538900-0.440375-0.508900-0.533900-0.497700-0.512875-0.467800-0.378300-0.505750-0.457975-0.328200-0.600500-0.478700-0.570525-0.481800-0.541950-0.604100-0.470250...-0.588075-0.564025-0.561000-0.583250-0.566500-0.603200-0.541575-0.560825-0.555200-0.534500-0.569100-0.558300-0.573350-0.594275-0.389925-0.551200-0.544150-0.575075-0.568275-0.582650-0.558575-0.562375-0.572800-0.561225-0.560675-0.560100-0.533700-0.504575-0.544275-0.569150-0.566175-0.565975-0.589975-0.568700-0.563775-0.567975-0.552575-0.561000-0.592600-0.562900
50%48.000000-0.008850-0.0466000.0752000.008050-0.026900-0.015650-0.000650-0.0179000.0100000.1604500.0385500.0138000.0602500.009800-0.0301000.0000000.149400-0.0022000.000000-0.027800-0.002800-0.069350-0.0118000.0000000.018300-0.0116500.0161000.0376000.0037500.0217500.0270000.019100-0.0540000.0233500.003350-0.0006000.015350-0.0007000.005800...-0.017650-0.041550-0.002950-0.012650-0.0056000.0076500.0049500.000000-0.023800-0.011450-0.007100-0.019500-0.019500-0.0093000.081550-0.0069000.018400-0.014650-0.0143500.005300-0.005300-0.0040500.003300-0.007900-0.004600-0.0024000.007850-0.005600-0.020600-0.030000-0.0099000.003250-0.009100-0.013750-0.003300-0.010250-0.001250-0.0068000.014000-0.019500
75%72.0000000.5257000.4030750.6639250.4634000.4653750.5104250.5287250.4119000.5492250.6977750.5254000.5752750.6044500.5758250.4579750.3824750.8295000.4947750.3278000.4006000.4924000.4148750.4334000.3292500.5277000.4616500.5084250.5864500.4312750.5076000.4580750.4710750.3919500.5513000.5037250.5648750.5170250.4605000.642300...0.4526750.4276750.4621750.4479750.4471500.4412500.4706000.4585500.4410000.4600750.4609500.4499750.4452000.4732000.5635750.4563500.4934000.4483750.4519750.4630750.4476750.4620000.4689000.4523750.4604750.4616750.4659500.4634000.4500750.4308750.4577500.4615000.4456750.4529000.4709000.4447500.4652250.4464000.4612750.438650
max72.00000010.0000005.0390008.25700010.00000010.0000007.2820007.3330005.4730008.8870006.43300010.00000010.00000010.00000010.00000010.0000004.1340006.4180004.7500008.8720004.0810009.8420005.2480005.9420005.20100010.0000008.49400010.00000010.00000010.0000009.41600010.00000010.0000006.79600010.00000010.00000010.0000005.8340005.60200010.000000...3.8880003.5960004.8570003.5490003.3820003.3280004.1570003.7360003.5820003.1190003.3230005.0140002.8980004.1850003.1700003.2760004.9920003.7700002.8510003.2110004.5340003.8900003.9940004.3210004.0200003.7380003.2520005.4060003.1100003.3200004.0690003.9600003.9270003.5960003.7470002.8140003.5050002.9240003.1110003.805000
\n", + "

8 rows × 873 columns

\n", + "
" + ], + "text/plain": [ + " tempo g-0 ... c-98 c-99\n", + "count 23814.000000 23814.000000 ... 23814.000000 23814.000000\n", + "mean 48.020156 0.248366 ... -0.470252 -0.301505\n", + "std 19.402807 1.393399 ... 1.834828 1.407918\n", + "min 24.000000 -5.513000 ... -10.000000 -10.000000\n", + "25% 24.000000 -0.473075 ... -0.592600 -0.562900\n", + "50% 48.000000 -0.008850 ... 0.014000 -0.019500\n", + "75% 72.000000 0.525700 ... 0.461275 0.438650\n", + "max 72.000000 10.000000 ... 3.111000 3.805000\n", + "\n", + "[8 rows x 873 columns]" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 31 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2ZabuXjzi5Cn" + }, + "source": [ + "A função ``` .describe() ``` fornecida pelo Pandas permite a análise dos seguintes parâmetros estatísticos: **Valor total**, **Média**, **Mediana**, **Desvio Padrão**, **Valor Mínimo**, **Valor Máximo** e os **Quartis**. Ou seja a função permite a análise de **Variáveis de Tendência Central**, como também a análise de **Medidas Separatrizes** e **Medidas de Dispersão**.\n", + "***\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uAE67jFKrf__" + }, + "source": [ + "### **Medidas de Tendência Central:**\n", + "***" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BRzOShqOpQDF" + }, + "source": [ + "#### **Média**\n", + "https://pt.wikipedia.org/wiki/M%C3%A9dia#Defini%C3%A7%C3%A3o_formal\n", + "\n", + "É representada por $\\mu$ quando se refere à população e por $\\bar{X}$ quando se refere à amostra\n", + "\n", + "#$$\\mu = \\frac 1n\\sum_{i=1}^{n}X_i$$\n", + "\n", + "onde \n", + "\n", + "$n$ = número de observações (registros)\n", + "\n", + "$X_i$ = valor da i-ésima observação (registro)\n", + "\n", + "***\n", + "\n", + "#### **Médiana**\n", + "https://pt.wikipedia.org/wiki/Mediana_(estat%C3%ADstica)\n", + "\n", + "Para obtermos a mediana de uma conjunto de dados devemos proceder da seguinte maneira:\n", + "1. Ordenar o conjunto de dados;\n", + "2. Identificar o número de observações (registros) do conjunto de dados ($n$);\n", + "3. Identicar o elemento mediano:\n", + "\n", + "> Quando $n$ for ímpar, a posição do elemento mediano será obtida da seguinte forma:\n", + "\n", + "\n", + "# $$Elemento_{Md} = \\frac{n+1}2$$\n", + "\n", + "> Quando $n$ for par, a posição do elemento mediano será obtida da seguinte forma:\n", + "\n", + "\n", + "# $$Elemento_{Md} = \\frac{n}2$$\n", + "\n", + "4. Obter a mediana:\n", + "\n", + "> Quando $n$ for ímpar:\n", + "\n", + "\n", + "# $$Md = X_{Elemento_{Md}}$$\n", + "\n", + "> Quando $n$ for par:\n", + "\n", + "\n", + "# $$Md = \\frac{X_{Elemento_{Md}} + X_{Elemento_{Md}+1}}2$$\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GQ63XNLbpPRF" + }, + "source": [ + "### **Medidas Separatrizes:**\n", + "***" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d9qcPQ29rqjA" + }, + "source": [ + "Há uma série de medidas de posição semelhantes na sua concepção à mediana, embora não sejam medidas de tendência central. Como se sabe, a mediana divide a distribuição em duas partes iguais quanto ao número de elementos de cada parte. Já os quartis permitem dividir a distribuição em quatro partes iguais quanto ao número de elementos de cada uma; os decis em dez partes e os centis em cem partes iguais." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "diyw7oPcr_Et" + }, + "source": [ + "#### **Quartis**\n", + "\n", + "https://pt.wikipedia.org/wiki/Quartil\n", + "\n", + "Assim, no caso duma amostra ordenada:\n", + "\n", + "* primeiro quartil (designado por Q1/4) = quartil inferior = é o valor aos 25% da amostra ordenada = 25º percentil\n", + "* segundo quartil (designado por Q2/4) = mediana = é o valor até ao qual se encontra 50% da amostra ordenada = 50º percentil, ou 5º decil.\n", + "* terceiro quartil (designado por Q3/4) = quartil superior = valor a partir do qual se encontram 25% dos valores mais elevados = valor aos 75% da amostra ordenada = 75º percentil\n", + "

À diferença entre os quartis superior e inferior chama-se amplitude inter-quartil.

\n", + "\"Colaboratory\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_QLiWQJStmax" + }, + "source": [ + "### **Medidas de Dispersão**\n", + "***" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jQKTc_octuj2" + }, + "source": [ + "Embora as medidas de posição forneçam uma sumarização bastante importante dos dados, elas podem não ser suficientes para caracterizar conjuntos distintos, especialmente quando as observações de determinada distribuição apresentarem dados muito dispersos." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pLVa5Jcht_km" + }, + "source": [ + "#### **Desvio Padrão**\n", + "\n", + "https://pt.wikipedia.org/wiki/Desvio_padr%C3%A3o\n", + "\n", + "

Em probabilidade, o desvio padrão ou desvio padrão populacional (comumente representado pela letra grega sigma) é uma medida de dispersão em torno da média populacional de uma variável aleatória.

\n", + "\n", + "# $$\\sigma = \\sqrt{\\frac 1n\\sum_{i=1}^{n}(X_i-\\mu)^2} \\Longrightarrow \\sigma = \\sqrt{\\sigma^2}$$\n", + "\n", + "

O termo possui também uma acepção específica no campo da estatística, na qual também é chamado de desvio padrão amostral (comumente representado pela letra latina s) e indica uma medida de dispersão dos dados em torno de média amostral. Um baixo desvio padrão indica que os pontos dos dados tendem a estar próximos da média ou do valor esperado.Um alto desvio padrão indica que os pontos dos dados estão espalhados por uma ampla gama de valores.

\n", + "\n", + "# $$S = \\sqrt{\\frac 1{n-1}\\sum_{i=1}^{n}(X_i-\\bar{X})^2} \\Longrightarrow S = \\sqrt{S^2}$$\n", + "\n", + "

O desvio padrão populacional ou amostral é a raiz quadrada da variância populacional ou amostral correspondente, de modo a ser uma medida de dispersão que seja um número não negativo e que use a mesma unidade de medida dos dados fornecidos.

" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xL9MuXiw6Q2J" + }, + "source": [ + "## **Desafio 05: Refletir sobre a manipulação do tamanho das visualizações**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "g15E_26wzOS8" + }, + "source": [ + "### 'Por que ocorreu a distorção?', 'O gráfico estava realmente distorcido?', 'O que realmente significa um gráfico distorcido?'\n", + "***" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5ZPZLjU848qI" + }, + "source": [ + "

A 'distorção' mencionada ocorre principalmente pela grande amplitude dos dados, principalmente aqueles distantes das medidas de tendência central (outliers). Ou seja análisar essa base de dados, com uma grande amplitude torna necessária uma grande área para a melhor visualização desses dados.

\n", + "

Isso entretanto não classificaria necessáriamente uma distorção. Um gráfico distorcido na realidade, como aponta a autora do livro 'Storytelling with data' - Cole Nussbaumer Knaflic, é um gráfico que sugere uma interpretação diferente do que os dados realmente indicam, o que induz a pessoa ao erro ou a uma interpretação equivocada como indicado no exemplo abaixo. No qual a escala dos eixos foi alterada para gerar uma impressão errada ao telespectador.

\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rzPl_cdA6Qg8" + }, + "source": [ + "## **Desafio 06: Fazer outras análises com o boxplot e até com o histograma** " + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 469 + }, + "id": "bzikiRUv65vD", + "outputId": "4cea895d-dce4-4fff-8069-940a2cb30bb6" + }, + "source": [ + "# Criação do Canva:\n", + "fig, axs = plt.subplots(figsize = (26, 7), ncols = 2)\n", + "\n", + "#Box Plot aplicado ao banco de dados Gerais:\n", + "ax1 = sns.boxplot(y='g-0', x='tratamento' , data=dados, ax = axs[0])\n", + "ax1.set_title('Comportamento do \"g-0\" em relação ao tratamento (Banco de Dados Geral)', fontsize = 18)\n", + "\n", + "#Box Plot aplicado aos cinco principais compostos:\n", + "ax1 = sns.boxplot(y='g-0', x='tratamento' , data=top_compostos, ax = axs[1])\n", + "ax1.set_title('Comportamento do \"g-0\" em relação ao tratamento (5 Principais Compostos)', fontsize = 18)\n", + "\n", + "plt.show()" + ], + "execution_count": 37, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABfcAAAHECAYAAACUQhCmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhMd/vH8U8Se4LYq7FUWyOWICI0ltYSgloa+1LUUlKUUhRP+1BtlZZH22htVVpLUUtbW+1LE3t3BKVqqSJESMSanN8frplfJpnEJEYmw/t1Xa7LnJw5556zfOfc95zv97gZhmEIAAAAAAAAAAC4DHdnBwAAAAAAAAAAADKG4j4AAAAAAAAAAC6G4j4AAAAAAAAAAC6G4j4AAAAAAAAAAC6G4j4AAAAAAAAAAC6G4j4AAAAAAAAAAC6G4j6QTIUKFTRq1Chnh4EslpX7fcSIEfL399ewYcN0+fJl9enTR19++WWWrBtI6cMPP1SjRo1069YtZ4eSbTVq1Ejdu3d3dhgONWrUKFWoUMHZYbiElPvfMAyFhoZq9OjRTowKQHZFLvFoIpfAoyq75xIrVqxQhQoVtGfPnge+rqxsB/bs2aMKFSpoxYoVWbI+ZK3M5BvZtrh//fp1zZs3T127dlWtWrVUuXJl1alTRy+//LJWrFihO3fuODvELBcVFaXw8HCdOXPG2aE8UGfOnFF4eLiioqKcHYpDmBte8xdKo0aNHmijv337dnXu3FnVq1dXrVq1NHjwYJ0+fTrVfN27d7cULMxfeg/7seVsx48f15o1azRkyBCdO3dOderU0eHDhxUSEuLs0O5bVp23mzZtUnh4+ANdR3awZ88ehYeH6+rVqw9sHadPn9ZXX32lgQMHKleuXJbp5sJv8n+BgYFq06aNZs+erRs3bjywmB4lybevr6+v/P391bhxYw0cOFDLly9/6LdzdHS0pk6dqrZt26pmzZqqXLmygoKC1LNnT82ZM0eXL192dog2ubm5adCgQfr2228fmuuUhxW5RGrkEq6JXAJm5BL3j1zCcdLKJcztga1/48ePt2vZKZfh6+urgIAAdenSRd9+++2D+kiPPMMwtGHDBoWFhalevXqqUqWKatasqc6dO2vmzJmKjY11dohOk5XXFpnJN3I84Jgy5eTJk+rXr5/+/vtv1alTR/369VOhQoV06dIl7dq1S6NHj9axY8c0cuRIZ4eapaKiojRt2jTVqlVLpUqVcnY4D8w///yjadOmycfHRxUrVnR2OC5lw4YNGjx4sHx9fTVixAjFx8fryy+/VJcuXbR8+XKVKFHC2SE+0kqVKqUNGzaoVKlSeumllxQdHa2CBQtaXQy5qqw6bzdt2qSVK1fq1VdffWDryA727t2radOmKTQ0VAUKFHgg65g9e7a8vLzUunVrm38fN26c8uXLJ0mKjY3V5s2bNXnyZP3888+aPn36A4npUVOxYkX16tVLknTjxg2dPXtWkZGRGjNmjGbMmKHw8HD5+vo6OUrH27Fjh4YNG6YbN26oSZMmat26tfLnz6/Lly/r119/1dSpU7V06VKtX7/e2aHa1LhxY/n4+Gj69On65JNPnB0ObCCXsI1cAvdCLpG9kUvcP3IJx7lXLhEWFqYnn3zSalq5cuUytI7u3bvLz89PhmHozJkz+uabb/TGG2/o3LlzCgsLu+f727Rpo+eff145c+bM0Hoz4/fff5e7e9bcPx0YGKjff/9dOXI4rqR7/fp1DR06VFu3btXTTz+tjh076vHHH1dCQoJ+++03ffrpp9q4caOWLVvmsHW6kqy+tshovpHtivs3btxQ//79Lb+KNG3a1Orv/fr10++//64//vjDSRFmvfj4eHl5eTk7DGRzt2/f1jvvvKOSJUtq4cKF8vT0lCQ9++yzatu2raZNm6Z33nnHyVE+WImJibp165by5s3r7FBsyp07t1UyXaxYMSdG41yGYSghIcFynCJrxcfHa9WqVWrXrl2aF7shISEqXLiw5XWPHj3Url07bdmyRVeuXFHBggWzKtyHVokSJdSmTRuraUOHDtW6des0YsQI9e3bV2vWrHmotvWff/6pwYMHy9vbW0uWLNFTTz2Vap6LFy9q/vz5Dl3vjRs3lCNHDoclQa1bt9asWbMUHR39SLfl2RG5RGrkErAHuQS5hCshl3Aue3KJOnXqqHbt2ve1npo1a6pZs2aW1+3atVOzZs00e/Zs9e3bN83rOvP3noeHhzw8PO4rBnvlzp07S9YjSe7u7g5f39ixY7V161b17t1bI0aMSPVDxYULF7RgwQKHrhPpy0i+ke2G5fnmm2904sQJ9erVK9XFuFnVqlXVrVs3q2mbNm2ydB/09/dX586dtWnTplTvNY+devjwYb300kvy9/dXUFCQJk6cqDt37ujmzZuaNGmS6tevLz8/P3Xr1k3Hjx+3Woa5i9DOnTsVHh6uhg0bqkqVKmrVqpXWrFljM+aMxnfo0CH16dNHAQEBat26tcLDwy3jLfXo0cPSPcncJTM+Pl5Tp05Vhw4dVLt2bVWpUkVNmjTR5MmTdf36dat1JB+fa+HChQoJCZGfn59atWqlrVu3SpKOHDmiPn36qEaNGqpdu7beffdd3b59O1W8f//9t0aMGGHpstOoUSNNmjRJCQkJVvOZh3mIi4vT2LFjFRQUJD8/P3Xu3Fm//fab1bbt0aOHJGn06NGWz5l8vNuEhARNmTJFwcHBqlKliurWrauRI0fqn3/+sbntbfnzzz/Vp08fS3fT119/XZcuXbI57507dzRr1iy1aNFCfn5+ql27tgYOHKgjR47Yvb57SUxM1KeffqqGDRta9sXatWsVHh5udxfXffv26cKFC2rfvr3VRU7FihVVq1YtrV271uY+zIyM7vfLly9r1KhRql27tvz9/TVgwABFR0dLkpYsWaLmzZvLz89PzZo1s3le2JL8PPz0008VHBysqlWrat26dZLuXvAtWrRIbdu2VbVq1eTv76/u3btr9+7ddi1/7dq1CgsLU4MGDVSlShXVrl1bAwYM0OHDh23Of+jQIQ0ePFh16tRRlSpV9Nxzz2nYsGE6depUppdpb7uRloULF6p3796qX7++qlSponr16mn48OFpHk/ffPONQkNDVbVqVQUEBKh3797av3//Pddzr/M2ZZtjPpe++OILSXfvchg1apRCQkIs+6pz587auHGj1Xq6d++ulStXSrIe0sQ81uDx48c1btw4Pf/88/L391e1atXUtm1bffPNN6liNp9bx44d03vvvad69eqpWrVq6tmzp/766y9Jd+9eM2+PRo0aacmSJTY//86dO9W7d2/VrFnTcv5+/fXXqeYzt+/Hjx9Xv3795O/vr4CAAA0ePNhyPkh3z5tp06ZJuvuLvflzJu9CfObMGY0YMcJyvAUHB+t///tfqvY+Ldu3b1dCQoKee+45u+aX7nYPNF9UJL+QPn/+vCZOnKg2bdooMDBQfn5+atGihWbNmqXExESrZZjP2127dmnOnDmWdjwkJMSyb1PavXu3+vXrp9q1a8vPz0+NGzfWmDFjFBMTY5nHEe30v//+qyFDhiggIEA1atRQWFiY1fmbkr37PTOaN2+uPn36KDo6WgsXLrRMT0pK0vTp09WtWzfVrVtXVapUUYMGDTR27Fibw9iYr2nq1aunqlWrqn379oqIiEhzvfv27VOvXr0UEBCgqlWrKjQ01Ob5Yy7Qm9uWunXrqnv37tq2bds9P9snn3yi69ev67333rNZ2JekokWLaujQoammZ/S7JyYmRqNHj1adOnVUvXp1nTt3TlLG20Zbnn32Wd2+fTtDbTKyBrkEuQS5BLmEPcgl7o1cglwiLfbmEvHx8Q4dj79kyZJ66qmnFB8fb8kFzN9lu3btUpcuXeTv769XXnlFku0x9x9UPmJrzH3ztJ07d6pjx46qVq2a6tatq3fffVfXrl2zmjcjOZWtMfeTkpI0b948tWrVSv7+/qpRo4ZCQkI0ZsyYe7bdhw8f1nfffafq1atr5MiRNnsgFC9eXMOGDUv1voEDB1q2S4sWLTR79uxU8TqiLT9z5ozlOF69erVatWolPz8/NWjQQOHh4TaHW7Q3vn///VejR4+2XI8FBQWpc+fOluPBkdcWGdlPGck3st2d++Yu2J06dbL7PQsXLtT48eP15JNPasCAAZKklStXauDAgRo/fnyqZZ07d069evVSixYtFBISosjISM2dO1ceHh46duyYbty4oX79+uny5cv64osvNGDAAK1bty7VAT558mQlJCSoS5cuku7u8GHDhunmzZtq27ZtpuM7e/asevbsqWbNmqlp06ZKSEhQUFCQoqOjtWTJEqvuTWXKlJF0tyFYtmyZmjZtqpYtWypHjhzau3evPv/8c0VFRWnOnDk2t9vVq1fVoUMH5cqVS/Pnz9egQYP08ccf680331TLli0VHBysyMhIzZ8/X4ULF7bEL0kHDhxQz549VaBAAXXq1EklSpTQ4cOHNX/+fP3yyy+aP39+ql9x+/Tpo8KFC2vgwIGKjY3V3Llz1a9fP23evFleXl4KDAxUWFiYZsyYoU6dOikgIEDS3URfuntHSZ8+ffTzzz8rJCREvXr10smTJ/X1118rMjJSy5cv12OPPZbu8XL69Gl169ZNt27dUrdu3VSyZElt3bpVffv2tTn/8OHDtW7dOtWtW1ddunTRxYsXtXDhQnXu3FkLFy5UpUqV0l2fPcaPH6/Fixerdu3a6t27t2JiYvT222/Lx8fH7mWY70Dz9/dP9bfq1atr9+7d+vvvv1W+fPn7ijUz+71v37567LHHNHjwYJ06dcpyrDVp0kRLly5V+/btLcfgkCFD9MMPP6h06dJ2xTNp0iTduXNHHTt2lKenp6Wr34gRI7RmzRqFhISobdu2unXrllatWqXevXsrPDxcjRs3Tne5CxYskLe3tzp27KhixYrp1KlTWrp0qbp06aKVK1fqiSeesMy7detWvfrqq8qXL5/at2+vsmXLKjo6WhERETp69KjlPM3IMjPabtjyxRdfqHr16urevbu8vb119OhRLVu2TLt379aqVatUqFAhy7wffvihPv/8c1WtWlXDhg1TfHy8li5dqp49e+qzzz5L98LtXuet2ZdffqnY2Fh16NBBxYoVs5yrGzdu1F9//aVmzZrJx8dHsbGxWrlypQYNGqTJkyerVatWku527UxKStL+/fv1wQcfWJZbo0YNSXe7n+7fv18NGjRQqVKldP36df3www968803FRMTo/79+6eK/Y033lC+fPnUv39/xcTEaO7cuerbt68GDx6syZMnq3PnzmrXrp2WLVum//73v3rqqadUs2ZNy/uXLFmisWPHqnr16goLC1PevHm1c+dOjRs3TqdOndIbb7xhtb7z58+rR48eCg4O1siRI3X48GEtWbJE8fHxlgSlU6dOio+P18aNGzV69GjLfjI/APWff/5Rhw4dFBcXp65du6ps2bLau3evZs6cqZ9//lnz5s27593Je/fulST5+fmlOc+VK1es/r9lyxb9+OOPatWqlVXSf+TIEW3YsEFNmjRRmTJldPv2bf3444+aMmWKzpw5Y3NszalTp+rGjRvq1KmTcuXKpa+//lqjRo1SmTJlLMePJC1evFjjxo1TiRIl1LlzZ/n4+Ojs2bPaunWrzp8/b+lZcL/t9NWrV9WtWzedO3dOnTt31lNPPaV9+/apR48eNse+z+h+z4wOHTpoxowZ2r59u6UNuH37tubMmaOmTZuqcePGyps3r/744w8tX75cP//8s5YvX27VNX/YsGHatGmTGjZsqPr16+vUqVN69dVXbQ7HsWXLFg0aNEhFixZVr1695OXlpTVr1ujNN9/UmTNnLMX2y5cvq2fPnpKkzp076/HHH9fly5d14MAB/fbbb2rQoEGan+nmzZvatm2bfHx8VLdu3Qxtj8x89/Tq1UtFixbVgAEDlJCQYBlmKiNtY1oqVaqkXLlyae/evZbrQGQP5BLkEuQS5BLkEuQS5BLOzyVeeeUVXbt2TW5ubjKZTOrTp0+qHqsZdevWLf3777/KkSOH1XBDBw4c0Pr169WxY0eFhobatSxH5yNpOXjwoNavX68OHTqoTZs22rNnj+bPn68///xTc+fOtVwbZCanSs48fEvDhg3VuXNneXh46MyZM9qyZYtu3bqV7tBEGzZskHQ3/3Bzc7Nr+/3xxx/q3r27cuTIoW7duqlo0aLaunWrJk+erMOHD2vKlCmp3uOItnzLli2W7+GiRYtqy5YtmjZtms6ePav3338/w/HduXNHvXr10vnz59W1a1c98cQTio+P15EjR7R//36FhoY69NoiI/spQ/mGkc3UqlXLqFGjht3zx8bGGtWrVzeCg4ONuLg4y/S4uDijcePGRvXq1Y0rV65Ypjds2NAwmUzG2rVrrZYTGhpqVKhQwQgLCzOSkpIs07/88kvDZDIZO3bssExbvny5YTKZjAYNGhhXr161TL969arRoEEDIzAw0Lh+/fp9xbd06dJUn9W83t27d6f6282bN41bt26lmj516lTDZDIZv/32m2Xa7t27DZPJZNSrV88q/qioKMNkMhkVKlQw1q9fn2r71K1b12paq1atjJCQEKvPZRiGsWHDBsNkMhnLly+3THvjjTcMk8lkjB071mretWvXGiaTyfj6669TxZf8/WZLliwxTCaTMWnSJKvpW7duNUwmkzF8+PBU70lp2LBhhslkMnbt2mWZlpSUZAwYMMAwmUzGG2+8YZkeERFhmEwmY8iQIVbHRVRUlFGxYkWjS5cu91zfvRw9etQwmUxG7969jcTERMv0w4cPG76+vobJZDJOnz59z+WMHz/eMJlMxrFjx1L9bcGCBYbJZDJ+/PHH+443M/t93LhxVvNOmDDBMJlMxnPPPWe1HPMxOHny5HvGYT4fmjZtaiQkJNiMZfHixVbTb9++bYSGhhoNGza02p8p97thGMa1a9dSrfPYsWNG5cqVrY7jhIQEo3bt2sYzzzxjnDt3LtV7ku9Te5eZ0XYjLbbWt3PnTsNkMhmzZs2yTDt+/LhRoUIFo3PnzsbNmzct08+dO2cEBAQYDRs2NO7cuZPuutI7b81/CwwMNC5evGhXnAkJCUbTpk2N5s2bW003H1O22FpOYmKi8eKLLxo1atSwaiM/+eQTw2QyGf3797fZ5vv7+xtnz561TL906ZJRpUoVY+jQoZZp58+fN6pUqWIMGzYs1Xrfeecdw9fX1zh16pRlmrl9X7NmjdW848aNM0wmk3H8+PFU8dk6981t2LZt26ymT5w4Mc3vj5S6detmBAYG2vybeRvb+vfWW28Zt2/ftpr/+vXrVtvQbPjw4Yavr69x/vx5yzTzedumTZtUx1rlypWttu+///5rVK5c2WjevLnN4918bjminZ4yZYphMpmMZcuWWU1/9913DZPJZLz44ouWaRnd72kxmUxGv3790p3H39/fqFWrluV1UlKS5foiuaVLl6Y6tn788UebbdvGjRst+9Pszp07RoMGDYyAgACrduzmzZtGp06dDF9fX+PEiROGYRjGpk2bbB7H9jh8+LBhMpmMsLCwVH+7ceOGcenSJat/yY+1zHz3vP766zbjsLdtNIy7523y/Z9ccHCw0bJly7Q/MJyCXIJcglziLnKJ9JFLkEvYsxxyCdvSyyXWrFljDBs2zFi6dKmxefNm48svvzSaNm1qmEwmIzw8/J7LNoz/Pz+XLVtmXLp0ybh48aLx22+/Ga+88ophMpmstqP5ujYyMjLN5ST/3nsQ+Yg5jpTtgDm2jRs3Wk1/5513DJPJZKxevdoyLSM5la3z5YUXXkh1vNtr0KBBhslkMg4cOGD3ezp16mRUrFjRiIqKskxLSkoyBg8ebJhMJmPnzp2W6Y5oy0+fPm2YTCbD19fXKs7k37+//PJLhuMzrytlDpCSo64tMrqf7M03st2wPPHx8RkaNy0yMlIJCQnq3r271ViSXl5e6t69uxISErRz506r95QoUULNmze3mlajRg0ZhqHu3btb/VJl/lX15MmTqdbdpUsX5c+f3/I6f/786ty5s65cuWLp9pOZ+Ly9va3u1rFHrly5LL/w3LlzR1euXFFMTIzq1KkjSVbdVc3atm1rFb+vr6+8vLxUvHjxVN2Ya9SooejoaEvXoSNHjujIkSNq2bKlbt26pZiYGMu/gIAA5cuXT5GRkanW+dJLL1m9fuaZZyTZ3r62bNy4Ue7u7ql+NW/QoIEqVqyozZs3KykpKc33JyUlacuWLapSpYpl3dLd4SZs3W1j7soXFhZmdVz4+vqqYcOG+umnn6y6YmWGuftyjx49rO7oqlChgurVq2f3csxd6Gw9UMk8HputO1AzIrP73XyXp5n5vGrTpo3VeWE+Bu09HqS752HKcTG///57eXp6Kjg42CrGq1evqlGjRvrnn3/0999/p7tc8x2ehmFYuv0VKlRI5cqV0++//26ZLyIiQpcvX1avXr1sPmQs+T61d5mZaTfS+wxJSUmKi4tTTEyMKlSooPz581utb/PmzTIMQ3379rU6fkqUKKG2bdvqn3/+0aFDh+65vntp06aNihQpkmac0t3j+PLly7p+/bqeeeYZHT9+XPHx8XYtP/lybt68qcuXLys2NlZ169ZVfHy8pYtscmm1+Y0aNVLJkiUt0wsXLqxy5cpZHTfr16/XrVu31L59e6vjLCYmRo0aNVJSUlKq/VS8eHG1aNHCalpG2kFzG1apUqVUd0D1799f7u7udnXbi4mJuec47uHh4Zo7d67mzp2rqVOnqn379lq6dKneeustq/ny5Mlj2Ya3bt1SbGysYmJiVK9ePSUlJenAgQOplt21a9dUx1rK7fvDDz/o9u3bGjRokM0HgZnPLUe005s2bVLRokX1wgsvWE1/+eWXU82bmf2eWV5eXlbHv5ubm/LkySPp7hAMV69eVUxMjOUYSn5em4+DPn36WC0zODg41cPMDh48qLNnz6pdu3ZW7ViuXLnUt29fJSUlafPmzZJkuW748ccf7T43zczz2xr7+5tvvlFQUJDVv6ioKEmZ/+5J+dnN7G0b78Xb2zvNYTjgPOQS5BLpIZdIG7nE/yOXsF4fuQS5RErp5RItWrTQlClT1KFDBzVq1Eg9evTQqlWrZDKZNH369AwNgzhmzBgFBQWpTp066tChg3bs2KHQ0NBUz//w9fW1fF/Zy5H5SHrKlSun4OBgq2n9+vWTJKuhozKTUyXn5eWl8+fP2zUUVkrpXaPbcunSJf3yyy9q1KiRfH19LdPd3NwsQyKlHBZLckxbXqdOHVWuXNlqnebvX/M6MxKf+Tpmz549mb6uz8i1RUb3k735RrYblsfLyyvV2FPpMTcMtroHmqedPn3aarqt7ujmhinl38wncGxsbKr3pHzytyTL+LHmuDITX+nSpTP10I+FCxdq8eLFOnbsWKqL0uTDK5iltR1sdUU1b5/Y2Fh5enpaxg4NDw+3GrstuYsXL6aalrJLjbmLmK3ta8uZM2dUvHhxm18kTz/9tKKionT58mWbX/rS3ZM8ISHB5r57+umnba7P3d3d5rjATz/9tDZt2qQzZ87csytWeszHiK2YypUrpx07dlhe37hxQ3FxcVbz5M+fX3ny5LFclNoa0+7mzZuSZCkKZZaj9rv5vErrGLQ1dnRaUhapzHFeu3Yt3S/4S5cu2Xyv2aFDh/Txxx9r7969qcb/TB63+cvfni7V9i4zM+2GLbt27dJnn32m3377zXIMmCVvE+xdX3rdLu2RvKtwcpcuXdJHH32kzZs32/ziunr1ql0XGteuXdO0adO0bt06/fvvvzaXk1JGj83kY+aZz4eUhYbkUp4PtrqIe3t7S7KvHYyJiVFCQoLN9srb21vFihWz69hwc3OTYRjpzlOzZk2rtq1FixbKkSOHFi9erObNm+vZZ5+V9P9jCX/33Xc6efJkquXas93N8SffvuZzq2LFiunG6Yh22nx8p/zuLV68eKoL+czs98yy9RDMtWvXau7cuYqKiko1LmPy8/r06dNyd3e3ed499dRTOnHihOW1uQ2wdVylbHNq1aqlF154QStWrNCqVatUpUoV1alTRy1atLD5/uTMn8VWkh0cHGz5Hvz222/13XffWf6W2e+etNoce9vGezEMw+6uy8g65BLkEukhlyCXSIlcIm3kEqmXkxK5hH1y5cql3r17a9SoUYqMjLR76LyBAweqZs2acnNzk6enp5588kmb+zKtYyM9jsxH0mOr/TfnGMm3dWZyquSGDRumgQMHqlu3bipevLhq1aqlBg0aKCQkxOaPtsmZt6m910/p5Q5PPvmk3N3dbR5HjmjL0/o+lf6/XctIfD4+PgoLC9OsWbNUr149VaxYUc8884yaNWumqlWrpnq/LRm5tsjofrI338h2xf3y5ctr3759On36tN3j5GVUehe7af3ylpGG636lvHPAHnPnztXEiRNVr1499ejRQ8WLF1fOnDl1/vx5jRo1ymb8aW2H9LZPyuWYH7Bji61fNtNadlZuX1e2du1ay8PQzN5//321bdtWxYsXl3R3HL6UDd6FCxckyebdIJnhqP3uiCfX20oyDMNQ4cKFbY7zZpbeeKFnz55Vt27d5OXlpVdeeUVPPvmk8ubNKzc3N02YMCHVxbQ9HsQy0/P777+rT58+KlOmjF5//XWVKlXKcjfA0KFDnXLO2WrbDMNQ7969dfz4cfXo0UNVqlRR/vz55eHhoeXLl2v16tXp3kGX3Ouvv65t27apY8eOCgwMlLe3tzw8PLR9+3bNmzfP5nLSavPtOTbN23DSpEmW8y+llN9jGWlfH6TChQun+fC19NSvX1+LFy/W7t27LcX9iRMnav78+WrRooXCwsJUuHBh5cyZUwcPHtTkyZMztN1dQWb2e2acOXNG165dsxr7eMOGDRo6dKiqVq2qMWPGqGTJksqdO7cSExPVt2/fLDuGJk2apD59+mjHjh3av3+/5s6dqxkzZmjMmDF68cUX03zfE088oVy5ctl8iORjjz1mKQj+9NNPNt+f0e8eW22OI9vGK1eu3FdBDg8GuQS5BNJGLpEauYRt5BLkEunJTC5hfgZIRsVUNeAAACAASURBVH58M5lMdt2Rn5nvveyWj2Qmp0rO399fGzduVEREhPbs2aM9e/Zo9erVmj59uhYtWmT5EciW8uXLa8OGDTp06JBDngOTlgfZlt+PoUOHqn379tq2bZv279+vZcuWac6cOerbt69GjBjh0HVldD/Zm29ku+J+06ZNtW/fPn3zzTepnsRsi7mx+/PPPxUUFGT1t2PHjlnN42i2umWZf301//LkyPjS+7Xmu+++k4+Pj2bPnm3VSCW/U8ORypYtK+lug5jR7k/3kt7nLF26tH788UddvXrV5t2UXl5e6T4Ir3DhwsqXL5/NfWfeHynXl5SUpOPHj1t15zGvT7L9K2NGmN//119/pToWkt9ZKUn16tXT3LlzraaZf4003wnxyy+/pNonv/76q7y8vDL1i3ZyD3K/O1LZsmX1999/q1q1ahnqmm+2ceNGJSQkaPr06VZdrqW7d0Qk/0XVfMdOVFRUul2fM7JMR7Qbq1evVmJiombPnm01b0JCQqpf/ZOvz/zAroyuL7N3rx45csTyFPvBgwdb/e2bb76xez1Xr17Vtm3b1KZNm1QPG3LUECkpmc+nQoUKZVk7WLhwYXl6etpsr65cuaLo6Gi77iwpX7689u7dq5iYmAwVJ813iie/q+O7775TYGCgpk6dajVvRrrE22LevlFRUeneGeeIdrp06dI6efKkEhMTrS4uL1y4kOp8eZD7PTnz8Z+8y/R3332n3Llz66uvvrJKYsyfMznzdrH18MOU85u3j63jKq02wGQyyWQyqW/fvpYHak6ZMkXdunVL8/jNnTu3GjRooA0bNigyMtLuh+o68rsnI21jeswPdEs59Aicj1wibeQS5BLkEvYhlyCXSI5cIrXM5BLm3CCtnlHZkb35SHpsXaebc4zk54UjcipPT0+FhIQoJCRE0v8/WHvZsmVpPvRdunvt9Omnn2rZsmVq167dPc/H9HKHv/76S0lJSQ/s2snW9kzZzmQmvtKlS6t79+7q3r27bt68qT59+ujzzz9X7969VaRIEYdeW9i7nzKSb2Svn6p09+nM5cqV0xdffJHmWF8HDhzQwoULJUl169ZVvnz5tGDBAqtu3vHx8VqwYIHy5ctnd/KYUV9//bVVt8a4uDgtXrxYBQoUUK1atRwen3kMOFvdYt3d3VN1jbpz545mz56dqc92L5UqVZLJZNLixYttdre5c+eO3d1jU0rvcwYHByspKUmzZs2ymr59+3YdOnRIjRo1SvcXWA8PDzVs2FAHDhzQ7t27LdMNw9Dnn39uc32SNGvWLKtte/ToUW3ZskUBAQH3fddew4YNJUlfffWV1a+xR44cUUREhNW8xYsXV506daz+mX/lDwwMVLFixbRs2TKrwtvhw4e1d+9eNWvWLN0npNvjQe53R3rhhReUlJSk//3vfzb/fq8hM8zFvZR3PyxdulTR0dFW0+rWratChQpp7ty5lruakjMvI6PLvN92I61fv2fOnJnqV/9GjRrJzc1Nc+bMsRrm48KFC1qxYoV8fHzu+Qt+eudteszna8rtcvToUZvj9JnXk/I4S2s5Fy5csHlh7wjNmzdXrly5FB4ebnMM2ri4OJtd2+2R1vZ0d3dXw4YNdejQoVQFl1mzZikpKSnVmI62mL+jbI2hnB7z93KVKlWsYkq53RMSEjRv3rwMLTslc5v16aef2hzGxbxOR7TTjRs31sWLF/Xtt99aTbf1Hfog97vZunXrNGfOHBUvXlzdunWzTPfw8JCbm5vVOWwYhqZPn55qGY0bN5YkzZkzx2r6pk2bUhV7KleurMcff1wrVqywao9u376tOXPmyM3NzbK82NjYVG1IgQIFVKpUKV2/fj1Vt/2UBg8erLx58+o///mPzYtz82dKzpHfPRlpG9Nz6NAh3b59W4GBgXa/B1mDXCJt5BLkEuQS9iGXIJcwI5ewLb1cwtad+XFxcZo9e7Zy5syZZq+d7MjefCQ9J06cSHU9Yv5uTb6t7zensvX8FvPY9Pc6r3x9fdWmTRv98ssvmjJlis3PFR0dbWkTixQpIn9/f23dulVHjx61zGMYhuX7tUmTJnbFnVE7d+7UwYMHrdZp/v41b8+MxBcXF5dqqNPcuXNbhrozbztHXVtkZD9lJN/Idnfu582bVzNnzlS/fv00cOBA1atXT3Xq1JG3t7diYmK0Z88eRUREWH7NKFCggIYPH67x48erY8eOCg0NlSStXLlSJ0+e1Pjx460e9ORIhQoVUocOHSwPrFqxYoXOnj2rd99913JHnSPj8/Pzk7u7u2bMmKErV64oX758KlWqlKpVq6ZmzZppypQpevnll9WkSRPFx8dr9erVypHjwexiNzc3ffDBB+rZs6dat26tdu3a6emnn9aNGzd08uRJbdy4UcOGDcvww7yku3ePeHp6atGiRcqTJ48KFCigwoULKygoSKGhoVq5cqVmz56tf/75RzVr1tSpU6e0aNEiFS1a1K47tF577TXt2LFDYWFhevHFF/XYY49p69atNk+yunXrqnnz5lqzZo2uXLmihg0bKjo6WosWLVLu3Ln15ptvZvjzpVS+fHl16tRJS5Ys0UsvvaQmTZooJiZGixYtUsWKFXXw4EG77mTImTOn/vOf/2jo0KHq1q2bOnTooGvXrmnevHkqXLhwqjsZMuNB7ndHatasmdq2basFCxbo4MGDatiwoQoVKqRz587p119/1cmTJy0Ph7Tl2WefVd68eTVy5Ei9+OKLKlCggH7++Wft2LFDZcqUUWJiomXevHnz6r333tOQIUPUqlUrtW/fXmXLllVMTIwiIiL00ksvKTg4OEPLdES7ERwcrHnz5unll19Wp06dlDNnTkVGRurIkSOp7kh78sknLb9Mv/jii2revLmuXbumpUuXKiEhQZMnT75nV7n0ztv0PPXUUypfvrw+//xz3bhxQ+XKldOJEye0ZMkSmUwmqy9uSapWrZoWLFigt99+W88995xy5sypqlWrqnTp0qpbt66+//575cmTR35+fvrnn3+0ZMkSlSpV6oEkio899pjGjRunN998Uy1atFDr1q3l4+OjmJgYHT16VJs2bdKaNWsydUdetWrVJEmTJ09Wq1atlDt3bpUvX14mk0nDhg3Tzp07NXDgQHXt2lVlypTR/v37tXbtWgUGBlqOl/TUr19fnp6e2r59u6UokNL69eutLmIiIyO1bds2mUwmtW7d2jJfSEiIlixZotdee0116tTRxYsXtXz58nS7ftrjscce05gxYzR+/Hi1atVKbdq0kY+Pj86fP6/NmzdrwoQJqlixokPa6b59+2r16tV66623dPDgQT399NPau3evfv3111TniyP3+/nz5y1jy9+8eVNnz55VZGSkfv/9d5UtW1bh4eFWd3+EhIRo/fr16tmzp1544QXduXNHmzZtsjwEMbn69eurYcOGWrlypWJjY1W/fn2dPn3acm4lv9D18PDQW2+9pUGDBql9+/bq2LGjPD09tW7dOv36668KCwuz3Ln07bff6ssvv1RwcLDKli2rHDlyaN++fYqIiFDz5s3vOR5z+fLl9cknn2jYsGFq06aNmjRpourVq8vLy0sxMTH6448/tGXLFuXPn98ybqUjv3sy0jamZ/v27cqZM6ddCTCyFrlE2sglyCXSQy7x/8glyCXIJdKXXi7RqlUr1apVSyaTSUWKFNGZM2e0fPlyRUdHa9SoUTafy5Jd2ZuPpMdkMmnEiBHq0KGDypYtqz179mj9+vWqVauW1cOR7zenatGihapXr66qVauqePHiio6O1tKlS5UzZ049//zz93z/22+/ratXr2r27Nnavn27mjZtqscff1wJCQn6/ffftXHjRplMJsv8//nPf9S9e3d169ZNXbt2VbFixbR161ZFRESoZcuW9zx3M8vX11c9e/ZUt27dVKxYMW3evFk7d+5UmzZtrIYztTe+PXv26K233lLTpk1Vrlw5eXp66sCBA1q2bJmqVatmKfI76toiI/spI/lGtivuS3e7wX377bdasmSJ1q9frxkzZighIUEFCxZUlSpVNHHiRLVq1coyv/lBBHPmzNGnn34q6e4O//TTTx9o0jV8+HDt379fixYt0sWLF1WuXDlL45mco+J7/PHHNWHCBM2ePVtvv/22bt++rdDQUFWrVk19+vSRYRhatmyZ3nvvPRUrVkzNmzdXu3btUj1N3VEqVqyolStXaubMmdqyZYsWL14sT09P+fj4KDQ0NNMnc548eTR16lR99NFHmjBhgm7duqVatWopKChIOXPm1Jw5czR9+nStXbtWGzduVP78+dWsWTO99tprVk+kT0uZMmW0cOFCTZo0SQsWLFCuXLlUv359ffDBBza7w02ePFmVKlXSypUrNXHiROXLl0+BgYEaMmSIKlSokKnPmNLYsWNVvHhxLVu2TJMmTVK5cuU0duxY/fHHHzp48KDdD68yF1amT5+uDz74QLly5VJQUJCGDx/usDEyH9R+d7T3339ftWvX1tKlSzVz5kzdvn1bxYoVU6VKlfT666+n+94yZcpo9uzZ+t///qcZM2bIw8NDNWrU0Pz58/XOO+9YPWRHunuH7KJFizRjxgwtW7ZMsbGxKlKkiIKCgizHSEaXeb/tRkBAgMLDw/XZZ5/p448/Vu7cuVWnTh0tWLDA5pjYI0aMUNmyZbVo0SJNmTJFOXPmVLVq1TRlyhTLU+zTk955mx4PDw/NnDlTkyZN0sqVK3X9+nWVL19ekyZN0uHDh1NdkLds2VJRUVFas2aNfvjhByUlJen9999X6dKl9eGHH2rKlCnasmWLVq5cqSeeeEJDhw5Vjhw5Uo0v6yjt2rXTE088oS+++EJLlixRXFycvL29Va5cOQ0ZMkTFihXL1HIDAgI0fPhwLV68WG+99Zbu3LmjQYMGyWQyycfHR0uXLtUnn3yi77//XnFxcSpRooT69++vV155xa5CjKenp1q3bq1169ZpzJgxNh/eM27cOMv/c+bMKR8fH/Xt21evvPKKcufObfnb6NGj5enpqR9++EGbN29WyZIl1alTJ/n5+aX7gDB7mBOOOXPmaP78+bp165aKFy+uoKAgq8TgftvpggULauHChZo4caLl7v1atWrpq6++svkZHLXfo6KiNHLkSEl37wYpVKiQfH199d5776lly5ap2v7nn3/eUmiZNGmSChYsqIYNG+r1119X7dq1Uy3/o48+0kcffaRVq1Zp586dMplMCg8P1+rVq62K+9Ldu+7mzZun6dOnW+68e+qpp/Tuu++qQ4cOlvlq166tqKgobdu2TdHR0XJ3d1epUqX0xhtvpDvefnLPPvus1q5dq4ULF2rHjh3asWOHbty4oQIFCqh8+fIaOnSo2rZta1U8cNR3T0bbxrR8//33atSoUabPcTxY5BK2kUuQS9wLucT/I5cglyCXSFt6uUTLli21d+9eRUZGKj4+Xl5eXqpataref/99l7pr38zefCQtlStX1ujRozV16lQtXrxYXl5eevHFFzV06FCrnmL3m1P17t1b27dv1/z58xUXF6ciRYqoWrVq6t+/f6ph4WzJmzevpk+frg0bNmjFihVavHixYmNjlTdvXj399NMaMGCAOnfubJnfz89Pixcv1ieffKKvv/5aCQkJKl26tIYPH67evXvfc32Z1ahRI5UrV04zZ87UiRMnVKRIEQ0YMEADBgywms/e+CpUqKAmTZpo7969WrVqlZKSklSyZEn179/faj5HXVtkZD9lJN9wM3j6UIatWLFCo0eP1ldffWUzmQYcJSwsTLt379ZPP/3k9IeMwH4jR45UmTJlNGjQIGeHAqTpzJkzat68uf773/9aFW8BpG/Tpk169dVXtWLFCrvGpQVSIpdAViGXcE3kEnAF5BL3VqFCBYWGhmrixInODsXlnTlzRo0bN9agQYP06quvOjucBy6j+Ua2G3MfeBTZGmPv8OHD2rFjh5555hkuxl1M06ZNtXjxYmeHAaSrVKlS6tmzp6ZPn37fY8QDjwrDMDRt2jS98MILFPYBZBvkEg8Xcgm4AnIJ4MHITL6RLYflAR41K1eu1HfffafnnntOhQsX1l9//WUZd8sR41sia6xYsUKJiYnavHlzqoeyANnR8OHDNXz4cGeHAbgMNze3VA9eBgBnI5d4OJBLwNWQSwCOl5l8g+I+kA1UrlxZmzZt0vz583XlyhV5enqqdu3aGjRokCpVquTs8GCno0ePatGiRfLy8uIiBwAAAFmCXOLhQC4BAMgMxtwHAAAAAAAAAMDFMOY+AAAAAAAAAAAuhuI+AAAAAAAAAAAu5qEac//y5WtKSmKUIQAAANjP3d1NhQp5OjsMZDPkFgAAAMiMrMwvHqriflKSwQU4AAAAgPtGbgEAAIDsjmF5AAAAAAAAAABwMRT3AQAAAAAAAABwMRT3AQAAAAAAAABwMRT3AQAAAAAAAABwMRT3AQAAAAAAAABwMRT3AQAAAAAAAABwMRT3AQAAAAAAAABwMRT3AQAAAAAAAABwMRT3AQAAAAAAAABwMRT3AQAAAAAAAABwMVle3J80aZIaNWqkChUq6OjRo5bpJ06cUKdOnRQSEqJOnTrp77//zurQAIcZP/6/6t27qyZMGOfsUAAAAB5a5BYAAAB4lGV5cb9x48ZauHChfHx8rKaPHTtWXbt21fr169W1a1f997//zerQAIf5++9jkqRjx47eY04AAABkFrkFAAAAHmVZXtyvWbOmSpYsaTXt0qVLOnTokFq2bClJatmypQ4dOqSYmJisDg+4b+PHWyeP3L0PAADwYJBbAAAA4FGWw9kBSNK///6rEiVKyMPDQ5Lk4eGh4sWL699//1XhwoWdHB2QMea79s24ex8AACDrkFs8PCIjdygiYruzw3C6K1diJUkFC3o7ORLnq1fvOdWt+6yzwwAAINvIFsV9RylSxMvZIQA2FSuW39khAAAAIAPILZyvQIG8ypnTw9lhON3Vq1ckSUWLFnFyJM5XoEBecisAAJLJFsX9kiVL6vz580pMTJSHh4cSExN14cKFVF1s7+XSpXglJRkPKEog86Kj45wdAgAASIO7uxuF3IcIucXDw88vUH5+gc4Ow+kmTXpHkjRs2BgnR5I9kFsBALK7rMwvsnzMfVuKFCmiihUravXq1ZKk1atXq2LFinSbBQAAAJAh5BYAAAB4VGR5cf/dd9/Vs88+q3PnzqlXr156/vnnJUnjxo3TggULFBISogULFujtt9/O6tAAh6hZs7bV68DA2mnMCQAAgPtBbgEAAIBHmZthGA9NX1O6ziI7+Pzz6dq580fL6zp16qtv31ecGBEAAEgPw/LAFnILZBfmYXneeOMtJ0cCAADs8cgNywM8TH76aV+6rwEAAAAAAADgflHcBxzM27tQuq8BAAAAAAAA4H5R3Acc7MKFc+m+BgAAAAAAAID7RXEfcLCUj7F4iB5rAQAAAAAAACCboLgPOJiHh0e6rwEAAAAAAADgflHcBxzM37+m1esaNWqmMScAAAAAAAAAZA7FfeCBc3N2AAAAAAAAAAAeMhT3AQf75Zf9Vq9//nmfkyIBAAAAAAAA8LCiuA84WMrn5/I8XQAAAAAAAACORnEfcLDChYtYvS5SpEgacwIAAAAAAABA5lDcBxwsJuai1etLly6mMScAAAAAAAAAZA7FfcDBkpKS0n0NAAAAAAAAAPeL4j4AAAAAAAAAAC6G4j4AAAAAAAAAAC6G4j4AAAAAAAAAAC6G4j4AAAAAAAAAAC6G4j4AAAAAAAAAAC6G4j4AAAAAAAAAAC6G4j7gYO7u7um+BgAAAAAAAID7RdURcLCkpKR0XwMAAAAAAADA/aK4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi6G4DwAAAAAAAACAi8nh7ACS27p1qz7++GMZhiHDMDRo0CA1bdrU2WEBAAAAAAAAAJCtZJvivmEYGjlypBYuXCiTyaTDhw+rS5cuCg4Olrs7HQwAAAAAAAAAADDLNsV9SXJ3d1dcXJwkKS4uTsWLF6ewDwAAACBT6BkMAACAh1m2Ke67ubnpo48+0oABA5QvXz5du3ZNs2bNcnZYAAAAAFwQPYMBAADwsMs2xf07d+5o5syZ+uyzzxQQEKCffvpJr732mtasWSNPT0+7llGkiNcDjhLInGLF8js7BAAAgEcOPYMBAADwMMs2xf2oqChduHBBAQEBkqSAgADlzZtXx48fV9WqVe1axqVL8UpKMh5kmECmREfHOTsEAACQBnd3N24SeQjRMxgAAAAPu2xT3H/sscd07tw5/fXXX3ryySd1/PhxXbp0SWXKlHF2aAAAAABczP32DOYHH2QXOXN6SKI3MAAASC3bFPeLFSumcePGaciQIXJzc5MkTZgwQd7e3k6ODAAAAICrud+ewfQKRnZx+3aiJHoDAwDgKrKyZ3C2Ke5LUuvWrdW6dWtnhwEAAADAxdEzGAAAAA+7bFXcBwAAAABHoGcwAAAAHnYU9wEAAAA8lOgZDAAAgIeZu7MDAAAAAAAAAAAAGUNxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF0NxHwAAAAAAAAAAF5PD2QEkd/PmTU2YMEG7du1S7ty5Vb16db3zzjvODgsAAAAAAAAAgGwlWxX3P/zwQ+XOnVvr16+Xm5ubLl686OyQAAAAAAAAAADIdrJNcf/atWv69ttvtX37drm5uUmSihYt6uSoAAAAAAAAAADIfrJNcf/06dPy9vbWtGnTtGfPHnl6emrIkCGqWbOm3csoUsTrAUYIZF6xYvmdHQIAAAAAAACAh0i2Ke4nJibq9OnTqlSpkt544w399ttvCgsL08aNG+XlZV/R/tKleCUlGQ84UiDjoqPjnB0CAABIg7u7GzeJPKR4phcAAAAeZtmmuF+yZEnlyJFDLVu2lCRVq1ZNhQoV0okTJ+Tn5+fk6AAAAAC4Gp7pBQAAgIeZu7MDMCtcuLBq166tyMhISdKJEyd06dIllS1b1smRAQAAAHA15md6DRkyhGd6AQAA4KGUbe7cl6S3335bY8aM0aRJk5QjRw598MEHKlCggLPDAgAAAOBi7veZXgzVhOwiZ04PSTzHCwAApJativulS5fW/PnznR0GAAAAABd3v8/04nleyC5u306UxHO8AABwFVn5TK9sMywPAAAAADhKes/0AgAAAB4GFPcBAAAAPHR4phcAAAAedtlqWB4AAAAAcBSe6QUAAICHGcV9AAAAAA8lnukFAACAhxnD8gAAAAAAAAAA4GIo7gMAAAAAAAAA4GIo7gMAAAAAAAAA4GIo7gMAAAAAAAAA4GIo7gMAAAAAAAAA4GIo7gMAAAAAAAAA4GIo7gMAAAAAAAAA4GIo7gMAAAAAAAAA4GIo7gMAAAAAAAAA4GIo7gMAAAAAAAAA4GIo7gMAAAAAAAAA4GIo7gMAAAAAAAAA4GIo7gMAAAAAAAAA4GIo7gMAAAAAAAAA4GIo7gMAAAAAAAAA4GJyODsAAAAAAMD/W7ToK50+fdLZYSCbOHXq7rEwadI7To4E2UXp0mXVtWsPZ4cBAMgGKO4DAIAsFxt7WTNmhOuVVwarYEFvZ4cDANnK6dMndeTPY/LIQ/sIKSnRQ5J07PRFJ0eC7CDxRqyzQwAAZCMU9wEAQJZbtWql/vzziL7/foW6d+/t7HAAINvxyOOtfGUbOzsMANlMwsnNzg4BAJCNMOY+AADIUrGxlxURsV2GYSgiYoeuXOEONAAAAAAAMoriPgAAyFKrVq1UUpIhSUpKStL3369wckQAAAAAALgeivsAACBL7doVqcTEO5KkxMQ72rUr0skRAQAAAADgeijuAwCALBUUVFceHncf++PhkUNBQXWdHBEAAAAAVxUbe1kTJ45nuE88kijuAwCALNWqVajc3d0kSe7u7mrduq2TIwIAAADgqlatWqk//zzCcJ94JFHcBwAAWcrbu5ACA5+RJAUG1lbBgt5OjggAAACAK4qNvayIiO0yDEMRETu4ex+PHIr7AADAadzc3JwdAgAAAAAXtWrVSiUlGZKkpKQk7t7HI4fiPgAAyFKxsZe1b99uSdLevbu5uwYAAABApuzaFanExDuSpMTEO9q1K9LJEQFZi+I+AADIUtxdAwAAAMARgoLqysMjhyTJwyOHgoLqOjkiIGtR3AcAAFmKu2sAAAAAOEKrVqFyd7871Ke7u7tat27r5IiArEVxHwAAZCnurgEAAADgCN7ehVSv3nNyc3NTvXrPqmBBb2eHBGQpivsAACBL3hL6lwAAIABJREFUcXcNAAAAAEd57rlGypMnjxo0aOzsUIAsR3EfAABkKe6uAQAAAOAo27dv0Y0bN7Rt22ZnhwJkuWxZ3J82bZoqVKigo0ePOjsUAADwALRqFary5Stw1z4AAACATIuNvayIiO0yDEMRETt05Uqss0MCslS2K+4fPHhQv/76q3x8fJwdCgAAeEC8vQtp1Kj/ctc+AAAAgExbtWqlkpIMSVJSUpK+/36FkyMCsla2Ku7funVL48eP17hx45wdCgAAAAAAAIBsbNeuSCUm3pEkJSbe0a5dkU6OCMha2aq4//HHH6t169YqVaqUs0MBAAAAAAAAkI0FBdWVh0cOSZKHRw4FBdV1ckRA1srh7ADMfvnlFx04cEDDhw/P9DKKFPFyYESA4xQrlt/ZIQAAAAAAADxUWrUKVUTEdiUmSu7u7jzTC4+cbFPc37dvn44fP67GjRtLks6dO6c+ffro/fffV7169exaxqVL8ZZxtoDsJDo6ztkhAACANLi7u3GTCAAAgAvy9i6kevWe07Ztm1Wv3rM80wuPnP9r797Doyzv/PF/MkkQEU0wWNCq2LWirIeiYi0QQbHdWhQUiy21ttvVVmsP9nKvVWnr4oFWwS/FrVZrtS3+vh5XUSxR62FFrZz8rq31UBWQRaByEENCCQclmef3BzVrPEQIk3lmJq/XX7nn+E4ueGbu99xzPwWzLc/ZZ58ds2fPjlmzZsWsWbOib9++8Zvf/Gabi30AAID3+sUvfhEHHnhgLFy4MO0oAEAnGDVqTBxwwIFW7dMlFUy5DwB0HY2NDTFp0uWxbl1j2lGAEvaXv/wl/vznP8fHP/7xtKMAAJ2kurpXjB8/wap9uqSCLfdnzZoV/fv3TzsGANAJpk+/MxYufCWmT78z7ShAiXr77bfj8ssvj0svvTTtKAAA0CkKttwHAEpTY2NDzJ8/JyIi5s2bbfU+0Cl+/vOfx+jRo2PvvfdOOwoAAHSKgjmhLgDQNUyffmdks9mIiMhmszF9+p1x1lnfTjkVUEqeffbZePHFF+Pf/u3fOvwYaZ5kubKyPLXnBgpfZWV57LHHrmnHAKAAKPcBgLx6+um5bcbz589R7gM59d///d+xePHiOP744yMiYtWqVXHWWWfFlVdeGbW1tdv0GPX1TZHNJp0Z80Nt2dKSyvMCxWHLlpZYs2Z92jEA+BCZTFneFooo9wEAgJJy9tlnx9lnn906HjFiRNxwww3O6QUAQEmx5z4AkFdHHz2k3TEAAMC2amxsiEmTLncuL7ok5T4AkFf/9E9faDP+/OdHppQE6CpmzZpl1T4AlKi6uhmxaNGCmDnz3rSjQN4p9wGAvHrkkd+3OwYAANgWjY0N8dRTT0aSJDF79pNW79PlKPcBgLz6oBPqAgAAbK+6uhnR0tIcERHNzc1W79PlKPcBAAAAgKIzd+7sSJIkIiKSJIm5c2ennAjyS7kPAOSVE+oCAAC5UFNT0+4YSp1yHwDIKyfUBQAAcqG+vr7dMZQ65T4AkFdPPjmrzfiJJx5LKQkAAFDMhgypbXcMpU65DwDk1bx5c9odAwAAbIsjjhjUZnzkkZ9OKQmkQ7kPAOTV4MFDo7y8IiIiyssrYvDgoSknAgAAitEdd9zSZnz77f9fSkkgHcp9ACCvRo0aE5lMWUREZDKZGD361JQTAQAAxWjFitfbHUOpU+4DAHlVXd0ramuHR1lZWdTWDouqquq0IwEAAEVor70+3u4YSp1yHwDIu1GjxsQBBxxo1T4AANBhZ5/93Tbjc875XkpJIB0VaQcAALqe6upeMX78hLRjAAAARWy33araHUOps3IfAAAAACg6dXUzIpPZWm9mMpmYOfPelBNBfin3AQAAAICiM2/enMhmsxERkc1mY968OSkngvxS7gMAAAAARWfw4KFRXr511/Hy8ooYPHhoyokgv5T7AAAAAEDRGTVqTGQyZRGxdVue0aNPTTkR5JdyHwDIu2XLXovvfvesWL58adpRAACAIlVd3Stqa4dHWVlZ1NYOi6qq6rQjQV4p9wGAvLvmmp/Fpk2b4pprfpZ2FAAAoIiNGjUmDjjgQKv26ZIq0g4AAHQty5a9FmvX1kdERH39m7F8+dLYZ59+KacCKBzr1jVGy+bG2Lj0sbSjAAWmZXNjrFunyoF3q67uFePHT0g7BqTCyn0AIK/eu1rf6n0AAADYfj7uBQDy6p1V+++or38zpSQAhamqqjrW/K05evQ7Pu0oQIHZuPQxe4oD0Gqbyv3FixfH7373u1i0aFFs2LAhdtlllzjggAPi5JNPjv3337+zMwIAACXC3AIAAHLjI7fluf/+++PLX/5yrFq1Ko466qgYNWpUfPrTn47Vq1fHuHHj4sEHH8xHTgCgROy0007tjoHSZW4BAAC585Er96dOnRq/+tWv4sgjj3zfdX/84x/jggsuiJEjR3ZKOACg9PzDPxwQL7/8Yuv4k588IMU0QD6ZWwAAudbY2BA33HBtnHvuebatosv5yJX7DQ0NcfDBB3/gdf/4j/8YDQ0NOQ8FAJSuBQteajN++eWXPuSWQKkxtwAAcu3Xv/5lLFz4Stx00y/TjgJ595Hl/pAhQ+JHP/pRLFu2rM3ly5Yti4svvjiGDBnSaeEAgNKTzWbbHQOly9wCAMilxsaGeOmlrd8KfumlF2LdusaUE0F+fWS5f8UVV0RExMiRI+Pwww+P2traOPzww+PEE09scz0AwLYoKytrdwyULnMLACCXfv3rtqv1rd6nq/nIPferqqpi6tSpsWnTpnjttddiw4YNscsuu8R+++0XO++8cz4yAgAlJEmSdsdA6TK3AABy6Z1V+/87fiGlJJCOj1y5/46dd945BgwYEIMGDYrFixd78w0AAHSIuQUAAOy4bS73323ChAm5zgEAAHRB5hYAQEeVl5e3O4ZS95Hb8nyQzvj6fENDQ1x44YWxbNmy6NatW/Tr1y8uv/zy2H333XP+XAAAQGGwNRcA0FEHHjigzdY8Bx74jymmgfzr0Mr9QYMG5TpHlJWVxTe/+c14+OGHo66uLvbZZ5+YMmVKzp8HAAAoHJ0xtwAAuoZXX130nvHClJJAOrZ55f7Pf/7z1p8POeSQ1nG3bt2ib9++ccwxx0Tv3r07HKS6ujqOPvro1vHAgQPjjjvu6PDjkY45c/4Qs2c/mXaMgjN58sS0I6SmtnZ4DB06LO0YAEAB6ey5BQDQNdiWh65um8v91157LR599NE47LDDYs8994yVK1fG888/HyNGjIjHH388Lrvssrjmmmti2LAdL/Gy2WzccccdMWLEiB1+LAAoJD4E/WBd9UNQH4DSVeVzbgEAlK5Nmza2O4ZSt83lfjabjauvvjo+97nPtV72X//1X3H//ffHXXfdFTNmzIif/exnOXkDPnHixOjRo0ecccYZ23W/mpqeO/zc7JhTTjkxTjnlxLRjpGrUqFHvu2zKlKtSSAIUot122zkqK60mea+u+jfZbbedY489dk07BuRdPucWAABQqra53J89e3ZMnTq1zWXHHXdcXHjhhRERMXr06Jg4ccdX3U2ePDmWLl0aN9xwQ2Qy23dKgPr6pshmnZCLdA0YcGi8/PILreNDD/1UrFmzPsVEQCE59NCj4tBDj0o7Rqr+4z/+Tzz//LOt40996vD4wQ8uSDFRurxGpC+TKbNIJM/yNbcAAEpbdXWvaGxsaB336rV7imkg/7a5Pd93333ftwf+nXfeGfvuu29ERDQ0NMTOO++8Q2GmTp0aL774Ylx33XXRrVu3HXosSMsFF/ywzfj88y9KKQlAYfrGN775nvG3UkoCpCUfcwsAoPStW9fYZvzuoh+6gm1euf+Tn/wkvv/978dNN90Uffr0idWrV0d5eXlce+21ERGxZMmS+MEPftDhIIsWLYpf/epXsd9++8W4ceMiImLvvfeO6667rsOPCWnp3r17bN68OQ499FNpRwEoONXVvWLnnXvEpk0b41OfOjyqqqrTjgTkWWfPLQCAriFJknbHUOq2udw/+OCD4+GHH47nnnsu3njjjdhjjz1i4MCBUVlZGRERRx11VBx1VMe3GTjggANiwYIFHb4/FJJ+/T4REVbtA3yYvfbaK1aseN2qfeiiOntuEbF19f+FF14Yy5Yti27dukW/fv3i8ssvj91393V9AABKwzaX+xERlZWVMWjQoM7KAgB0ERUVlbHvvvtZtQ9dWGfPLcrKyuKb3/xmHH300RGx9dxeU6ZMiSuuuKLTnhMAAPJp+85YCwAAUASqq6tbi/2IiIEDB8aKFStSTAQAALm1XSv3AQAAik02m4077rgjRowYsc33qanp2YmJ2ldZWZ7acwOFr7KyPPbYY9e0Y1AAZs2aFY8++mjaMQrO1Kld91t6n/vc57br/Q7FT7kPAACUtIkTJ0aPHj3ijDPO2Ob71Nc3RTabzkn5tmxpSeV5geKwZUtLrFmzPu0YFIC//W2T14wP0JX/Jn/72ybHhwKQyZTlbaGIch8AAChZkydPjqVLl8YNN9wQmYxdSQEoHUOHDouhQ4elHSNV11//83jmmadbx4MGHR3f+c4PUkwE+eXdLQAAUJKmTp0aL774Ylx33XXRrVu3tOMAADl2+ulfbzP+6lf/OaUkkA4r9wEAgJKzaNGi+NWvfhX77bdfjBs3LiIi9t5777juuutSTgYA5Ep1da/YZZeesWFDUwwadHRUVVWnHQnySrkPAACUnAMOOCAWLFiQdgwAoJP17ds3Vqx43ap9uiTb8gAAAAAARamiojL23Xc/q/bpkpT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZJT7AAAAAABQZCrSDlAqbr/9/8by5UvTjkGBWLZs67+FyZMnppyEQrHPPv3i9NO/nnYMAAAAAEqEcj9Hli9fGgsWvRrl3avTjkIByLaUR0TEq8vfTDkJhaBlc2PaEQAAAAAoMcr9HCrvXh09+h2fdgygwGxc+ljaEQAAAAAoMcp9APLC9mW8m+3LeDdblwEAAGw/5T4AebF8+dJ47dVXom9PLz1E9IhsRERsXvVqyklI26qm5rQjAAAAFCUNCwB507dnRfzLYbunHQMoINOeX5t2BAAAgKKUSTsAAAAAAACwfazcBwAAKDAtmxtj49LH0o5BAcg2b46IiExF95STUAhaNjdGRO+0YwBQIJT7AAAABWSfffqlHYEC8s5J6PfdR6FLRERvxwgAWhVUub9kyZIYP358NDY2RnV1dUyePDn222+/tGMBAADkzemnfz3tCBSQyZMnRkTERRf9e8pJAIBCU1B77l9yySVx+umnx8MPPxynn356TJgwIe1IAAAAAABQcAqm3K+vr4+XXnopTjrppIiIOOmkk+Kll16KtWvXppwMAAAAAAAKS8Fsy7Ny5cro06dPlJeXR0REeXl5fOxjH4uVK1fG7rvvnnK6j7ZuXaOTXgEfqGVzY6xbVzCHWwAAgKJ2++3/N5YvX5p2DArEO+cmeWcbM9hnn35dZpvDkmqbamp6pvbc5eUF8yUIoACVl2dijz12TTtGqiory2Nz2iGAglRZWd7lj5EAwLZbvnxpvPbqK9G3Z0nVWnRQj8hGRMTmVa+mnIRCsKqpOe0IeVUwR8E999wzVq9eHS0tLVFeXh4tLS3xxhtvxJ577rnNj1Ff3xTZbNKJKT9cz567RXn3t6NHv+NTeX6gcG1c+lj07LlbrFmzPu0oqdqypSXtCECB2rKlJdVjZCZTluoiEQBg+/XtWRH/cljh7/QA5Ne057vWFu8FU+7X1NTEgAED4v7774+TTz457r///hgwYEBRbMkDwEdbt64xGpqau9wLLdC+VU3N0WtdY9oxAAAAik7BlPsREZdeemmMHz8+rr/++thtt91i8uTJaUcCAAAAAICCU1Dl/v777x9333132jEA6ARVVdWx06Y3fXUWaGPa82uje1V12jEAAACKjrPAAgAAAABAkVHuAwAAJWnJkiXx5S9/OT7/+c/Hl7/85XjttdfSjgQAADmj3AcAAErSJZdcEqeffno8/PDDcfrpp8eECRPSjgQAADmj3AcAAEpOfX19vPTSS3HSSSdFRMRJJ50UL730UqxduzblZAAAkBsFdULdYteyuTE2Ln0s7RgUgGzz5oiIyFR0TzkJhaBlc2NE9E47BgB0KStXrow+ffpEeXl5RESUl5fHxz72sVi5cmXsvruTuwMAUPyU+zmyzz790o5AAVm2bGlEROy7j0KXiIjejhEAUGRqanqmHQEiIqKycusHVHvssWvKSaBwVFaWx+a0QwAFq7KyvMu8bir3c+T007+edgQKyOTJEyMi4qKL/j3lJAAAXdOee+4Zq1evjpaWligvL4+WlpZ44403Ys8999ym+9fXN0U2m3RySvhoW7a0RETEmjXrU04CheOd/xcAH2TLlpZUXzczmbK8LRRR7gMAACWnpqYmBgwYEPfff3+cfPLJcf/998eAAQNsyQNQAtata4yGpuaY9rzzqABtrWpqjl7rGtOOkTfKfQDyZpU34Pxd09vZiIjo2S2TchLStqqpOfZLOwQl69JLL43x48fH9ddfH7vttltMnjw57UgAAJAzyn0A8sJ5B3i3N/5+bpLeff276Or2C8cHOs/+++8fd999d9oxAMixqqrq2GnTm/Evh/k2FtDWtOfXRveq6rRj5I1yH4C8cG4S3s25SQAAAGDH+C48AAAAAAAUGeU+AAAAAAAUGeU+AAAAAAAUGeU+AAAAAAAUGeU+AAAAAAAUGeU+AAAAAAAUGeU+AAAAAAAUGeU+AAAAAAAUmYq0AwAAAADA9ljV1BzTnl+bdgwKQNPb2YiI6NnNGma2Hhv2SztEHin3AQAAACga++zTL+0IFJA3li2NiIjeff27IGK/6FrHCOU+AAAAAEXj9NO/nnYECsjkyRMjIuKii/495SSQf76vAgAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5D51g9epVsWDByzFjxl1pRwEAAAAASlBBlPuXXXZZnHDCCTF69OgYN25cvPDCC2lHgh3S2NgQERF1dfelnAQAAAAAKEUFUe4PGzYs6urqYubMmXHOOefE+eefn3Yk6LC7776zzdjqfQAAAAAg1yrSDhARcdxxx7X+PHDgwFi1alVks9nIZAriswe2w5w5f4jZs59MO0aqFix4uc24ru6+WLhwQUpp0ldbOzyGDh2WdgwAAAAAKCkF157fdtttceyxxyr2AQAAAADgQ+Rl5f6YMWNixYoVH3jd3Llzo7y8PCIiHnjggairq4vbbrutQ89TU9OzwxnJjVNOOTFOOeXEtGOkatSoUe+7bMqUq1JIAlC4Kiu3vvbvsceuKScBAACA4pSXcn/GjBkfeZtHH300rr766rj55pujd+/eHXqe+vqmyGaTDt0XOtOaNevTjgBQULZsaYkIx0cKQyZTZpEIAABQdApiz/3HH388rrzyypg2bVrsvffeaccBgE7j3CRbLVu2NCIiJk+emHKSdDkvCQAAAB1VEOX+D3/4w6isrIzzzjuv9bKbb745evXqlWIqAKCzVFVVpR0BAAAAilpBlPvz589POwIA5MXQocOs1I6IxsaGuOGGa+Pb3/5+VFVVpx0HAAAAik4m7QAAQNdTVzcjFi1aEDNn3pt2FAAAAChKyn0AIK8aGxviqaeejCRJYvbsJ2Pdusa0IwEAAEDRUe4DAHlVVzcjWlqaIyKiubnZ6n0AAADoAOU+AJBXc+fOjiRJIiIiSZKYO3d2yomAUnPZZZfFCSecEKNHj45x48bFCy+8kHYkAADIOeU+AJBXNTU17Y4BdtSwYcOirq4uZs6cGeecc06cf/75aUcCAICcq0g7AADQtdTX17c7BthRxx13XOvPAwcOjFWrVkU2m41MxtomAABKh3e3AEBeDRlSGxFlfx+V/X0M0Dluu+22OPbYYxX7AACUHCv3AYC8GjVqTDz11BPR3NwcFRUVMXr0qWlHAorMmDFjYsWKFR943dy5c6O8vDwiIh544IGoq6uL2267bbufo6am5w5lhFyprNz673mPPXZNOQlAYXKcpCtT7gMAeVVd3SuOOebYeOKJx+KYY4ZHVVV12pGAIjNjxoyPvM2jjz4aV199ddx8883Ru3fv7X6O+vqmyGaTjsSDnNqypSUiItasWZ9yEoDC5DhJoclkyvK2UES5DwDk3ahRY+L11/9q1T7QKR5//PG48sorY9q0abH33nunHQcAOsWcOX+I2bOfTDtG6pYtWxoREZMnT0w5Sfpqa4fH0KHD0o5BHin3Icf22ONjsWbNG23GALRVXd0rxo+fkHYMoET98Ic/jMrKyjjvvPNaL7v55pujV69eKaYCADpDVVVV2hEgNcp9yLE99/x4m3L/4x//eIppAAC6nvnz56cdAQA63dChw6zSjojGxoa44YZr49vf/r4tP+lyMmkHgFLz4ovPtRk///xzH3JLAAAAAHZEXd2MWLRoQcyceW/aUSDvlPuQY9lstt0xAAAAADuusbEhnnrqyUiSJGbPfjLWrWtMOxLklXIfAAAAACg6dXUzoqWlOSIimpubrd6ny1HuQ46VlZW1OwYAAABgx82dOzuSJImIiCRJYu7c2SkngvxS7kOOvfOi8mFjAAAAAHZcTU1Nu2Modcp9yLGysky7YwAAAAB2XH19fbtjKHVaR8ixnXbaqd0xAAAAADtuyJDaiHhnO+Syv4+h61DuQ45t3ryp3TEAEY2NDTFp0uWxbl1j2lEAAIAiNWrUmKioKI+IiIqKihg9+tSUE0F+KfcBgLybPv3OWLjwlbj77jvSjgIAABSp6upeccwxx0ZZWVkcc8zwqKqqTjsS5FVF2gEAgK6lsbEh5s2bHRER8+bNidNO+4o34QC8z5w5f4jZs59MO0bqli1bGhERkydPTDlJ+mprh8fQocPSjgEUmFGjxsTrr//Vqn26JCv3Icf69Nmz3TFAVzd9+p2RJElERCRJ1up9AGhHVVVVVFVVpR0DoGBVV/eK8eMnWDBEl1SWvDO7LgH19U2RzZbMr0ORWrbstbj00h+1ji+77MrYZ59+KSYCKCzf+tbXoqWlpXVcXl4eN910S4qJ6OoymbKoqemZdgwKjLkFAAAdkc/5hZX7kGO77VbV7hgAAAAAYEcp9yHH6upmRCaz9b9WJpOJmTPvTTkRQGE5+ughbcaf+czQlJIAAABA8VLuQ47NmzcnstlsRERks9mYN29OyokACsvYsePafAg6duy4lBMBAABA8VHuQ44NHjw0MpnyiIjIZMpj8GArUgHerbq6V+tq/cGDa534CgAAADpAuQ85NmrUmEiSrSv3kySJ0aNPTTkRQOEZO3Zc9O9/kFX7AAAA0EEVaQeAUlRWVhZJkkRZWdpJAApTdXWvGD9+QtoxAAAAoGhZuQ85Vlc3I8r+3uqXlZU5oS4AAAAAkHPKfcixefPmREtLS0REtLS0OKEuAAAAAJBzyn3IscGDh0Z5+dYdr8rLK5xQFwAAAKCTNDY2xKRJl8e6dY1pR4G8U+5Djo0aNSYyma3b8mQyGSfUBQAAAOgk06ffGQsXvhJ3331H2lEg75T7kGPV1b2itnZ4lJWVRW3tsKiqqk47EgAAAEDJaWxsiHnzZkfE1m2Srd6nq1HuQycYPnxEdO/ePY499vi0owAAAACUpOnT74wkSSIiIkmyVu/T5RRUuf/000/HgAED4tZbb007CuyQRx75fWzatCkeeeT3aUcBAAAAKElPPz233TGUuoIp95uammLKlCkxbNiwtKPADtn6lbA5ERExb95sXwkDAAAAAHKuYMr9SZMmxVlnnRW9evVKOwrskK1fCctGREQ2m43p0+9MOREAAABA6Tn66CFtxp/5zNCUkkA6KtIOEBHx5JNPxvr16+OEE06IJ554osOPU1PTM3ehoIPe+xWw+fPnxPjxF6SUBgAAAKA0jR07LubPnxPZbDYymUyMHTsu7UiQV3kp98eMGRMrVqz4wOseeuih+NnPfhbTpk3b4eepr2+KbDbZ4ceBHdHS0vK+8Zo161NKAwB8lEymzCIRAIAiVF3dKz7zmaExd+5TMXhwbVRVVacdCfIqL+X+jBkzPvS6Z555JtasWROnnXZaREQ0NDTE448/Ho2NjfG9730vH/EgpzKZTGSz2TZjAAAAAHJv7Nhx8eaba6zap0sqS5KkoJa6jx8/Pg455JA444wztvu+Vu5TCH7961/G3LlPtY6HDDkmvvnNc1NMBAC0x8p9Poi5BQAAHZHP+YUlxZBj7/2k+LTTvpJSEgAAAACgVBXECXXfbdKkSWlHAAAAAACAgmblPuRYXV3bc0zMnHlvSkkAAAAAgFKl3Iccmzt3drtjAAAAAIAdpdyHHKupqWl3DAAAAACwo5T7kGP19fXtjgEAAAAAdpRyH3Ls0EM/1WZ82GGf+pBbAgDQmZ5++ukYMGBA3HrrrWlHAQCAnFPuQ4699tqSNuMlS5Z8yC0BAOgsTU1NMWXKlBg2bFjaUQAAoFMo9yHH3nzzjXbHAAB0vkmTJsVZZ50VvXr1SjsKAAB0CuU+AABQUp588slYv359nHDCCWlHAQCATlORdgAoNWVlmUiSbJsxAAC5M2bMmFixYsUHXvfQQw/Fz372s5g2bdoOPUdNTc8duj8AAHQ25T7k2ODBQ2Pu3KfajAEAyJ29KTR0AAAS20lEQVQZM2Z86HXPPPNMrFmzJk477bSIiGhoaIjHH388Ghsb43vf+942P0d9fVNks8kOZwUAoGvJZMrytlCkLEmSknnH6g04haCxsSH+9V+/2zq++urro6qqOsVEAIWnsbEhbrjh2jj33PMcI0ldPt98k3/jx4+PQw45JM4444ztup+5BQAAHZHP+YX9QiDHqqt7RZ8+e0ZERJ8+eyqtAD5AXd2MWLRoQcyceW/aUQAAAKAoKfchxxobG6K+/s2IiFi79s1Yt64x5UQAhaWxsSFmz34ykiSJ2bP/4DgJdKpJkyZt96p9AAAoBsp9yLG6uhmtJ9TNZrNWpQK8R13djNatLhwnAQAAoGOU+5Bj8+bNiZaWloiIaGlpiXnz5qScCKCwbD1ONkdEREtLs+MkAAAAdIByH3LsiCMGtRkfeeRRKSUBKEyDBw+N8vKKiIgoL6+IwYOHppwIAAAAio9yHzpZkiRpRwAoKKNGjYlMpiwiIjKZTIwefWrKiQAAAKD4KPchx/70p2faHQN0ddXVvaK2dniUlZVFbe2wqKqqTjsSAAAAFB3lPuTYe7eXsN0EwPuNGjUmDjjgQKv2AQAAoIOU+5Bjw4ePaDM+9tjjU0oCULiqq3vF+PETrNoHAACADlLuQ47df//v3jO+L6UkAAAAAECpUu5Djv3xj/+vzfiZZ/7fh9wSAAAAAKBjlPuQY0mStDsGAAAAANhRyn3IsT59+rY7BgAAAADYUcp9yLEzzvhGm/HXvnZmOkEAAAAASlxjY0NMmnR5rFvXmHYUyDvlPuTYn/70TJvxe/fgBwAAACA36upmxKJFC2LmzHvTjgJ5p9yHHJs7d3a7YwAAAAB2XGNjQ8ye/WQkSRKzZ//B6n26HOU+5FhNTU27YwAAAAB2XF3djMhmk4iIyGazVu/T5Sj3Icfq6+vbHQMAAACw4+bNmxMtLc0REdHS0hzz5s1JORHkl3IfcmzIkNqIKPv7qOzvYwAAAAByafDgoVFeXhEREeXlFTF48NCUE0F+Kfchx0aNGhMVFeUREVFRURGjR5+aciIAAACA0jNq1JjIZLYusMxkMjoYuhzlPuRYdXWvOOaYY6OsrCyOOWZ4VFVVpx0JAAAAoORUV/eK2trhUVZWFrW1w3QwdDkVaQeAUjRq1Jh4/fW/+sQYAAAAoBPpYOjKypIkSdIOkSv19U2tZ8gGAIBtkcmURU1Nz7RjUGDMLQAA6Ih8zi9sywMAAAAAAEWmYLblueWWW+K2226LysrKyGQy8bvf/S7tSAAAAAAAUJAKotx/5JFH4qGHHorp06dHz549480330w7EgAAAAAAFKyC2Jbnt7/9bXzve9+Lnj237kXUu3fvlBMBAAAAAEDhKohyf/HixfHcc8/FuHHj4tRTT4277ror7UgAAAAAAFCw8rItz5gxY2LFihUfeN3cuXOjpaUlVq5cGbfffns0NDTEV77ylfjEJz4RRx111HY9T77OQgwAAAAAAGnKS7k/Y8aMdq/fa6+94qSTTopMJhM1NTUxZMiQeP7557e73K+vb4psNtmRqAAAdDGZTJlFIgAAQNEpiG15TjrppHjqqaciImLjxo3xxz/+MQ466KCUUwEAAAAAQGEqiHL/G9/4RqxcuTJOPPHEOO2002LUqFExdOjQtGMBAAAAAEBBKkuSpGT2sbEtDwAA28u2PHwQcwsAADoin/OLvOy5ny+ZTFnaEQAAKDLeQ/JB/LsAAKAj8vk+sqRW7gMAAAAAQFdQEHvuAwAAAAAA2065DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5DwAAAAAARUa5D3kwYsSIWLhwYdoxAIratddeG2+//XaH7zt58uQcJwKA/DO3ANhx5haUCuU+pKi5uTntCABF4xe/+EVs2bLlA69zPAWgq/NaCLDtzC0oFRVpB4B8ePbZZ+Oqq66KDRs2RETEhRdeGLvttlv89Kc/jY0bN0aPHj3ixz/+cRx22GHx17/+Nb74xS/Gl770pXjqqadi8+bNMWXKlLjzzjvjueeei+7du8f1118fe+yxx4c+3zPPPBOXXXZZREQcddRRkSRJ63UjRoyIkSNHxvz586N///7x4x//OH7yk5/ECy+8EBERJ598cnzrW9+KiIhXX301fvjDH8amTZvioIMOimXLlsW5554bxx13XPz2t7+NBx54IFpaWmKnnXaKSy+9NAYMGNBZf0KgBOT7WLh48eL46U9/GmvWrImIiDPPPDPGjBkTS5cujQkTJsTatWujoqIizj///Bg2bFhERBx44IFx/vnnx6OPPhqNjY1x4YUXxuc///nWY+q4ceMik8nELbfcEldccUWUl5fHkiVLYsOGDfG73/0ubrzxxpg5c2ZERBx66KFx8cUXxy677PK+bDfeeGM88sgj0dLSEn369ImJEye2+7sAwDvMLQDMLd7N3IJUJVDiGhoakiFDhiR//OMfkyRJkubm5mTNmjXJ8OHDk7lz5yZJkiRz5sxJhg8fnrz11lvJ8uXLk/79+yePP/54kiRJctNNNyVHHnlk8tJLLyVJkiSXXHJJMnXq1A99vrfeeiupra1N5s+fnyRJkjzwwANJ//79kwULFiRJkiTHHXdccskll7Te/qqrrkouvPDCJJvNJuvXr09GjhyZPPHEE0mSJMmYMWOS++67L0mSJHn++eeTgw46KJk1a1aSJElSX1/f+hhz5sxJTjvttB39UwElLN/Hwi1btiT/9E//lDz44IOtl61duzZJkiQZO3ZsctdddyVJkiSLFi1KPv3pT7ce0/r375/ccsstSZIkyTPPPJPU1ta23r9///5JU1NT6/iiiy5KxowZk2zYsCFJkiR54oknkhNPPDFZv359ks1mkwsuuCC56qqrkiRJkmuuuSaZNGlSkiRJct999yUXX3xx0tLSkiRJktx2223Jv/7rv2733xSArsfcAsDcwtyCQmJbHkren//859h///3jiCOOiIiI8vLyqK+vj8rKyhg8eHBERAwZMiQqKytjyZIlERHRo0ePOPbYYyMi4uCDD46+ffu2rlw5+OCDY9myZR/6fP/zP/8TO++8cxx99NERETFy5MjYdddd29zmlFNOaf153rx5cdppp0VZWVn07NkzTjzxxJg3b140NTXFwoULY9SoURGx9VPiAw88sPV+L774Ynz1q1+Nk046Ka688sp4+eWXd+TPBJS4fB8LlyxZEs3NzfGFL3yh9bJevXpFU1NTvPzyy/HFL34xIiI++clPxoABA+LPf/5z6+1GjhwZEREDBw6MN954I956660PfZ4TTjghevToERFbj6cjR46Mnj17RllZWXzpS1+KefPmve8+s2bNirlz58aYMWPi5JNPjttvvz1ef/319v+AABDmFgAR5hbvZm5B2mzLAx+gW7durT9nMpk24/Ly8mhpadmuxysrK2szfufFoiP3jYh4++234wc/+EHceuutcfDBB8fq1atbv3YGkCu5PhZuq5122qn1OSK27nn5zmXvtT3H03ckSRLnnntujB07tuMhAWAbmVsAmFtAZ7Fyn5I3cODAWLx4cTz77LMREdHS0hI1NTWxZcuWmD9/fkRs/US2ubk5PvGJT+zw8/3DP/xDbN68OZ555pmIiHjooYfib3/724fefvDgwXHPPfdEkiTR1NQUDz74YAwZMiR69uwZBxxwQNx///0REfGXv/wlFi5cGBFb34A3NzfHnnvuGRERt99++w7nBkpbvo+Fn/jEJ6KioiJ+//vft17W0NAQPXv2jAEDBsSMGTMiYuvema+88koMHDjwIx9zl112iaampg+9fvDgwfH73/8+mpqaIkmSmD59egwZMuR9txsxYkTcfvvtsW7duojYekx95ZVXtvdXBKALMrcAMLd4N3ML0mblPiWvuro6rr322pg0aVJs3LgxMplMXHTRRXHNNde0OdHLz3/+8zafHHdUt27dYurUqW1OerXXXnt96O2/853vxMSJE1u/Ijt69OjWlTKTJ0+OH/3oR3HjjTdG//79o3///rHrrrtGz54947zzzouxY8dGdXV1fP7zn9/h3EBpy/exsKKiIq6//vq4/PLL4/rrr4+ysrI488wz45RTTokpU6bEhAkT4uabb46Kioq46qqrYvfdd//IxzzzzDPj61//enTv3j1uueWW910/fPjwWLBgQYwbNy4iIg455JA499xz33e7U045JRobG+OMM86IiK2rbb7yla/EQQcdtIO/NQClztwCwNzi3cwtSFtZkiRJ2iGAD7Zhw4bo0aNHlJWVxauvvhpf+9rX4qGHHoqqqqq0owEAAEXE3AIASo+V+1DAnn322bjqqqvinc/gJk6c6M03AACw3cwtAKD0WLkPHXT33XfHrbfe+r7LJ02a1HrGd4BS51gIADvO6ymAYyF0hHIfAAAAAACKTCbtAAAAAAAAwPZR7gMAAAAAQJFR7gMAAAAAQJFR7gPkwYgRI2Lu3Lkdvv/48ePj6quvzmGi3CnkbAAAUGrMLQB4h3IfIGXNzc1pRwAAAEqAuQVA16LcB+hkF1xwQaxYsSK+/e1vx+GHHx433XRTHHjggXH33XfHscceG//8z/8cERHnnXdeDB06NI488sj46le/GosWLYqIiP/8z/+Murq6+M1vfhOHH354fPvb346IiBtvvDE++9nPxuGHHx4jR46MRx99tPU577333hg3blxcccUVMWjQoDj++OPjT3/6U9x7770xfPjwGDx4cMyYMaP19m+//XZMnjw5jj322BgyZEhMmDAhNm/eHBERTz/9dAwbNix++9vfxuDBg6O2tjbuueeedrMtXrw4vva1r8WgQYPixBNPjMcee6zz/9AAAFDizC3MLQDaSADodMcdd1wyZ86cJEmSZPny5Un//v2TCy64INmwYUOyadOmJEmS5O67707Wr1+fvPXWW8lPfvKTZPTo0a33v+iii5KpU6e2ecwHH3wwWbVqVdLS0pI88MADyac+9alk9erVSZIkyT333JMMGDAgmT59etLc3JxMnTo1GT58eHLppZcmb731VvLUU08lAwcOTJqampIkSZKf/vSnyTnnnJM0NDQk69evT84555xkypQpSZIkyfz585MBAwYk//Ef/5G8/fbbyRNPPJEcdthhSWNj4wdme/vtt5PPfvazyS9/+cvkrbfeSubOnZsMHDgwWbx4cSf9dQEAoOswtzC3AHiHlfsAKfn+978fPXr0iO7du0dExNixY6Nnz57RrVu3+P73vx+vvPJKrF+//kPv/4UvfCH69OkTmUwmRo4cGf369Yvnn3++9fq99947vvjFL0Z5eXmMHDkyVq5cGd/97nejW7duUVtbG926dYtly5ZFkiRx1113xY9+9KOorq6Onj17xjnnnBMPPPBA62NVVFTEd7/73aisrIzhw4dHjx49YsmSJR+Y67nnnouNGzfG2WefHd26dYvBgwfHcccd1+bxAACA3DG3AOiaKtIOANBV9e3bt/XnlpaWuPrqq+Ohhx6KtWvXRiaz9bPXhoaG2HXXXT/w/vfdd19MmzYtXn/99YiI2LhxYzQ0NLReX1NT0/rzO2/ye/fu3XrZTjvtFBs2bIi1a9fGpk2b4tRTT229LkmSyGazrePq6uqoqPjfl4ydd945Nm7c+IG53njjjejbt2/r7xARsddee8Xq1avb+WsAAAAdZW4B0DUp9wFSUlZW1vpzXV1dPPbYYzFt2rTYe++9Y/369XHUUUdFkiTvu21ExOuvvx4XX3xx3HzzzXH44YdHeXl5nHzyyR3K0atXr+jevXs88MAD0adPnx36PSIiPvaxj8WqVasim822vglfuXJl7Lfffh3KBwAAtM/cAqBrsi0PQB707t07li9f/qHXb9iwIbp16xa9evWKTZs2xdSpU9tcX1NTE3/9619bx5s2bYqysrLYfffdIyLinnvuaT1J1vbKZDJx2mmnxRVXXBH19fUREbF69ep46qmntun+78122GGHRffu3ePXv/51bNmyJZ5++umYNWtWjBw5skP5AACA/2VuYW4B8A7lPkAenH322fHLX/4yBg0aFA8//PD7rj/llFNir732imOOOSZOPPHEGDhwYJvrx44dG6+++moMGjQovvOd78QnP/nJOPPMM2PcuHExZMiQWLhwYRxxxBEdznfBBRdEv3794ktf+lIcccQR8Y1vfOND9718r/dm69atW9xwww3xhz/8IT7zmc/EZZddFldddVXsv//+Hc4HAABsZW5hbgHwjrLkne9lAQAAAAAARcHKfQAAAAAAKDLKfQAAAAAAKDLKfQAAAAAAKDLKfQAAAAAAKDLKfQAAAAAAKDLKfQAAAAAAKDLKfQAAAAAAKDLKfQAAAAAAKDLKfQAAAAAAKDL/PyVpxa7uP7UdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 468 + }, + "id": "9AgHuGVH7QbR", + "outputId": "b4c78ba8-f795-4c9a-c726-9d8392a6f89f" + }, + "source": [ + "# Criação do Canva:\n", + "fig, axs = plt.subplots(figsize = (26, 7), ncols = 2)\n", + "\n", + "#Box Plot aplicado ao banco de dados Gerais:\n", + "ax1 = sns.boxplot(y='g-0', x='dose' , data=dados, ax = axs[0])\n", + "ax1.set_title('Comportamento do \"g-0\" em relação à dosagem (Banco de Dados Geral)', fontsize = 18)\n", + "\n", + "#Box Plot aplicado aos cinco principais compostos:\n", + "ax1 = sns.boxplot(y='g-0', x='dose' , data=top_compostos, ax = axs[1])\n", + "ax1.set_title('Comportamento do \"g-0\" em relação à dosagem (5 Principais Compostos)', fontsize = 18)\n", + "\n", + "plt.show()" + ], + "execution_count": 38, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABegAAAHDCAYAAABf4vp7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVxU1f/H8Te4omgI4vIlcakGTVxRcV9wN5fcUnHft9Iys6y+WVamfTVLtFwqK3dzSUtLzcxyT1ss18xccwUXEBWF+/uD30wMDMMMAjPg6/l4+KhzuXPnM3OXM59zzznXwzAMQwAAAAAAAAAAIEt5ujoAAAAAAAAAAADuRzTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwBSOHv2rCIiIrR3715XhwIAAAAgGyGXAADn0EAPZJCgoCC98MILrg4DWSwr9/tzzz2natWqacyYMbpy5YoGDhyoTz/9NFPeKyAgQHfv3tWwYcP0119/Zei2e/furbCwsAzd5v1s8eLFql69uq5cueLqUNxWTjzmIiIiFBQUpDNnzrg6FLdna/+PHDlSvXv3dlFEAJASucT9iVzCeTnxd50ruXsusXv3bgUFBWnVqlWZ/l5hYWFZ9vvwzJkzCgoKUkRERJa8H7Kes/lGjmygv3nzpj755BOFh4erVq1aqlixourWravBgwdr1apVunv3rqtDzHKHDh1SREREjk/kz5w5o4iICB06dMjVoWQIc2W0e/duSYkVRmb+gNu6dau6d++uqlWrqlatWho1apROnz6dYr3evXtbLjSrVq2ikSgL/PXXX1q3bp1Gjx6t8+fPq27dujp8+LBatmyZae/5zDPPqFOnTho+fLiuXr2aae+D9IuOjlZERIT69eunIkWKWJabG2+T/qtevbratGmj6dOnsz8zSFhYmNV3XK1aNTVu3FiDBw/WZ599puvXr7s6xEwVHR2tuXPnqnv37goNDVXFihUVGhqqHj16aObMmTp//ryrQ0zVU089pZ9++kmbN292dShwQ+QSKZFLZE/kEjAjl4AtqeUS5muHrX9Dhw51aNu2tlGtWjV16tRJn376qeLj4zPrY933du7cqdGjR6tRo0YKDg62fO/Tp09369/nme369euKiIiw1ImZzdl8I3cmx5PlTp48qSFDhujEiROqW7euhgwZoiJFiigyMlI7d+7U+PHjdezYMY0bN87VoWapQ4cOaebMmapVq5YefPBBV4eTac6ePauZM2cqICBAFSpUcHU42crGjRs1atQolS9fXs8995xiYmL06aefqkePHlq5cqWKFy/u6hDvaw8++KA2btyoBx98UP369dOlS5f0wAMPKG/evJn6vi+++KJKly6t33//XQ0aNMjU94LzFi9erOjoaPXq1cvm30eNGmW55kdHR2v37t2aPXu2tm7dqlWrVsnTM0fep89SJUqU0JgxYyRJcXFxunDhgvbs2aM333xTs2fP1rRp01SnTh0XR5nx/vjjD40YMUIXL15Uo0aNNGTIEPn4+Cg6Olq///67PvroI82ePVt//PGHq0O1qXz58qpVq5bef/99NW3a1NXhwI2QS9hGLoG0kEu4N3IJ2JJWLtGtWzeFhIRYLStRooRT79G2bVs1bNhQhmHo4sWLWr16tSZNmqRjx47p9ddfT/P1NWvW1P79+5U7d+Y3X37zzTeZ/h5mAQEB2r9/v3LlypVh20xISNArr7yizz//XAEBAWrbtq3KlCmjuLg4HThwQIsWLdLy5cu1c+fODHvP7OT69euaOXOmnnzySYWGhmb6+zmbb+SoBvpbt25p6NChlp4PLVq0sPr7kCFDtH//fv3+++8uijDrxcTEyNvb29VhwM3duXNHr7/+ukqWLKlFixapYMGCkqSGDRuqU6dOmjlzpkOVZ3YWHx+vuLg4eXl5uToUm/Lly2eVEPv7+2fZe/fs2TPL3guOS0hI0LJly9SgQQP5+vraXKdhw4aqVKmSpdyrVy89+eST2rRpkw4fPqxHH300q8LNsQoVKqQOHTqkWL5nzx4NHz5cI0aM0BdffKHSpUu7ILrMcfnyZQ0dOlS3b9/WwoULVaNGjRTrREdHa9asWRn6vnfu3FFCQoLy5cuXIdvr0KGDXnzxRR04cEAVK1bMkG0ieyOXSIlcAo4glyCXsIdcwj05kktUrVrV5u9cZzz66KNW2wgPD1fr1q31+eefa/To0SpatKjN15nrH09Pzwz77ZeWzL5hlZSHh0eGf66IiAh9/vnnatu2rd56660Un+eFF17QzJkzM/Q9YZ8z+UaO6jr3+eef6++//1b//v1T/KA2q1y5cooK4ttvv7UMxatWrZq6d++ub7/9NsVrzfNRHT58WP369VO1atVUp04dTZ48WXfv3tXt27c1ZcoUNWjQQJUqVVLPnj1TzLdmHsK3Y8cORUREqEmTJgoODla7du20bt06mzE7G9/Bgwc1cOBAhYSEqH379oqIiND48eMlSX369LEMLzIPb4yJidH06dPVtWtXhYaGKjg4WM2bN9fUqVN18+ZNq/dIOv/XokWL1LJlS1WqVEnt2rXTli1bJElHjhzRwIEDVb16dYWGhuqNN97QnTt3UsR74sQJPffcc6pfv76Cg4MVFhamKVOmKDY21mq9F154QUFBQYqOjtaECRNUp04dVapUSd27d9dvv/1m9d326dNHkjR+/HjL50w651NsbKymTZumZs2aKTg4WPXq1dO4ceN09uxZm9+9LX/++acGDhxoGbr57LPPKjIy0ua6d+/e1dy5c9WmTRtVqlRJoaGhGjlypI4cOeLw+6UlPj5es2bNUpMmTSz7Yv369U7NT/zTTz/p4sWL6tKli+UHtSRVqFBBtWrV0vr1623uw/Rwdr9fuXJFL7zwgkJDQ1WtWjWNGDFCly5dkiQtW7ZMrVu3VqVKldSqVSub54UtSc/DWbNmqVmzZqpcubK+/vprSZJhGFq8eLE6deqkKlWqqFq1aurdu7d27drl0PbXr1+vYcOGqXHjxgoODlZoaKhGjBihw4cP21z/4MGDGjVqlOrWravg4GA1atRIY8aM0alTp9K9TUevG6lZtGiRBgwYoAYNGig4OFj169fX2LFjnRp+fO3aNb388ssKDQ1V1apV1bt3b7u9aR2N+eeff9agQYNUr149VapUSQ0aNNDgwYP166+/Wta5cOGCJk+erA4dOqhmzZqqVKmS2rRpo7lz59ocTnnmzBk99dRTql69uqpXr67hw4fr9OnTqc5DuGPHDg0YMEA1atSwnHdLlixJsV5G1Bup2b9/v86ePatGjRo5tL5ZsWLFJEl58uSxLEtvPbBy5Uo99thjCg4OVpMmTTRv3jyb7+nIMS4l1uMdO3ZU5cqVFRISogEDBjj1cDFnj7nff/9dI0eOtHzmli1b6oMPPsiQ6Stq1aqlF154QbGxsZo7d67V35w5vxISEjRnzhyFhYWpUqVKatu2rdauXZvq+x4+fNjymczH/bx581Ic9+fOndP48eMtv0Pq1Kmj7t27a/Xq1Wl+tg8//FCXL1/WuHHjbDbOS4k3LmxNo3Dx4kVNmDDBci2rX7++/vvf/6aoR8112J9//qm33npLDRs2VOXKlS3nubPXRFsaNmwoSZZrP0AuQS5BLkEu4QhyibSRS+ScXCI2Nla3b992aJuO8Pb2VrVq1WQYhmUKrNTqH8n2HPSZlY/Y2l/mZQcOHFCfPn1UrVo11apVS88//3yKa7cz9WFqc9B/8cUX6tKli2rUqKGqVauqadOmevbZZxUVFWX3e42MjNRHH32kgIAATZo0yebNhsKFC+vFF19MEcdzzz1n+V6aNWumd955J0W85jrh2LFjevPNN1W/fn1VqVJFffv21fHjxyUljqQy53JhYWFatmxZihjMvx927NihJ554QlWqVFG9evX0xhtv6MaNGynWdzS+q1evatKkSWrWrJmlvuzUqZM+/PBDSYnHjLkX+8yZMy11fNLnWThT5zq6n5zJN3JUD/oNGzZIShyG46hFixZp4sSJKleunEaMGCFJWr16tUaOHKmJEyem2Nb58+fVv39/tWnTRi1bttT27ds1f/585cqVS8eOHdOtW7c0ZMgQXblyRR9//LFGjBihr7/+OsU0AlOnTlVsbKx69OghKbGSHzNmjG7fvq1OnTqlO75//vlHffv2VatWrdSiRQvFxsaqTp06unTpkpYtW6Zhw4apXLlykqTAwEBJiZXPihUr1KJFC7Vt21a5c+fWnj179OGHH+rQoUP66KOPbH5v169fV9euXZU3b14tWLBATz75pN577z29/PLLatu2rZo1a6bt27drwYIF8vX1tcQvJQ6N79u3rwoXLqxu3bqpePHiOnz4sBYsWKBffvlFCxYssGo8kqSBAwfK19dXI0eO1NWrVzV//nwNGTJEmzdvlre3t2rWrKlhw4Zp9uzZVkOxzHdk79y5o4EDB+rnn39Wy5Yt1b9/f508eVJLlizR9u3btXLlyjSHa50+fVo9e/ZUXFycevbsqZIlS2rLli0aNGiQzfXHjh2rr7/+WvXq1VOPHj10+fJlLVq0SN27d9eiRYsypPfqxIkTtXTpUoWGhmrAgAGKiorSa6+9poCAAIe3Ye4JVq1atRR/q1q1qnbt2qUTJ07okUceuadY07PfBw0apBIlSmjUqFE6deqU5Vhr3ry5li9fri5duliOwdGjR+ubb75RqVKlHIpnypQpunv3rp544gkVLFhQZcuWlZT4AKV169apZcuW6tSpk+Li4vTll19qwIABioiISHN40sKFC+Xj46MnnnhC/v7+OnXqlJYvX64ePXpo9erVKlOmjGXdLVu26KmnnlKBAgXUpUsXlS5dWpcuXdK2bdt09OhRy3nqzDadvW7Y8vHHH1t+CPv4+Ojo0aNasWKFdu3apS+//NJqjkJbzOfb77//rg4dOqhKlSo6fPiw+vfvLx8fnxTrOxrz8ePHNWDAABUtWlR9+vSRn5+fIiMjtW/fPh0+fFhVq1aVlJjcb9y4Uc2bN1dgYKDu3LmjH3/8UdOmTdOZM2c0ceJEy3tfuXJFPXv2VGRkpLp3765y5cpp37596tu3b4pkT0pM5iZMmKCqVatq2LBh8vLy0o4dO/Tqq6/q1KlTev75563Wz6h6I7k9e/ZISmwsSk1MTIzlR0JMTIz27NmjVatWKSQkRA8//LBlvfTUA0uXLtXly5fVpUsXFS5cWGvXrtXUqVNVokQJtWvXzrKeo8f4//73P3344YeqXLmyxowZo5iYGC1fvlx9+/bV+++/n2by4Owx9/333+vJJ59U6dKlNWDAAD3wwAP69ddfNWPGDB06dEgzZsyw+36O6NChgyZOnKitW7daLXfm/Hrrrbf02WefqWbNmurXr58iIyM1ceJEm9e533//Xb1791bu3LnVs2dPFS1aVFu2bNHUqVN1+PBhTZs2TVLij8/+/fvrwoULCg8PV5kyZRQTE6MjR45o79696tixo93PtXHjRuXNm9fpHlX//POPunXrpjt37qhLly4KDAy01MO7d+/WypUrVahQIavXjB07Vvnz59eAAQMk/dvjz5lrYmr8/f0VEBBgOZcAcglyCXIJcglyCXIJiVzC7M0337TcoC1TpozCw8PVp08feXh42N22PYZh6OTJk5JkdRzYqn/SktH5SGrOnz+vfv36qUWLFmrZsqUOHjyolStX6o8//tCKFSssI2fSUx8m9cUXX+j5559XjRo1NGrUKOXPn1/nzp3T1q1bFRkZmepIBykxt7l9+7Y6dOjgcM/8s2fPqmvXroqOjlZ4eLhKly6tPXv2aM6cOfr555/1ySefpJha6Pnnn1eBAgU0dOhQRUVFaf78+Ro0aJBGjRqlqVOnqnv37urcubNWrFihV155RQ899FCKDj0HDhzQhg0b1LVrV3Xo0EG7d+/WggUL9Oeff2r+/PmWY9eZ+EaPHq29e/eqe/fuCgoK0q1bt/TXX39pz549GjRokB566CGNHz9eb731lpo3b67mzZtLktVNZUfrXGf2k1P5hpGD1KpVy6hevbrD61+9etWoWrWq0axZMyM6OtqyPDo62mjatKlRtWpV49q1a5blTZo0MUwmk7F+/Xqr7XTs2NEICgoyhg0bZiQkJFiWf/rpp4bJZDJ++OEHy7KVK1caJpPJaNy4sXH9+nXL8uvXrxuNGzc2atasady8efOe4lu+fHmKz2p+3127dqX42+3bt424uLgUy6dPn26YTCbjt99+syzbtWuXYTKZjPr161vFf+jQIcNkMhlBQUHGhg0bUnw/9erVs1rWrl07o2XLllafyzAMY+PGjYbJZDJWrlxpWfb8888bJpPJmDBhgtW669evN0wmk7FkyZIU8SV9vdmyZcsMk8lkTJkyxWr5li1bDJPJZIwdOzbFa5IbM2aMYTKZjJ07d1qWJSQkGCNGjDBMJpPx/PPPW5Zv27bNMJlMxujRo62Oi0OHDhkVKlQwevTokeb7peXo0aOGyWQyBgwYYMTHx1uWHz582ChfvrxhMpmM06dPp7mdiRMnGiaTyTh27FiKvy1cuNAwmUzGjz/+eM/xpme/v/rqq1brTpo0yTCZTEajRo2stmM+BqdOnZpmHObzoUWLFkZsbKzNWJYuXWq1/M6dO0bHjh2NJk2aWO3P5PvdMAzjxo0bKd7z2LFjRsWKFa2O49jYWCM0NNSoXbu2cf78+RSvSbpPHd2ms9eN1Nh6vx07dhgmk8mYO3dumq9funSpYTKZjPfee89q+fz58w2TyWQ0adIkXTGbr6tJr0u23Lx502o/mY0dO9YoX768ceHCBcuyKVOmGCaTyVizZo3VuublvXr1siy7cOGCERwcbIwZMybFtl9//XWjfPnyxqlTpyzLMqLeSM24ceMMk8mU4nwyDMOYMWOGYTKZbP4bPny4ERMTY7V+euqBevXqWdUD5uP5iSeeSLEsrWP8r7/+MoKCgozu3bsbt2/ftvz9/PnzRkhIiNGkSRPj7t27dr8PZ465W7duGXXr1jXCw8ONO3fu2FzfVn2ZXJMmTYzHHnvM7jpt27ZNsZ8cPb/M30ufPn2sPv8ff/xhBAUFpbjGd+vWzahQoYJx6NAhy7KEhARj1KhRhslkMnbs2GEYxr/XS0fO5eSio6MNk8lktGvXLsXf4uLijMjISKt/SffnsGHDjNq1axvnzp2zet3+/fuNChUqGDNmzLAsMx/DvXr1SrGPDMPxa6JhGEavXr2s9n9Sffv2NapWrWr3M+P+QS5BLkEukYhcwj5yCXKJnJ5L7N271xg2bJixZMkSY/PmzcaSJUuMzp07GyaTyXjhhRfS3LZh/Hs9jYiIsPwuPHTokPHSSy8ZJpPJKmewV//Yui5nRj5ijiPp/koa2/z5862Wm4/FOXPmWJY5Ux+ePn3aMJlMVr9/R44caVSrVs3mb9+0vPXWW4bJZEpRh9pjrpO+//57q+WTJ09OsT/Mv82HDh1q85irVq2a8c8//1iWR0ZGGsHBwcYzzzxjtW1zTrpp0yar5a+//rphMpmMr776yun4rl+/brOeT87Wd27mTJ3r7H5yNN/IUVPcxMTEWN39SMv27dsVGxur3r17W82t6O3trd69eys2NlY7duywek3x4sXVunVrq2XVq1eXYRjq3bu31Z1E810i893BpHr06GHVS6xQoULq3r27rl27ZnmicHri8/Hxseo144i8efNaehrcvXtX165dU1RUlOrWrStJVkM/zTp16mQVf/ny5eXt7a1ixYqlGBJcvXp1Xbp0yTJc5ciRIzpy5Ijatm2ruLg4RUVFWf6FhISoQIEC2r59e4r37Nevn1W5du3akmx/v7Zs2rRJnp6eKZ463rhxY1WoUEGbN29WQkJCqq9PSEjQd999p+DgYMt7S4lzh9nq9bJp0yZJ0rBhw6yOi/Lly6tJkybat29fmsOU0mIeCtynTx+rO+RBQUGqX7++w9sxDw+yNQzKfPf11q1b9xJquvd73759rcrm86pDhw5W54X5GHT0eJASz8Pk80SuXbtWBQsWVLNmzaxivH79usLCwnT27FmdOHHC7nYLFCggKbF3gLkHc5EiRVS2bFnt37/fst62bdt05coV9e/f3+aDs5LuU0e3mZ7rhr3PkJCQoOjoaEVFRSkoKEiFChWyer/UfPvtt8qVK5el16tZeHh4irlsnYnZfN3ZvHmz3aGW+fPnt5x3cXFxunr1qqKiolS/fn0lJCRYDY/dsmWL/P391bZtW6ttDBw4MMV2N2zYoLi4OHXp0sXq+IiKilJYWJgSEhIyrd5ILioqSrlz57Y7N/Arr7yi+fPna/78+ZoxY4b69eunH374QaNGjVJcXJxlvfTUA507d7aqB7y8vFS1alWr88PRY3zz5s0yDEODBg2yug4VL15cnTp10tmzZ3Xw4EG734ezx9zly5fVqVMnXb9+3Wo/moch2roepYf5vZMO2XT0/DJ/L/3797d6gFTFihVVr149q/eJjIzUL7/8orCwMJUvX96y3MPDQ8OHD5f0b71k3m+7d+9OdVqF1Jg/h63jbtu2bapTp47Vv++++05S4pz033//vcLCwpQ3b16r7zwgIECBgYGp1gG2Hgrm6DUxLT4+PoqNjb3nOg45A7kEuYQ95BKpI5f4F7mE9fuRS1jLLrlESEiIPvjgA3Xv3l1hYWHq3r27li9frvr162vVqlXat29fmts3i4iIsPwu7NChg1auXKmwsLAUzypKT/2TkfmIPd7e3goPD7daZj4WzddqKX31YVKFChXSrVu39P3338swjDTjSiomJsYSqyPMddKjjz6aYqTy0KFD5enpaXOKqNSOubCwMJUsWdKy3NfXV2XLlrV5vStbtqyaNWtmtWzIkCGS/q37nIkvX758yps3r/bv3+/UNFpJOVPnOrufHM03ctQUN97e3jbnLEqNecfZGmpnXmaeE8ss6YNVzB544AGbfytcuLCkxLmQkjMPDU3qoYcesoorPfGVKlUqXU+BXrRokZYuXapjx46l+GF57dq1FOun9j3YGtZp/n6uXr2qggULWuZEi4iISDHfltnly5dTLEs+1NA8HMrW92vLmTNnVKxYMUs8ST388MM6dOiQrly5Ij8/P5uvj4yMVGxsrM19l3SqiKTv5+npadmvydf/9ttvdebMGbvDlNJiPkZsxVS2bFn98MMPlvKtW7cUHR1ttU6hQoWUP39+yw/LpA12ZuYfLvnz5093nJIybL+bz6vUjsErV644HJN5GGryOG/cuGGpRG2JjIy0+VqzgwcP6r333tOePXtSDM1LGre5snJkeLKj20zPdcOWnTt36v3339dvv/2W4serrWtCcqdPn5a/v3+KHwh58+ZVqVKldP369XTF/Nhjj2nt2rWaPXu2PvnkE1WpUkX169fXY489ZjUU2zx/3Jo1a3Ty5MkUFWfy969cuXKKH2d+fn6W483MfBwnT/KTSn4cZ1S9kZwjQ0srV65s9ZDYli1bys/PT9OmTdPKlSstUyNIGVMP+Pj4WMXu6DHu6DGQ9LMk58wxZ96PyedgTMrW9Sg9zD+Wkzb6OXp+mY/71H4zbNu2zVI2f4e26qNy5crJ09PTsr2AgAANGzZMc+fOVf369VWhQgXVrl1brVq1sjvMOennMH+upKpUqaL58+dLSkyGkg7j/fvvv5WQkKAVK1ZoxYoVNrdta0qB1KaqcfSamBbzteFehmoj5yCXIJewh1yCXCI5conUkUvkjFwiKfMNym3btmnr1q2WacDS0q1bN7Vq1UoeHh7y8vJSmTJlbE5TlJ76JyPzEXtKlSqV4gak+VhMfj44Wx8mNXToUP30008aOXKkfHx8VKtWLTVs2FCtW7dOs+HdVqcge6KiohQbG2uz/vHx8ZG/v7/Nc93Za6qtZ7TYqteKFSumwoULW97Tmfjy5s2rF198UW+++aaaNm2qhx9+WLVr11azZs1Up04dWx8/BWfqXGf3k6P5Ro5qoH/kkUf0008/6fTp0w7PG+csexeM1O68OXvn616k56nx8+fP1+TJk1W/fn316dNHxYoVU548eXThwgW98MILNuNP7Xuw9/0k3475oTG2JK/I7G07K7/f7Gz9+vWW+ePM3nrrLXXq1Mny0MgLFy6kuCBdvHhRkmzebU6PjNrv6Ukek7OVKBiGIV9fX8tczbbYmz/zn3/+Uc+ePeXt7a3hw4erXLly8vLykoeHhyZNmuTQXHpZsU179u/fr4EDByowMFDPPvusHnzwQUsvkmeeecal51zevHk1f/587d+/Xz/++KP27t2rGTNmaObMmZo2bZplLrnJkydrwYIFatOmjYYNGyZfX1/lyZNHBw4c0NSpU+32cLPH/NmnTJliOW+SS17/ZFa94evrq7t37yo6OjrFvN32NGjQQNOmTdOuXbssDfQZWQ9kB+bPM27cOFWoUMHmOqntX2fExcXpxIkTVgmmu5xfzzzzjLp06aLvv/9ee/fu1YoVK/TRRx9p0KBBeu6551J9nbe3t/7zn//o77//1u3bt63muPT19bU0SJw/f97qdebP1b59+1TnuLc1X6at63RGXhOvXbumAgUKODxXJ3I2cglyCaSOXCIlcgnb3OW3ji3kEv9KTy5hvonhzI2s0qVL271hZZae+sfd8pH01IdJlSlTRuvXr9fOnTu1c+dO7dmzRy+//LJmzJihRYsW2Z0r33xdOXjwoOU4zgypHXOu3hc9evRQ06ZNtXXrVu3Zs0cbNmzQwoUL1aZNG02fPj1D38vZ/eRovpGjGuhbtGihn376SZ9//rnGjBmT5vrmC9+ff/6Z4q7KsWPHrNbJaOanHCdlvptqvvOUkfHZu1OzZs0aBQQEaN68eVYnW9IeExmpdOnSkhJPbEcu1M6w9zlLlSqlH3/8UdevX7d5J9vb29vuw2p8fX1VoEABm/vOvD+Sv19CQoL++usvq+kGzO8nOdfLzxbz648fP57iWPj777+tyvXr17f0bDQz340090r95ZdfUuyTX3/9Vd7e3g49cM+ezNzvGal06dI6ceKEqlSp4tQwd7NNmzYpNrnXNrcAACAASURBVDZWH3zwgdXwZSmxJ0PSO+/mnjOHDh2yO4zYmW1mxHXjq6++Unx8vObNm2e1bmxsrFVvEXtKlSql7du3KyYmxuouclxcnE6fPm3V+yw9MVeuXNnS0/fcuXN6/PHH9e6771p+jKxZs0Y1a9ZMURnbGu4ZEBCgkydPKiEhweoaGBkZmeLzms+DIkWKuPw4Nv8IO3HihN2e5cnduXNHknXvisyqBxw9xpMeA8l/0Dh63DpzzJn3o5eXV6buxzVr1iguLk6NGze2LHPm/DL//fjx4ym+F3M9YmauD2zVR8ePH1dCQkKK77BUqVLq3bu3evfurdu3b2vgwIH68MMPNWDAgFR7gEqJIzHmz5+vNWvW6IknnrDzDfwrMDBQHh4eunPnzj1/585cE9Ny6tQpmUyme4oHOQe5ROrIJcglyCUcQy5BLmGWE3MJ8+e39zvR3Th6nthz+vRpxcXFWZ0r5mMx6QikjKgP8+bNq0aNGlmmddm6dauGDBmi+fPna8KECam+rnHjxsqXL5/WrFmj4cOHp/l72NfXVwULFrRZ/1y7dk2XLl1KtSPTvUqex0iJN3OvX79uOVfTE1+xYsXUtWtXde3aVfHx8Ro3bpy++uor9e/fX5UrV06zjnemznVmPzmab+SoOei7du2qsmXL6uOPP7Y5V5KU+OT3RYsWSZLq1aunAgUKaOHChVZDtWNiYrRw4UIVKFAgxRyvGWXJkiVWQwSjo6O1dOlSFS5cWLVq1crw+MxzwNkaUuPp6SkPDw+ru3l3797VvHnz0vXZ0vLoo4/KZDJp6dKlNofM3L171+GhpsnZ+5zNmjVTQkKC5s6da7V869atOnjwoMLCwuzOP5YrVy41adJEf/zxh3bt2mVZbhiGPvzwQ5vvJ0lz5861+m6PHj2q7777TiEhIfc0JFWSmjRpIkn67LPPrO7iHzlyxGrqAynxYlW3bl2rf+a79jVr1pS/v79WrFhh1Wh3+PBh7dmzR61atbLMpZZembnfM9Ljjz+uhIQEvfPOOzb/nta0F+Y7x8nvji9fvlyXLl2yWlavXj0VKVJE8+fPt/QuSsq8DWe3ea/XjdTufs+ZM8fh3iJNmzZVfHy8Pv74Y6vlixcvTjE1hjMx25prtUSJEvL19bU67z09PVN8X7Gxsfrkk09SvL5Jkya6dOmSvvrqK6vlSafnMGvdurXy5s2riIgIm3PIRUdH2xzenRnMdUVacxkmt3nzZkmJ85ibZVY94OgxHhYWJg8PD3300UeWGwhS4g+1VatWKSAgIM1hqc4cc/Xr15efn5/mzZtn87pz69Ytm1O4OGPPnj2aPHmyChYsaDVfsTPnl/l7mT9/vuLj4y3LDxw4kGJ+Uj8/P1WrVk1btmzR0aNHLcsNw7DUe+akMzo62up7lhJ7r5sTjLSG3w4cOFB+fn56++23U52DNPn5V6RIETVq1EibNm3Sr7/+anN9R+dSduaaaM+lS5d09uxZ1axZ0+HXIGcjl0gduQS5BLmEY8glyCXMsnMuYauHfFxcnGV6qbCwsMwNLgM5ep7YExMTo8WLF1stMx+LSedSv9f60Nbxac6B0vp97ufnp4EDB+rs2bN66aWXbB5HMTExmjRpkiXWJk2a6ODBgyluIMydO1cJCQkp5onPKH///XeK31nm78j8ns7Ed/PmTcuzUMxy5cqloKAgSf9+d2nV8eZtp1XnOrOfnMk3clQPei8vL82ZM0dDhgzRyJEjVb9+fdWtW1c+Pj6KiorS7t27tW3bNstDeAoXLqyxY8dq4sSJeuKJJyxDrlevXq2TJ09q4sSJTk0b4IwiRYqoa9eulodgrFq1Sv/884/eeOMNy9CejIyvUqVK8vT01OzZsy3DKx588EFVqVJFrVq10rRp0zR48GA1b95cMTEx+uqrr2w+lC0jeHh46O2331bfvn3Vvn17de7cWQ8//LBu3bqlkydPatOmTRozZozTDwiREntxFCxYUIsXL1b+/PlVuHBh+fr6qk6dOurYsaNWr16tefPm6ezZs6pRo4ZOnTqlxYsXq2jRog71lHr66af1ww8/aNiwYerVq5dKlCihLVu22DxB69Wrp9atW2vdunW6du2apeJevHix8uXLp5dfftnpz5fcI488om7dumnZsmXq16+fmjdvrqioKC1evFgVKlTQgQMHHJpbLk+ePHrppZf0zDPPqGfPnuratatu3LihTz75RL6+vho1atQ9x5qZ+z0jtWrVSp06ddLChQt14MABNWnSREWKFNH58+f166+/6uTJk5YGTlsaNmwoLy8vjRs3Tr169VLhwoX1888/64cfflBgYKBVI5uXl5fefPNNjR49Wu3atVOXLl1UunRpRUVFadu2berXr5+aNWvm1DYz4rrRrFkzffLJJxo8eLC6deumPHnyaPv27Tpy5IjdnmFJderUScuXL9esWbN05swZVa1aVYcOHdI333xzTzF/8MEH2r59uxo3bqwHH3xQhmFoy5YtOn78uNUD1lq2bKlly5bp6aefVt26dXX58mWtXLnS5nyHgwcP1ldffaUXX3xR+/fvV7ly5bRv3z798ssvKT5viRIl9Oqrr+rll19WmzZt1L59ewUEBCgqKkpHjx7Vt99+q3Xr1t1zjzZHBAcHq1SpUtq6dat69eplc50ffvjB0lMvJiZGP//8s9atW6cSJUqoT58+lvUyqx5w9BgvV66cpfd2r1691Lp1a924cUPLly9XbGyspk6dmuawSWeOuQIFCmjKlCkaOXKkWrVqpc6dO6t06dK6fv26jh8/rk2bNmnmzJkKDQ1N8zNGR0drzZo1khITl4sXL2r37t3as2eP/Pz89M4771j12nLm/HrooYfUs2dPLVy4UH379lWLFi0UGRmpRYsWqXz58ikenPvSSy+pd+/e6tmzp8LDw+Xv768tW7Zo27Ztatu2raVX2e7du/Xf//5XLVq0UNmyZVWwYEH98ccfWrFihapUqWJzLuKk/P39NWfOHI0YMUK9evVSo0aNVLNmTfn4+OjatWs6evSoNmzYoHz58qlo0aKW17366qsKDw9Xr1691KFDBz366KNKSEjQ6dOntXnzZj3++ON66qmn0vzOnbkm2rN161ZJicc/IJFL2EMuQS5hD7nEv8glyCVyQi4xaNAgFStWTBUrVlTx4sV14cIFffnllzpx4oR69+6d5jOL3Imj54k9gYGBmjVrlv78809VrFhRBw4c0MqVK1WuXDn17t3bst691ocDBw5UoUKFVKNGDZUsWVLXr1/X6tWr5eHhoQ4dOqT5+qeeekqXLl3S559/rn379umxxx5TYGCg7ty5o8OHD+ubb75Rnjx5LM/hGjNmjHbs2KGRI0cqPDxcgYGB2rt3r9avX6+aNWumOi3lvTKZTHruuefUtWtXlS5dWrt379aGDRtUq1YttWnTxrKeo/GdOHFCvXr1UvPmzfXII4+ocOHCOn78uJYsWaIHH3zQ8iDbIkWKqHTp0lq3bp1KlSqlokWLysvLS2FhYU7Vuc7sJ2fyjRzVQC8lDin74osvtGzZMm3YsEGzZ89WbGysHnjgAQUHB2vy5Mlq166dZf2ePXuqWLFi+uijjyxPkS5fvrxmzZqVaXeLJGns2LHau3evFi9erMuXL6ts2bKaOnWqVWwZGd9//vMfTZo0SfPmzdNrr72mO3fuqGPHjqpSpYoGDhwowzC0YsUKvfnmm/L391fr1q3VuXNnq5MjI1WoUEGrV6/WnDlz9N1332np0qUqWLCgAgIC1LFjR4cf5JBc/vz5NX36dL377ruaNGmS4uLiVKtWLdWpU0d58uTRRx99pA8++EDr16/Xpk2bVKhQIbVq1UpPP/201ROnUxMYGKhFixZpypQpWrhwofLmzasGDRro7bfftjlEberUqXr00Ue1evVqTZ48WQUKFFDNmjU1evRoy928ezVhwgQVK1ZMK1as0JQpU1S2bFlNmDBBv//+uw4cOODwA5lat26t/Pnz64MPPtDbb7+tvHnzqk6dOho7dmyGzRmZWfs9o7311lsKDQ3V8uXLNWfOHN25c0f+/v569NFH9eyzz9p9bWBgoObNm6d33nlHs2fPVq5cuVS9enUtWLBAr7/+eoqHpDRt2lSLFy/W7NmztWLFCl29elV+fn6qU6eO5Rhxdpv3et0ICQlRRESE3n//fb333nvKly+f6tatq4ULF6baEJxc3rx59fHHH+vtt9/W5s2btXHjRlWqVMmyLL0xN2vWTJcuXdI333yjy5cvK3/+/CpdurTeeOMNdenSxbLe+PHjVbBgQX3zzTfavHmzSpYsqW7duqlSpUopHsrk6+urxYsXa8qUKVq5cqU8PDwUGhqqTz/9VF26dElxDnXu3FllypTRxx9/rGXLlik6Olo+Pj4qW7asRo8eLX9/f4e+o3vl4eGhbt26afr06bp8+bJVQ6jZjBkzLP+fO3duFS9eXN26ddPIkSOthqZmZj2Q/Bi/ceOGihYtqpCQEKvr4HPPPafSpUtr8eLFmjZtmvLkyaMqVapo2rRplh9V9jh7zDVo0EArVqzQ3LlztXbtWl25ckWFCxdWYGCg+vXr5/A1+vz58xo3bpykxDrIx8dHjzzyiF588UU9/vjjKaZBcPb8eumll1S0aFEtX75cb7/9tsqUKaNXXnlFJ0+eTNFAX6lSJS1dulQzZszQkiVLFBsbq1KlSmns2LEaMGCAZb2goCA1b95ce/bs0ZdffqmEhASVLFlSQ4cOtVrPnkqVKmndunVasmSJvvvuO8vvLW9vb5UtW1YDBw5Uly5drB74WLJkSa1cuVLz5s3Td999p7Vr1ypfvnwqWbKkmjRpotatWzv03s5eE1OzZs0aBQcHKzg42KH1cX8gl7CNXIJcIi3kEv8ilyCXyO65RMuWLbV582YtXLhQ0dHR8vLyUoUKFfTUU0+pbdu2WRJfRnI0H0lNiRIl9O6772rKlClat26d8uTJo3bt2un555+39MqW7j2n6tGjh77++mstW7ZM165dk4+PjypUqKCXX345xfRUtnh6euqNN95QmzZttHTpUq1Zs0ZRUVHKkyePypYtq/DwcIWHh1vWDwgI0PLlyzVjxgytXbtW0dHRKl68uIYOHarhw4dn2o32ihUravz48Zo+fbqWLl0qb29v9erVS88884zVSDRH4ytRooQ6d+6s3bt369tvv1VcXJyKFy+url27avDgwVbPN5g6daomTZqk6dOn6+bNmwoICLCMCHG0znVmPzmTb3gYPBUnS61atUrjx4/XZ5995lDPPCC9hg0bpl27dmnfvn0uf2AHHDdu3DgFBgbqySefdHUo970rV66odu3a6tatmyZOnOjqcGyKiYlRixYt1LVrVz3zzDOuDgfINg4dOqSOHTtq1qxZatq0qavDARxGLoGsQi6RPZFLuA9yiZwhLCxMAQEBWrBggatDyRGCgoLUsWNHTZ482dWhZDpn840cNQc9cD+yNXfd4cOH9cMPP6h27dr8oM5mWrRooaVLl7o6jPuOrfPIPMdsZs0fnBG8vb311FNPacGCBTbnigRgW0REhGrWrEnjPID7HrlEzkIu4RrkEgCSczbfyHFT3AD3m9WrV2vNmjVq1KiRfH19dfz4cS1fvlx58uTJkPkekTVWrVql+Ph4bd68OcXDG5H5Bg8ebHkQaUJCgnbt2qUtW7aoWrVqmTpFQUbo0aOHevTo4eowgGzl/fffd3UIAOAWyCVyBnIJ1yKXAJCcs/kGDfRANlexYkV9++23WrBgga5du6aCBQsqNDRUTz75pOVJ0nB/R48e1eLFi+Xt7a2xY8e6Opz7TpMmTfTFF19o06ZNun37tooXL64BAwZo5MiR9BwDAAA5FrlEzkAu4VrkEgDuFXPQAwAAAAAAAADgAsxBDwAAAAAAAACAC+SoKW6uXLmhhAQGBAAAAMBxnp4eKlKkoKvDgJshtwAAAEB6OJtf5KgG+oQEgx/RAAAAAO4ZuQUAAACyAlPcAAAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQA5ng1KkTGjlyoE6fPunqUADALf3vf29pwIBwTZ8+xdWhAADg1q5evaLJkyfq2rWrrg4FANzS++/P0IAB4Zo7d6arQwHSJcsb6KdMmaKwsDAFBQXp6NGjluV///23unXrppYtW6pbt246ceJEVocGZJi5c2fp5s2bmjOHygEAbDl06HdJ0u+//+biSABkZ+QWuB98+eVq/fnnEa1du8rVoQCAW9q7d5ckadeuHS6OBEifLG+gb9q0qRYtWqSAgACr5RMmTFB4eLg2bNig8PBwvfLKK1kdGpAhTp06oX/+OStJ+uefs/SiB4Bk/ve/t6zK9KIHkF7kFsjprl69om3btsowDG3b9gO96AEgmfffn2FVphc9sqMsb6CvUaOGSpYsabUsMjJSBw8eVNu2bSVJbdu21cGDBxUVFZXV4QH3bO7cWVZletEDgDVz73kzetEDSC9yC+R0X365WgkJhiQpISGBXvQAkIy597wZveiRHeV2dQCSdO7cORUvXly5cuWSJOXKlUvFihXTuXPn5Ovr6/B2/Py8MytEwGHm3vNJy/7+hVwUDQBkD1wnAWQUcgvkJLt2bVd8/F1JUnz8Xe3atV1jxox2cVQA4N7ILZDduEUDfUaJjIyx9C4AXKVAgYKKjb1hVb50KdqFEQGA++M6CVfy9PSgMRYpkFvAHdSuXU9bt25RQkK8PD1zqXbtetSZAJAGrpNwNWfziyyf4saWkiVL6sKFC4qPj5ckxcfH6+LFiymGqwLZgbmHS2plALjfPfCAj1W5SJEiLooEQE5EboGcpF27jjKMBEmSYRhq376TiyMCAPfi5+dvVfb3L+aiSID0c4sGej8/P1WoUEFfffWVJOmrr75ShQoVnBqCCriLkJBaVuUaNUJdFAkAuKcJE960Kr/yypuprAkAziO3QE7j4eHx//91cSAA4IZeeulVq/KLL75qcz3AnWV5A/0bb7yhhg0b6vz58+rfv78ee+wxSdKrr76qhQsXqmXLllq4cKFee+21rA4NyBSGwdBoAEjKx6eIcudOnGUvd+48KXrUA4CjyC2Q03355eokDfQePCQWAJLx8SliySeKFClCboFsycPIQa2HzBMJdzBixEDdunXTUs6f30vvv/+RCyMCAPdy9eoVPfvskzIMQx4eHnrnnVn8kIZLMQc9bCG3gDsgtwCAtI0f/6wuXDinEiVKatKkaa4OB8iec9ADOUmdOvXslgHgfrdixVLL6CLDMPT550tcHBEAAO4pMZcwz23jQW4BAMmcOnVCFy6ckySdP39Op0+fdHFEgPNooAcyWKNGYVblxo2buigSAHBPu3fvsFsGAACJEnML80gOg9wCAJKZO3eWVXnOnJkuigRIPxrogQy2det3VvNEfv/9ZhdHBAAAACA7IrcAAPv++ees3TKQHdBAD2SwnTu3W03dsHPndhdHBADuJTS0rlW5dm2G6wMAYAu5BQDY95//BNgtA9kBDfRABqtTp55y5colScqVKxfzRAJAMi1atLZbBgAAiRJzi9ySpFy5cpNbAEAyPXr0tiqHh/d1USRA+tFAD2Swdu06WvVyad++k4sjAgD3snHj13bLAAAgUbt2HS1T3Hh6epBbAEAyP/+816q8b98eF0UCpB8N9EAmSNpADwCwlvyhsLt2MVwfAABbfHyKqFixYpIkf/9ieuABHxdHBADuZceObXbLQHZAAz2Qwb78crVVA/3atatcHBEAAACA7Ojq1Su6ePGCJOnixYu6du2qiyMCAPfi5+dntwxkBzTQAxmMu7cAYF/yh8QmLwMAgETWnX8S6PwDAMlERkbaLQPZAQ30QAYrXLhwsvIDLooEANxTly7dLfPpenh4qmvXHi6OCAAA97Rz53bFx8dLkuLj47VzJ9PCAUBSdevWl+Tx/yWP/y8D2QsN9EAGu3TpYrLyBRdFAgDuyceniEJCakmSatSoxXy6AACkonr1GlblkJCaLooEANxTu3YdlTt3LklS7ty5eZg2siUa6AEAgMvwMG0AABxHvQkA1nx8iqhWrTqSpNDQOnT+QbZEAz0AAMhSV69e0b59eyRJ+/b9xAPvAABIxc8/77VbBgBIcXFxkqTbt2+7OBIgfWigBwAAWWrFiqVWD7z7/PMlLo4IAAD3FBxc2W4ZAO53dP5BTkADPQAAyFK7d++wWwYAAIlOnz5lVT5z5lQqawLA/YnOP8gJaKAHAAAAAMANXbhwzqp8/vy5VNYEgPsTnX+QE9BADwAAslS1ajWsytWr10hlTQAA7m8FChS0WwYAANkfDfRABvPyKmC3DAD3O/NDnFIrAwCARPHxd+2WAeB+R+cf5AQ00AMZrHPnblblJ57o4aJIAMA97d//i1X5t99+SWVNAADub3XrNrBbBoD7HZ1/kBPQQA9ksE2bvrEqf/PNehdFAgAAACA7S94TNCSklosiAQD3ROcf5AQ00AMZLPmDnJKXAQAAAMARCxd+alVesGC+iyIBAACZhQZ6AAAAAADcEJ1/AADI+WigBwAAAAAAAADABWigBwAAWcrDw8NuGQAAAACA+wUN9AAAIEsZhmG3DAAAEhUvXtJuGQAAZH800AMZzMurgN0yAAAAADhi+PCnrMojRoxyUSQAACCz0EAPZLCbN2PtlgHgfpcvXz67ZQAAkKhw4QfslgEAQPZHAz0AAMhSt2/ftlsGAACJvvxytVV57dpVLooEAABkFhroAQAAAABwQ9u3/2i3DAAAsj8a6IEMlitXLrtlAAAAAHBE7ty57ZYBAED2RwM9kMGKFi1mVS5WrFgqawLA/Sl//vzJyl4uigQAAPcWG3vDbhkAAGR/NNADGezChXNW5XPnzqWyJgDcn1LOQX/LRZEAAODeihcvYbcMAPc7Dw8Pu2UgO6CBHgAAZCl+RAMA4JjChR+wKvv4+LgoEgBwT+QWyAlooAcAAFkqX778dssAACDRn38esSofOXLYRZEAgHvy9y9mtwxkBzTQAwCALHXzZqzdMgAAAAA44sqVKLtlIDuggR4AAGQp5tMFAMAxTN0AAPblzp3HbhnIDtyqgX7Lli16/PHH1aFDB7Vv314bN250dUgAACCDlShRMln5Py6KBAAA92YYht0yANzvYmNv2C0D2UFuVwdgZhiGxo0bp0WLFslkMunw4cPq0aOHmjVrJk9Pt7qPAAAA7sEff+xPVv7NRZEAAAAAyM6KFy+hCxfOW5WB7MatWr49PT0VHR0tSYqOjlaxYsVonAcAIIdJSDDslgEgozBCF9ld3rx57ZYB4H7H6FzkBG7Tg97Dw0PvvvuuRowYoQIFCujGjRuaO3euU9vw8/POpOiAe+PvX8jVIQCA2/D09FB8vHWZ6ySAjMYIXeQEcXFxdssAcL9jdC5yArdpoL97967mzJmj999/XyEhIdq3b5+efvpprVu3TgULFnRoG5GRMfTCg1u6dCna1SEAgNuIT9o6//9lrpNwJU9PDzp65FCM0AUAIGdjdC5yArdpoD906JAuXryokJAQSVJISIi8vLz0119/qXLlyi6ODnCch4enDCPBUiYJBABrXl5eunnzplUZADLavY7Q5aYN3BWjzgDgX4zORU7gNg30JUqU0Pnz53X8+HGVK1dOf/31lyIjIxUYGOjq0ACnJG2cl6SEhIRU1gSA+5PJVF6//fZLknIFF0YDIKe61xG6jM6FO3jkkSD9+ecRS9lkKs+oMwBIgtG5cEfOjtB1mwZ6f39/vfrqqxo9erQ8PDwkSZMmTZKPj4+LIwMAABnp8OGDycoHXBQJgJyMEbrICSIjLycrX3JRJADgnhidi5zAbRroJal9+/Zq3769q8MAAACZKFeu3JJuJysDQMZihC5ygqioSKtyZGRkKmsCwP2J0bnICciIAQBAloqNvWG3DAAZgRG6AADkfIcPH0pWPpjKmoD7ooEeAABkqQIFClo1yhcokPZc0ACQHozQBQAgZ/Pz89M//5y1KgPZjaerAwAAAPeXu3fv2C0DAAAAgCOST/3FVGDIjmigBwAAWapIEV+7ZQAAAABwRN269e2WgeyABnoAAJClLl26ZLcMAAAAAI5o1CjMqty4cVMXRQKkHw30AAAgS/3/sxpTLQMAgESenp52ywBwv9u48Wur8oYN610UCZB+1O4AACBL+fr62S0DAIBE1avXtCqHhNRMZU0AuD/t3r3DbhnIDmigBwAAWery5ct2ywAAIFFcXJzdMgAAyP5ooAcAAFnMSKMMAAAkaf/+X6zKv/32SyprAsD9idG5yAlooAcAAFnKI9mk88nLAAAAAOCIyMjLdstAdkADPQAAyFLe3oXslgEAAADAEXT+QU6Q29UBAACA+8v169fslgEAkKTt23/Qtm1bXR2G25ky5XVXh+Ay9es3Ur16DV0dBgA3EhpaVzt2/Ggp165dz4XRAOlDD3oAAAAAANxQ7ty5k5XzuCgSAHBPLVq0tlsGsgN60AMAAAAA3E69eg3v+97Sp06d0Kuvvmgp//e/E1WqVGkXRgQA7mXjxq+tyhs2rNegQcNdFA2QPvSgBwAAAADADQUGlrH0ovf3L07jPAAks3v3DrtlIDuggR4AAAAAADcVEPCgPDw89OSTT7s6FAAAkAlooAcAAAAAwE3lz+8lk6k8vecBwIZChQpblQsXLpzKmoD7ooEeAAAAAAAAQLZz9eoVq/KVK1dSWRNwXzTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwAAAAAAAADgAjTQAwAAAAAAAMh2vLwK2C0D2QEN9AAAAAAAAACyndu3b9ktA9kBDfQAAewVagAAIABJREFUAAAAAAAAsp2EhAS7ZSA7oIEeAAAAAAAAAAAXoIEeAABkKQ8PD7tlAAAAAADuFzTQAwCALGUYht0yAAAAAAD3CxroAQAAAAAAAABwARroAQAAAAAAAABwARroAQAAAAAAAABwARroAQAAAAAAAABwARroAQAAAAAAAABwARroAQAAAAAAAABwARroAQAAAAAAAABwARroAQAAAAAAAABwgdyuDiCp27dva9KkSdq5c6fy5cunqlWr6vXXX3d1WAAAIAP5+vopKirSUvbz83NhNAAAAAAAuI5bNdD/73//U758+bRhwwZ5eHjo8uXLrg4JAABkMF/foska6Iu6MBoAAAAAAFzHbRrob9y4oS+++EJbt26Vh4eHJKloURJ2AABymmPHjliVjx49ksqaAAAAAADkbG7TQH/69Gn5+Pho5syZ2r17twoWLKjRo0erRo0aDm/Dz887EyME0s/fv5CrQwAAt8Z1EgAAAABwP3KbBvr4+HidPn1ajz76qJ5//nn99ttvGjZsmDZt2iRvb8ca3iMjY5SQYGRypIDzLl2KdnUIAODWuE7ClTw9PejokUPxjCsAAHI2nm+FnMBtGuhLliyp3Llzq23btpKkKlWqqEiRIvr7779VqVIlF0cHAAAAILvhGVcAAORsCQkJVuX4+IRU1gTcl6erAzDz9fVVaGiotm/fLkn6+++/FRkZqdKlS7s4MgAAAADZjfkZV6NHj+YZVwAA5FBXr16xWwayA7fpQS9Jr732ml588UVNmTJFuXPn1ttvv63ChQu7OiwAAAAA2cy9PuOKaY/gLvLkySWJ57UAgKO4XiK7casG+lKlSmnBggWuDgMAAABANnevz7ji+VZwF3fuxEvieS0A4Ciul3A1Z59x5TZT3AAAAABARrH3jCsAAADAXdBADwAAACDH4RlXAAAAyA7caoobAAAAAMgoPOMKAAAA7o4GegAAAAA5Es+4AgAAgLtjihsAAAAAAAAAAFyABnoAAAAAAAAAAFyABnoAAAAAAAAAAFyAOegBAAAAAACAbGb79h+0bdtWV4fhdqZMed3VIbhM/fqNVK9eQ1eHASfRgx4AAAAAAAAAABegBz0AAAAAAACQzdSr1/C+7y397rv/0/79v1jKVatW06hRz7kwIsB59KAHAAAAAAAAkO306zfIqty372AXRQKkHw30AAAAAAAAALIdH58iKlCggKTE3vMPPODj4ogA59FADwAAAAAAACBbKlnyP/Ly8qL3PLItGugBAAAAAAAAZEu5c+dRYGAZes8j26KBHgAAAAAAAAAAF6CBHgAAAAAAAAAAF6CBHgAAAAAAAAAAF6CBHgAAAAAAAAAAF6CBHgAAAAAAAAAAF6CBHgAAAAAAAAAAF6CBHgAAAAAAAAAAF6CBHgAAAAAAAAAAF6CBHgAAAAAAAAAAF6CBHgAAAAAAAAAAF6CBHgAAAAAAAAAAF6CBHgAA4P/au/sou6vCfPTPnMnMhRDJxBCSSF7oomhTEBFBDIkJhiVwLRNWbCmYIrWgWFeRossWlCsS6A/JuryIBRe0pWFpERdyTSWhS0AgwQkDVSoEFHkrJNG8GmYCgYQkc+b+EY0ESEjCmdlnZj6ff8g+58ycZ1jDJvs5+7u/AAAAUICCHgAAAAAAClDQAwAAAABAAQp6AAAAAAAoQEEPAAAAAAAFKOgBAAAAAKAABT0AAAAAABSgoAcAAAAAgAIU9AAAAAAAUICCHgAAAAAAClDQAwAAAABAAXVZ0F977bV5z3vek6eeeqp0FAAAAAAA6BF1V9D/4he/yCOPPJIDDjigdBQAAAAAAOgxdVXQb9q0KZdcckkuvvji0lEAAAAAAKBHDSod4LWuueaaTJ8+PWPGjNmjrx8+fEiNE0FtjBjxjtIRAOqaeRIAAICBqG4K+p///Od5/PHH86UvfWmPv8fatetTrXbXMBXUxpo1L5WOAFDXzJOUVKk02OgBAAAUUTdH3Pz0pz/Ns88+m+OOOy7Tpk3LypUrc9ZZZ6Wtra10NAAAAAAAqLm6KejPPvvstLW15d577829996bUaNG5cYbb8zkyZNLRwMAAPqoa6+9Nu95z3vy1FNPlY4CAABvUDcFPQAAQC394he/yCOPPJIDDjigdBQAAHhTdVvQ33vvvXn3u99dOgYAANAHbdq0KZdcckkuvvji0lEAAGCH6uYmsQAAALVyzTXXZPr06RkzZswefb0bB1MvmpoakyQjRryjcBKA+mSepK9T0AMAAP3Kz3/+8zz++OP50pe+tMffY+3a9alWu2uYCvbM5s1dSZI1a14qnASgPpknqTeVSsNubfao2yNuAAAA9sRPf/rTPPvssznuuOMybdq0rFy5MmeddVba2tpKRwMAgO3YQQ8AAPQrZ599ds4+++xt42nTpuX66693jysAAOqOHfQAAAAAAFCAHfQAAEC/du+995aOAAAAb8oOegAAAAAAKEBBDwAAAAAABSjoAQAAAACgAAU9AAAAAAAUoKAHAAAAAIACFPQAAAAAAFCAgh4AAAAAAApQ0AMAAAAAQAEKegAAAAAAKEBBDwAAAAAABSjoAQAAAACgAAU9AAAAAAAUoKAHAAAAAIACFPQAAAAAAFCAgh4AAAAAAApQ0AMAAAAAQAEKegAAAAAAKEBBDwAAAAAABSjoAQAAAACgAAU9AAAAAAAUoKAHAAAAAIACBu3Ki5599tn88Ic/zNNPP52XX345++yzTw4++OCcfPLJOeigg3o6IwAA0E9YWwAAwB+85Q76+fPn59RTT83KlStz1FFHpbW1NR/84AezatWqnHbaafmv//qv3sgJAAD0cdYWAACwvbfcQX/VVVflhhtuyAc+8IE3PPfwww/nH/7hH/Kxj32sR8IBAAD9h7UFAABs7y0L+o6OjhxyyCFv+tyf/umfpqOjo+ahAACA/sfaYtd897vfzrJlS0rHoE4sXbr1d2H27EsLJ6FejB07PjNnnlE6BgA18pYF/THHHJOvfOUrOe+88zJu3Lhtjy9dujTXXHNNjjnmmB4NCAAA9A/WFrtm2bIlefLpZ9K4V0vpKNSBaldjkuSZZb8tnIR60LWxs3QEAGrsLQv6yy67LLNmzcrHPvaxNDU1ZZ999snLL7+cLVu25Pjjj89ll13WGzkBAIA+ztpi1zXu1ZLB448rHQOoM68suad0BABq7C0L+qFDh+aqq67Khg0b8vzzz+fll1/OPvvskwMPPDB77713b2QEAAD6AWsLAADY3lsW9L+39957Z8KECUmS+fPnb/szvNaiRfenrW1h6Rh1ZyCfFzl58tRMmjSldAwAoI5YWwAAwFaVPfmiiy66qNY50tHRkc985jM54YQT0tramnPOOScvvPBCzd8HAACoHz2xtgAAgL5il3fQv1Z3d3etc6ShoSGf/vSnc/TRRydJZs+enSuuuMI5lH3MpElTBvxu6TPPnPmGx84//6sFkgAA1L+eWFsAAEBfsUc76I888sha50hLS8u2cj5JDj/88Cxfvrzm7wM97bDDjthufMQRtf/vBQCgv+iJtQUAAPQVu7yD/pprrtn250MPPXTbuLm5OaNGjcqHP/zh7LfffjUJVa1Wc8stt2TatGm79XXDhw+pyfvD2/F//s+stLa2bhvPmvW1gmkA+oYRI95ROgLQi3pzbQEAAPVslwv6559/PnfffXcOO+ywjB49OitWrMjixYszbdq03HfffZk1a1a++c1vZsqUt3+8yaWXXprBgwfn9NNP362vW7t2fapVl8hS3t57750NGzbkiCOOzJo1L5WOA1D3zJWUVKk02OjRy3pzbQEAAPVslwv6arWaq6++Oh/96Ee3PfbjH/848+fPz6233pq5c+fmyiuvfNt/iZ49e3aWLFmS66+/PpXKHp3AA8WNG3dgkuScc75YNghQdxYtuj9tbQtLx6g7s2dfWjpCEZMnTx3w925hYOqttQUAANS7XW7A29ra3nDkzEc+8pHcf//9SZLp06dn2bJlbyvMVVddlccffzzXXXddmpub39b3AgAA6lNvrC0AAKAv2OUd9OPGjcstt9yy3bEz3/ve9zJu3LgkSUdHR/bee+89DvL000/nhhtuyIEHHpjTTjstSTJmzJhcd911e/w9AaDeTJo0ZcDvmD7zzJlveOz8879aIAlQSk+vLQAAoK/Y5YL+n/7pn/L5z38+//qv/5qRI0dm1apVaWxszD//8z8nSZ577rn8/d///R4HOfjgg/Pkk0/u8dcDAH3DZz97Tm644dpt48997tyCaYASenptkWwt+f/xH/8xS5cuTXNzc8aPH59LLrkk73znO2vxIwBQ0He/++0sW7akdAzqxNKlW38XBuqxmbzR2LHjM3PmGaVj7LJdLugPOeSQ3HnnnXn00UezevXqjBgxIocffniampqSJEcddVSOOuqoHgsKAPQPRx99zHYF/VFHfahgGqCE3lhbNDQ05NOf/nSOPvroJFvvdXXFFVfksssue9v5AShr2bIlef6ZX2XUkF2utejHBqeaJNm48pnCSagHK9dvKR1ht+3WTNbU1JQjjzyyp7IAAAPEqFGjs3LlCrvnYQDr6bVFS0vLtnI+SQ4//PDccsstPfZ+APSuUUMG5W8Oc1UUsL05i18oHWG3+agRAOh1Q4e2ZOjQFrvngV5RrVZzyy23vOHGtDszfPiQHky0c01NjcXeG6h/TU2NGTHiHaVjFNXU1JiNpUMAdauvzZMKegAAoF+79NJLM3jw4O1uSvtW1q5dn2q1uwdT7djmzV1F3hfoGzZv7sqaNS+VjlGUeRLYmdLzZKXSsFubPRT0AABAvzV79uwsWbIk119/fSqVSuk4AACwHQU9AADQL1111VV5/PHH8y//8i9pbm4uHQcAAN5AQQ8AAPQ7Tz/9dG644YYceOCBOe2005IkY8aMyXXXXVc4GQAA/IGCHgAA6HcOPvjgPPnkk6VjAADATjmEEQAAAAAAClDQAwAAAABAAQp6AAAAAAAoQEEPAAAAAAAFKOgBAAAAAKAABT0AAAAAABSgoAcAAAAAgAIU9AAAAAAAUICCHgAAAAAAClDQAwAAAABAAQp6AAAAAAAoQEEPAAAAAAAFKOgBAAAAAKAABT0AAAAAABSgoAcAAAAAgAIU9AAAAAAAUICCHgAAAAAAChhUOkB/8d3vfjvLli0pHYM6sXTp1t+F2bMvLZyEejF27PjMnHlG6RgAAAAA1BEFfY0sW7YkTz79TBr3aikdhTpQ7WpMkjyz7LeFk1APujZ2lo4AAAAAQB1S0NdQ414tGTz+uNIxgDrzypJ7SkeoC6404rVcacRrucoIAAAYqBT0APSKZcuW5PlnfpVRQ/yvh2RwqkmSjSufKZyE0lau31I6AgAAQDFaEgB6zaghg/I3h72zdAygjsxZ/ELpCAAAAMVUSgcAAAAAAICBSEEPAAAAAAAFKOgBAAAAAKAABT0AAAAAABSgoAcAAAAAgAIU9AAAAAAAUEBdFfTPPfdcTj311Jxwwgk59dRT8/zzz5eOBAAAAAAAPaKuCvqvfe1rmTlzZu68887MnDkzF110UelIAAAAAADQIwaVDvB7a9euzS9/+cvMmTMnSXLSSSfl0ksvzQsvvJB3vvOdhdO9tXXrOtO1sTOvLLmndBSgznRt7My6dXUz3Razbl1nOtZvyZzFL5SOAtSRleu3ZNi6ztIxAIA+xNoC2JG+uL6om8ZoxYoVGTlyZBobG5MkjY2N2X///bNixYpdLuiHDx/SkxF3qrGxri5GAOpMY2MlI0a8o3SMosyTwI6YIwEAgIGqbgr6Wli7dn2q1e4i7z1kyL5p3GtTBo8/rsj7A/XrlSX3ZMiQfbNmzUuloxQ1ZMi+GTRkdf7msPq/KgroPXMWv5C9Cs+RlUpD0Y0eAMDuGTq0Jf/Xht9aWwBvMGfxC9lraEvpGLulbrYzjh49OqtWrUpXV1eSpKurK6tXr87o0aMLJwMAAAAAgNqrmx30w4cPz4QJEzJ//vycfPLJmT9/fiZMmNAnzp8HAACoFfe3AnbE/a0A+p+6mtUvvvjiXHDBBfnWt76VfffdN7Nnzy4dCQAAAAAAekRdFfQHHXRQvv/975eOAQAAUMzQoS1Z8+IW97cC3uCVJfdkaB87WxmAnaubM+gBAAAAAGAgUdADAAD90nPPPZdTTz01J5xwQk499dQ8//zzpSMBAMB2FPQAAEC/9LWvfS0zZ87MnXfemZkzZ+aiiy4qHQkAALZTV2fQA9C/rVy/JXMWv1A6BnVg/aZqkmRIs70CA93K9VtyYOkQ9Etr167NL3/5y8yZMydJctJJJ+XSSy/NCy+8kHe+852F0wEAwFYK+hrq2tiZV5bcUzoGdaC6ZWOSpDJor8JJqAddGzuT7Fc6RnFjx44vHYE6snrpkiTJfqP8Xgx0B8b8QM9YsWJFRo4cmcbGxiRJY2Nj9t9//6xYsWKXCvrhw4f0dMQdampqLPbeQP1ramrMiBHvKB2jqKamxmwsHQKoW31tnlTQ14iFJa+19HfF07ixSlmSZD9zRJKZM88oHYE6Mnv2pUmS88//auEkAG9u7dr1qVa7i7z35s1dRd4X6Bs2b+7KmjUvlY5RlHkS2JnS82Sl0rBbmz0U9DWieOK1FE8AAGWNHj06q1atSldXVxobG9PV1ZXVq1dn9OjRpaMBAMA2Dn4FAAD6neHDh2fChAmZP39+kmT+/PmZMGGC8+cBAKgrdtADAAD90sUXX5wLLrgg3/rWt7Lvvvtm9uzZpSMBAMB2FPQAAEC/dNBBB+X73/9+6RgA9ICV67dkzuIXSsegDqzfVE2SDGl2UAhb54YDS4fYTQp6AAAAAPqMsWPHl45AHVm9dEmSZL9Rfi9IDkzfmyMU9AAAAAD0GTNnnlE6AnVk9uxLkyTnn//Vwklgz7j2AwAAAAAAClDQAwAAAABAAY64AQAAqDNdGzvzypJ7SsegDlS3bEySVAbtVTgJ9aBrY2eS/UrHAKCGFPQAAAB1pK/d2IyetfR3Nz8cN1YpS5LsZ44A6GcU9AAAAHXEzQ95LTc/BID+zRn0AAAAAABQgIIeAAAAAAAKUNADAAAAAEABCnoAAAAAAChAQQ8AAAAAAAUo6AEAAAAAoAAFPQAAAAAAFKCgBwAAAACAAhT0AAAAAABQgIIeAAAAAAAKUNADAAAAAEABCnoAAAAAAChAQQ8AAAAAAAUo6AEAAAAAoAAFPQAAAAAAFKCgBwAAAACAAhT0AECvW7r0+Tz55BO59tqrSkcBAACAYhT0AECv27BhQ5Lkf/7nZ4WTAAAAQDmDSgcAgIFk0aL709a2sHSMopYufX678d/93aczbtz4MmEKmzx5aiZNmlI6BgAAAIXURUE/a9astLe3p7m5OYMHD86FF16Y9773vaVjwR7buHFDli5dkmXLlmTs2IFZOgHsyO93z/9h/EqhJAAAAFBWXRT0U6ZMyVe+8pU0NTXlvvvuyxe+8IX8+Mc/Lh0L9tiyZUvT3d2db3zj/82VV15bOg5QRyZNmjLgd0yfeebMNzx2/vlfLZAEAAAAyqqLM+g/8pGPpKmpKUly+OGHZ+XKlalWq4VTwZ5ZuvT5bb+/HR0vZNmyJYUTAQAAAAD1qC520L/WzTffnGOPPTaVyu5/djB8+JAeSMTuuPfee3P33XeXjlHUE088sd34kkv+n0yYMKFQmvI++tGPZtq0aaVjAHVuxIh3lI4AAAAAva5XCvoZM2Zk+fLlb/rcAw88kMbGxiTJHXfckXnz5uXmm2/eo/dZu3Z9qtXuPc7J2/fiixuyeXNX6RhFdXV1vWE8kP+dvPjihqxZ81LpGECdM09QUqXSYKMHAABQRK8U9HPnzn3L19x99925+uqrc9NNN2W//fbrhVT0BGcrO1sZAAAAANg1dXHEzX333Zevf/3rmTNnTsaMGVM6DgAAAAAA9Li6KOi//OUvp6mpKeeee+62x2666aYMGzasYCoAAAAAAOg5dVHQP/jgg6UjAAAAAABAr6qUDgAAAAAAAAORgh4AAAAAAAqoiyNuAAAAamXWrFlpb29Pc3NzBg8enAsvvDDvfe97S8cCAIA3sIMeAADoV6ZMmZJ58+bl9ttvz2c/+9l84QtfKB0JAADelB30AABAv/KRj3xk258PP/zwrFy5MtVqNZWK/UkAANQXBT0AANBv3XzzzTn22GN3u5wfPnxIDyWC3dPU1JgkGTHiHYWTANQn8yR9nYIeAADoU2bMmJHly5e/6XMPPPBAGhu3LtTvuOOOzJs3LzfffPNuv8fatetTrXa/rZxQC5s3dyVJ1qx5qXASgPpknqTeVCoNu7XZQ0EPAPSqkSNHZ9WqFdvGo0aNLpgG6Ivmzp37lq+5++67c/XVV+emm27Kfvvt1wupAABg9zmEEQDoVZ/73OdfNz63UBKgv7rvvvvy9a9/PTfeeGPGjBlTOg4AAOyQHfRQYyNG7J81a1ZvNwbgD8aNO3DbLvpRo0Zn7NjxpSMB/cyXv/zlNDU15dxz//AB4E033ZRhw4YVTAUAAG+koIcaGz36gO0K+gMOOKBgGoD69LnPfT6zZ19q9zzQIx588MHSEQAAYJc44gZq7LHHHtlu/Oijj+zglQAD1777Ds3YseOz775DS0cBAACAYhT0UGPd3d07HQOQzJs3N08//WRuv/0HpaMAAABAMQp6AKBXdXZ2pK1tYbq7u9PWdn/WressHQkAAACKUNBDjb3+prBuEguwvXnz5qZa3Xp1UbVatYseAACAAUtBDzU2fvwf7XQMMNC1ty9KV9eWJElX15a0ty8qnAgAAADKUNBDjS1e/POdjgEGuokTJ6VS2fpXkEqlkokTJxVOBAAAAGUo6KHGurqqOx0DDHStrTNSrW6dG6vVaqZP/3jhRAAAAFCGgh5q7PfHNuxoDDDQvfjiup2OAQAAYKBQ0EONDR68z07HAAPdv/zLdduNb7jh2kJJAAAAoCwFPdTYJz/5N9uN//qvzyqUBKA+LV/+m52OAQAAYKBQ0EONPfXUr7Yb/+pXvyyUBKA+jRw5eqdjAAAAGCgU9FBj7e2LdjoGGOjGjh233XjcuPGFkgAAAEBZCnqosYkTJ6WxcVCSpLFxUCZOnFQ4EUB9eeyxR7cbL178SKEkAAAAUJaCHmqstXVGKpWGJEmlUsn06R8vnAigvgwfPnynYwAAABgoFPRQYy0twzJ58tQ0NDRk8uQpGTq0pXQkgLqydu3anY4BAABgoFDQQw+YOnVa9tprrxx77HGlowDUnWOOmZyGhq1XGjU0NOSYYyYXTgQAAABlKOihByxceG82btyYBQvuKR0FoO60ts7Ydq+OQYMGOQoMAACAAUtBDzXW2dmRtraF6e7uTlvb/Vm3rrN0JIC60tIyLB/+8O+PApvqKDAAAAAGLAU91Ni8eXNTrXYnSarVam6//QeFEwHUn9bWGTn44PfYPQ8AAMCApqCHGmtvX5Suri1Jkq6uLWlvX1Q4EUD9aWkZlgsuuMjueQAAAAY0BT3U2MSJk7adrdzYOCgTJ04qnAgAAAAAqEcKeqix1tYZqVQakiSVSsXxDQAAAADAm1LQQ421tAzL5Mm/v/nhFMc3AAAAAABvalDpANAfTZ06LQ8+uCjHHntc6SgAANAnLVp0f9raFpaOUdzSpUuSJLNnX1o4SXmTJ0/NpElTSscAgJqqq4L+oYceyqc+9alceOGFOf3000vHgT22cOG92bhxYxYsuCef/OSZpeMA1J3Ozo5cf/0/53OfO9eVRgCwE0OHDi0dAahTPsjcygeZf+CDzL6pbgr69evX54orrsiUKX6J6Ns6OzvS1rYw3d3daWu7P9Onf1z5BPA6t932vTz11K9y223fy1ln/W3pOADUoUmTpigZAHhLPsikr6ubgv7yyy/PWWedlQULFpSOAm/LvHlzU612J0mq1Wpuv/0HdtEDvEZnZ0cefHBRkqS9vS1/8Ren+SATAAB2kw8yoX+oi4J+4cKFeemll3LiiSe+rYJ++PAhtQsFe+jBBxelq2tLkqSra0sefHBRvvjFvy+cCqB+/Md//Fuq1WqSrR9kzp///+W8884rnAoAAAB6X68U9DNmzMjy5cvf9Lkf/ehHufLKKzNnzpy3/T5r167ftnMZSvnQhybl/vsXpKtrSxobB+VDH5qUNWteKh0LoG4sXLj9OZkLFizIX/3VWYXSQFKpNNjoAQAAFNErBf3cuXN3+NzPfvazrFmzJqecckqSpKOjI/fdd186Oztzzjnn9EY8qKnW1hlpa1uYrq6kUqlk+vSPl44EAAAAANSh4kfcHHnkkWlvb982vuCCC3LooYfm9NNPL5gK9lxLy7BMnjw1Cxbck8mTpzhXGeB1jj76mDzwwE+2GwMAAMBAVCkdAPqj1tYZOfjg99g9D/Am/uIvTttufMopnyiUBAAAAMoqvoP+9S6//PLSEeBta2kZlgsuuKh0DAAAAACgjtlBDwD0qnnztr83ze23/6BQEgAAAChLQQ8A9KoHHmjb6RgAAAAGCgU99IDOzo5cfvklWbeus3QUgLozfPjwnY4BAABgoFDQQw+YN29unn76Scc2ALyJtWvX7nQMAAAAA4WCHmqss7MjbW0L093dnba2++2iB3idD3zgqO3GRx75wUJJAAAAoCwFPdTYvHlzU612J0mq1apd9ACvs379+teNXyqUBOjvHnrooUyYMCH/8R//UToKAAC8KQU91Fh7+6J0dW1JknR1bUl7+6LCiQDqy+LFP99u/OijP9/BKwH23Pr163PFFVdkypQppaMAAMAOKeihxiZOnJTGxkFJksbGQZk4cVLhRAAAA8/ll1+es846K8OGDSsdBQAAdmhQ6QDQ37S2zkhb28J0dSWVSiXTp3+8dCSAujJy5OisWrVi23jUqNEF0wD90cKFC/PSSy/lxBNPzIIFC/boewwfPqS2oQBF9AocAAAME0lEQVQA4E0o6KHGWlqGZfLkqVmw4J5MnjwlQ4e2lI4EUFc+97nP5+KLv/Ka8bkF0wB90YwZM7J8+fI3fe5HP/pRrrzyysyZM+dtvcfateu33VcIAAB2VaXSsFubPRT00AOmTp2WBx9clGOPPa50FIC6M27cgdl778HZsOGV7L334IwdO750JKCPmTt37g6f+9nPfpY1a9bklFNOSZJ0dHTkvvvuS2dnZ84555zeiggAALtEQQ89YOHCe7Nx48YsWHBPPvnJM0vHAagrnZ0d2bx5U5Jk8+ZNWbeu09VGQM0ceeSRaW9v3za+4IILcuihh+b0008vmAoAAN6cm8RCjXV2dqStbWG6u7vT1nZ/1q3rLB0JoK7Mmzc33b87NaK7O7n99h+UDQQAAACFKOihxubNm7vtvNJqtap4Anid9vZF6erakiTp6tqS9vZFhRMB/dnll19u9zwAAHVLQQ81pngC2LmJEyeloaEhSdLQ0JCJEycVTgQAAABlKOihxiZOnJTGxq23d2hsHKR4AnidqVOnpft3Z9x0d3e7oTYAAAADloIeaqy1dUYqla07QyuVSqZP/3jhRAD1ZeHCe5M0/G7UkAUL7ikZBwAAAIpR0EONtbQMy1FHfShJctRRR2fo0JbCiQDqy9ajv353l9h0OwoMAACAAUtBDz1g06ZNSZLNmzcVTgJQfyZOnJRKpTFJUqk0OgoMAACAAUtBDzXW2dmR//mfnyZJHn74p1m3rrNwIoD60to6I93d1SRbz6B3FBgAAAADlYIeauy2276XanVr8VStVnPbbd8rnAig/jQ0NPzun4WDAAAAQEEKeqixhx56YLvxgw86WxngtebNm/uagr4ht9/+g8KJAAAAoAwFPQDQq9rbF6WrqytJ0tXV5SaxAAAADFgKeqixo48+ZqdjgIFu4sRJaWwclCRpbBzkJrEAAAAMWAp6qLHjj/+/txufcMLHCiUBqE+trTO2HXFTqTS4SSwAALDHOjs7cvnll2Tdus7SUWCPKOihxhYuvHe78YIF9xRKAlCfWlqGZf/990+SjBixf4YObSmcCAAA6KvmzZubp59+0r2t6LMU9FBjrz9L2dnKANvr7OzI6tWrkiSrV6+20wUAANgjnZ0daWtbmO7u7rS13W9tQZ+koIcac7YywM7Nmzc33d1b/9zd3W2nCwAAsEfmzZubanXr4qJarVpb0Ccp6KHGWltnpFL5/dnKFWcrA7xOe/uidHVtSZJ0dW1xpREAALBHrC3oDxT0UGMtLcMyefLUNDQ0ZPLkKc5WBngdVxoBAAC1YG1Bf6Cghx7Q2jojBx/8HrvnAd6EK40AAIBasLagP1DQQw9oaRmWCy64yO55gDfhSiMAAKAWrC3oDwaVDgAADDytrTPym9/82g4XAADgbbG2oK9r6O7u7i4dolbWrl2/7c7NAACwKyqVhgwfPqR0DOqMtQUAAHtid9cXjrgBAAAAAIACFPQAAAAAAFBA3ZxB/53vfCc333xzmpqaUqlU8sMf/rB0JAAAAAAA6DF1UdDfdddd+dGPfpTbbrstQ4YMyW9/+9vSkQAAAAAAoEfVxRE3//7v/55zzjknQ4ZsPTx/v/32K5wIAAAAAAB6Vl3soH/22Wfz6KOP5pprrsmmTZty2mmn5S//8i93+/vszt1xAQAAAACgpF4p6GfMmJHly5e/6XMPPPBAurq6smLFinz3u99NR0dHPvGJT+SP/uiPctRRR+3W+6xduz7VanctIgMAMEBUKg02egAAAEX0SkE/d+7cnT7/rne9KyeddFIqlUqGDx+eY445JosXL97tgh4AAAAAAPqKujiD/qSTTspPfvKTJMkrr7yShx9+OH/yJ39SOBUAAAAAAPScuijoP/WpT2XFihX5sz/7s5xyyilpbW3NpEmTSscCAAAAAIAe09Dd3d1vDm3v6HjZGfQAAOyWSqUhw4btUzoGdcbaAgCAPbG764t+VdADAAAAAEBfURdH3AAAAAAAwECjoAcAAAAAgAIU9AAAAAAAUICCHgAAAAAAClDQAwAAAABAAQp6AAAAAAAoQEEPAAAAAAAFKOgBAAAAAKAABT0AAAAAABSgoAcAAAAAgAIGlQ4Afdm0adPS3Nyc5ubmbNiwIX/8x3+cz3zmMzniiCPyxBNPZNasWXniiScyderUfPOb3ywdF6DX7WyevPXWW/Od73xn22s//elP5+STTy6YFgDKsr4A2DFrC/orBT28Td/85jfz7ne/O0ly11135eyzz86NN96YUaNG5ctf/nKeeOKJPPDAA4VTApSzo3ly/Pjx+c53vpOWlpasXLkyJ598cj7wgQ9kzJgxhRMDQDnWFwA7Zm1Bf+SIG6ih448/PqeddlpuvPHGjBw5Mu973/vS3NxcOhZA3XjtPHn00UenpaUlSTJq1Kjsv//+WblyZeGEAFA/rC8Adszagv5CQQ819r73vS/PPPNM6RgAdevN5smHHnooL774Yg499NBCqQCgPllfAOyYtQX9gYIeaqy7u7t0BIC69vp58plnnsn555+fK6+8MnvttVehVABQn6wvAHbM2oL+QEEPNfbYY4/l4IMPLh0DoG69dp58/vnnc/bZZ2fWrFk58sgjCycDgPpjfQGwY9YW9AcKeqihH//4x7nlllty5plnlo4CUJdeO08uW7YsZ511Vi688MJMnTq1dDQAqDvWFwA7Zm1Bf9HQ7Xo52GPTpk1Lc3Nzmpubs2HDhhx00EE5++yzc8QRR+TXv/51Zs6cmY0bN+bVV1/N0KFD8/nPfz6nnHJK6dgAvWZn8+S5556bRYsWZcyYMdte/6UvfSkf/vCHCyYGgHKsLwB2zNqC/kpBDwAAAAAABTjiBgAAAAAAClDQAwAAAABAAQp6AAAAAAAoQEEPAAAAAAAFKOgBAAAAAKAABT1AP3DBBRfk6quvLh0DAADo46wtAHqXgh4AAAAAAApQ0AMAAAAAQAEKeoA+6Je//GVmzJiR97///TnvvPPy6quvbnvu1ltvzUc/+tF88IMfzN/+7d9m1apVSZLu7u5cdtllmThxYo444oi0trbmqaeeSpJs2rQps2fPzrHHHptjjjkmF110UTZu3FjkZwMAAHqPtQVAWQp6gD5m06ZN+bu/+7ucfPLJ+e///u+ceOKJueuuu5Ik7e3tufLKK/ONb3wjbW1tOeCAA/LFL34xSdLW1paf/exnufPOO/Pwww/nG9/4RlpaWpIkV1xxRZ577rn853/+Z+66666sXr061113XbGfEQAA6HnWFgDlKegB+phHH300mzdvzl//9V+nqakpJ554Yt773vcmSebNm5c///M/zyGHHJLm5uZ88YtfzCOPPJJf//rXGTRoUF5++eX87//+b7q7u3PQQQdl//33T3d3d2699dZ85StfSUtLS4YMGZLPfvazueOOOwr/pAAAQE+ytgAob1DpAADsntWrV2fkyJFpaGjY9ti73vWubc8dcsgh2x7fZ5990tLSklWrVmXixIn5q7/6q1xyySX5zW9+k+OPPz7nn39+Xn311WzYsCEf//jHt31dd3d3qtVq7/1QAABAr7O2AChPQQ/Qx4wYMSKrVq1Kd3f3tr9IL1++PGPHjs3++++f3/zmN9te+8orr6SzszMjR45Mkpxxxhk544wzsnbt2px33nn5t3/7t5x77rnZa6+9cscdd2x7HQAA0P9ZWwCU54gbgD7m8MMPz6BBg/Ltb387mzdvzl133ZXHHnssSXLSSSflBz/4QZ544ols2rQpV111VQ477LCMGTMmixcv3nYJ6957753m5uZUKpVUKpWccsopueyyy7J27dokyapVq/KTn/yk5I8JAAD0MGsLgPIauru7u0uHAGD3PPbYY/nqV7+aJUuWZOrUqUmS8ePH5wtf+EJuueWW3HjjjXnxxRfz/ve/P7NmzcqoUaPS3t6eyy67LL/+9a/T3NycyZMn55JLLsk+++yTV199Ndddd13uuOOOdHR0ZOTIkfnEJz6RM844o/BPCgAA9CRrC4CyFPQAAAAAAFCAI24AAAAAAKAABT0AAAAAABSgoAcAAAAAgAIU9AAAAAAAUICCHgAAAAAAClDQAwAAAABAAQp6AAAAAAAoQEEPAAAAAAAF/P/KH7/PmJReuAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 468 + }, + "id": "mQc5feD-7UWT", + "outputId": "4fcf83b6-67c3-4128-8295-4135ce7ff2b7" + }, + "source": [ + "# Criação do Canva:\n", + "fig, axs = plt.subplots(figsize = (26, 7), ncols = 2)\n", + "\n", + "#Box Plot aplicado ao banco de dados Gerais:\n", + "ax1 = sns.boxplot(y='g-0', x='tempo' , data=dados, ax = axs[0])\n", + "ax1.set_title('Comportamento do \"g-0\" em relação ao tempo (Banco de Dados Geral)', fontsize = 18)\n", + "\n", + "#Box Plot aplicado aos cinco principais compostos:\n", + "ax1 = sns.boxplot(y='g-0', x='tempo' , data=top_compostos, ax = axs[1])\n", + "ax1.set_title('Comportamento do \"g-0\" em relação ao tempo (5 Principais Compostos)', fontsize = 18)\n", + "\n", + "plt.show()" + ], + "execution_count": 39, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABeMAAAHDCAYAAACnAgGMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVhUZfsH8O8wiBsqi6DmlpmDC4oKgiyG4IKWuOWaO5qRVi6Zae9buZRLr72aZmqaK+KGkGiWIRoG4lKmlmvirqnIpoiAzJzfH7wzPw4zDDMww2HG7+e6uq7u42Hmnjnr/czzPEcmCIIAIiIiIiIiIiIiIiIyGxupEyAiIiIiIiIiIiIisnZsjCciIiIiIiIiIiIiMjM2xhMRERERERERERERmRkb44mIiIiIiIiIiIiIzIyN8UREREREREREREREZsbGeCIiIiIiIiIiIiIiM2NjPFEFcHNzw6xZs6ROgypYRW73Dz74AB06dMD06dORkZGB8ePHY9OmTRXy3mR+ly9fRuvWrZGUlCR1KpXWihUr4Obmhtu3b0udiskcP34cbm5uiI6OljqVSk/X9t+0aRN8fHyQlZUlYWZEROXHWuL5xFqCTMUSaomK2t9nzZoFNzc3s7+PWnBwMEaNGlVh70cVq6z1xnPXGP/06VNs3LgRb7zxBry9vdGmTRv4+fnhzTffRHR0NAoKCqROscJduHABK1assKoGDF1u376NFStW4MKFC1KnYhLqRprjx48DKDzJm/PilZCQgGHDhqF9+/bw9vbGe++9h1u3bmmtN2rUKM3FJjo62uoaxyqjlJQU/PDDD5gyZQru3bsHPz8/XLx4ESEhIVKnVm7WdtyW1aJFi9CxY0f4+/trlqnPAUX/a9u2Lbp164bZs2cjJSVFwoyth/qGveh37OfnhxEjRmDp0qU6z4PWRKlUYs+ePXjzzTfh7+8Pd3d3dOjQAX379sX8+fNx9uxZqVMs0bBhw1ClShV88803UqdCVoS1hDbWEpaJtQSpsZawfrpqCQBatYT6vw4dOhj82rrqkZ49e2LhwoXIzMw09Ueh/7l27RrmzJmDXr16oX379mjXrh1CQkLw8ccfV+r784qwcePGCuvMVNZ6w9ZM+VRKN27cwMSJE3H9+nX4+flh4sSJcHR0RFpaGpKTkzF79mxcuXIFM2fOlDrVCnXhwgV8/fXX8Pb2RqNGjaROx2zu3LmDr7/+Gg0bNkSrVq2kTsei/Pzzz3jvvffQsmVLfPDBB8jOzsamTZswfPhw7N69G/Xq1ZM6xedao0aN8PPPP6NRo0YYO3YsUlNTUadOHdjZ2UmdWrnxuAX++OMPJCUlYeXKlTr/vU+fPnjllVcAAHl5ebh06RJ27dqFAwcOYO/evWjYsGFFpmu15syZgxo1akCpVCIjIwNnz57F+vXr8d133+H999/HuHHjpE7R5NLT0zF58mScOnUKbdq0wfDhw1G/fn3k5eUhJSUF8fHxiIiIwPbt240q2ipK1apVMWzYMKxZswbh4eFwdHSUOiWycKwldGMtQaVhLVG5sZawbqXVEl5eXhgyZIhoWZUqVYx6j1atWmnuhbOyspCQkICNGzfi6NGj2L17t0H70tmzZ2FjY/7+wvPnz8fcuXPN/j5qP/30k8lfc9euXZg7dy7s7OzQp08ftGzZEra2trh27Rp+/vln7Ny5Ez/88ANefvllk7+3Jdi8eTMaNmyIgQMHmv29ylpvPDeN8bm5uXjrrbc0v4z27NlT9O8TJ07E2bNn8eeff0qUYcXLzs6Gvb291GlQJffs2TPMnz8fDRo0wNatW1GzZk0AwCuvvIKBAwfi66+/xvz58yXO0ryUSiXy8/NRvXp1qVPRqWrVqqLi18XFRcJsyNQiIyPh6OiIwMBAnf/eunVr9OvXT7SsadOm+PzzzxEXF4exY8dWQJbWLyQkBE5OTqJld+/exVtvvYVFixahXr16ePXVVyXKzvQEQcCUKVNw6tQpfPzxxxg5cqTWOh999BGio6NNWqwLgoCcnBzNtaa8+vXrhxUrViAmJgZhYWEmeU16PrGW0MZaggzBWoK1BEmrtFqicePGWrWEserVqyd6jdGjRyM8PByHDx9GfHw8evfurfPvcnNzYWtrC1tbW1StWrVcORjK2B8aysvUP2odPXoUn3zyCV5++WWsW7dO68fM999/HxERESZ9T9KvLPXGczNNza5du3Dt2jWMGzdO6+ZZrV27dhgxYoRo2cGDBzXD6Tp06IBhw4bh4MGDWn+rngfq4sWLGDt2LDp06ABfX18sWrQIBQUFyMvLw+LFi9GlSxe0bdsWI0aM0JpCQD0M7+jRo1ixYgWCgoLg7u6O0NBQ/PDDDzpzNja/8+fPY/z48fD09ETfvn2xYsUKzJ49G0DhCVM9tEg9RDE7OxtLly7F4MGD4ePjA3d3d/To0QNLlizB06dPRe9RdG7brVu3IiQkBG3btkVoaCgOHz4MALh06RLGjx+Pjh07wsfHB5999hmePXumle/169fxwQcfICAgAO7u7ggODsbixYuRk5MjWk89fcDjx4/x6aefwtfXF23btsWwYcNw5swZ0Xc7evRoAMDs2bM1n7Po3F05OTn48ssv0b17d7i7u8Pf3x8zZ87EnTt3dH73uvz9998YP368Zvjl+++/j7S0NJ3rFhQU4Ntvv8Wrr76Ktm3bwsfHB5MnT8alS5cMfr/SKJVKrFy5EkFBQZptsX//fqPmVj558iQePHiAQYMGiRpHWrVqBW9vb+zfv1/nNiwLY7d7RkYGZs2aBR8fH3To0AGTJk1CamoqAGDHjh3o3bs32rZti169euk8LnQpehyuXLkS3bt3R7t27fDjjz8CKGwoioyMxMCBA+Hh4YEOHTpg1KhROHbsmEGvv3//foSHh6Nr165wd3eHj48PJk2ahIsXL+pc//z583jvvffg5+cHd3d3BAYGYvr06bh582aZX9PQ80ZJtm7dirCwMHTp0gXu7u4ICAjAjBkzStyfdu3ahQEDBqBdu3bw9PREWFgYfvvtt1Lfx5Dj1tDtcfv2bbi5uWHFihXYv38/+vXrh3bt2qFHjx7YvXs3gMKG1ffeew/e3t7o0KEDZsyYgezsbNHrqPe99PR0zJw5Ez4+Pmjfvj3GjBmDc+fOaX2G8h7nBQUFOHjwIPz8/Iy6cXR1dQWgfbNpzLZTXwv++OMPjBw5Eu3bt4ePjw/+9a9/4cmTJ1rrp6am4rPPPkO3bt3g7u4OX19fjBs3TmtuypMnT2LcuHHw9PREu3btMGDAAOzatcvgz6ZSqbBmzRoEBwejbdu26NOnD2JjY0tc/8GDB/j00081x0dAQAA+/vjjEs/NxnjhhRewfPly2NjYYOnSpaJ/S0xMxNSpU9GtWze0a9cOXl5eCAsLw4kTJ3S+1sGDB9G/f3+0bdsWgYGBWLZsWYnTXaSnp2Pu3LkIDAzUnBfmzp2LjIwM0Xp5eXlYsWIFQkJC4OHhAS8vL4SGhmLx4sWlfrbDhw/jxIkT6NOnj86GeACwtbXFkCFD0KZNG9Hy/Px8rF69Gq+99hratm0LLy8vhIeH4/z586L1it83qI+T9evXAyjsITVr1ixN/urzVVxcXKn5qzVu3BjNmjUzS68ker6wlmAtwVqCtYQhWEuUjrVE5asl8vPzdd7fl0dAQAAAaPa1op999uzZ8PPzQ/v27XHv3j0AuueMN0c9omvOeGO3izH7sK4540+dOoUJEybA398fbdu2RZcuXfDmm2/i9OnTpX6vS5YsgSAIWLp0qc5RRba2thg7dqyoV7yh1ydTXYdHjRqF4OBg3Lp1C2+//TY8PT3RsWNHTJ48Wef0ZIbmp1KpsHHjRoSGhqJDhw7o2LEjQkJC8NFHH2lycHNzw507d3DixAnR9ElFt42h5zBDt1NZ6o3npmf8gQMHAABDhw41+G+2bt2KefPm4aWXXsKkSZMAADExMZg8eTLmzZun9Vr37t3DuHHj8OqrryIkJARJSUnYsGED5HI5rly5gtzcXEycOBEZGRlYv349Jk2ahB9//FFrKM6SJUuQk5OD4cOHAyi8iEyfPh15eXmiYRbG5nf37l2MGTMGvXr1Qs+ePZGTkwNfX1+kpqZix44dCA8Px0svvQQAaNKkCQDg/v37iIqKQs+ePdGnTx/Y2trixIkTWLduHS5cuIDvvvtO5/f26NEjDB48GHZ2dtiyZQveeecdfPXVV/j3v/+NPn36oHv37khKSsKWLVvg5OSkyR8A/vrrL4wZMwa1a9fG0KFDUa9ePVy8eBFbtmzBH3/8gS1btmhdSMaPHw8nJydMnjwZmZmZ2LBhAyZOnIj4+HjY29ujU6dOCA8Px+rVqzF06FB4enoCAOrWrQugsMfG+PHjcerUKYSEhGDcuHG4ceMGtm3bhqSkJOzevRv169fXu7/cunULI0aMQH5+PkaMGIEGDRrg8OHDmDBhgs71Z8yYgR9//BH+/v4YPnw4Hj58iK1bt2LYsGHYunUrWrdurff9DDFv3jxs374dPj4+CAsL0zTgGDNthbqHl64pCNq3b49jx47h+vXraNGiRblyLct2nzBhAurXr4/33nsPN2/e1OxrPXr0wM6dOzFo0CDNPjhlyhT89NNPaNy4sUH5LF68GAUFBRgyZAhq1qyJZs2aASh8uNEPP/yAkJAQDBw4EPn5+di7dy/CwsKwYsUKdOvWTe/rRkREwMHBAUOGDIGLiwtu3ryJnTt3Yvjw4YiJicGLL76oWffw4cN49913UaNGDQwaNAhNmzZFamoqEhMTcfnyZc1xasxrGnve0GX9+vVo3749Ro0aBQcHB1y+fBlRUVE4duwY9u7dKxqa9Z///Afr1q1Du3btMH36dGRnZ2Pnzp0YM2YMvvnmmxJ7aAAo9bgty/Y4fPgwtm/fjuHDh8PBwQFRUVH46KOPUKVKFSxduhSdO3fGtGnT8Oeff2L37t2oWrUqPv/8c63cJkyYgDp16uCdd97Bw4cPERERgZEjR2LHjh1QKBSa9cp7nJ87dw45OTlo165dies8ffoU6enpAAobXy9fvoylS5fC0dFRq8HImG0HFE49EB4ejoEDB6JPnz44ceIEoqKiYGNjI+rFdvv2bQwfPhxpaWno168f3N3d8fTpU5w5cwZHjx7VzE956NAhvPPOO6hbty7GjRsHe3t7/PDDD/j3v/+N27dvY9q0aXq/DwBYuHAhNm/ejE6dOmHs2LFIS0vDvHnzdB7bd+/exdChQ/Hs2TMMGjQITZo00Zzbjx8/jt27d6NWrVqlvqc+zZo1g5eXF06cOIGrV69qrqMxMTHIyspC//79Ub9+fdy/fx+7du3C2LFjsXnzZnh5eWleIy4uDu+++y4aNmyIyZMnQy6XIzo6GgkJCVrv9/jxYwwfPhw3btzA66+/jtatW+PChQvYtm0bjh07hl27dml6qs6dOxe7d+9G//790aFDByiVSly/fl0zP7A+6vumwYMHG/V9qK+nf/zxB/r164cRI0Zojvvhw4cjIiICbdu2Ff3Npk2bkJmZicGDB8PFxUVzvY2Li8PVq1fRq1cvNGzYEJmZmYiJicE777yDJUuWIDQ01KCcOnTogNjYWDx58sRkPe7p+cNagrUEawnWEqwlWEtYYy1x4MABxMbGQqlUwsnJCa+++iqmTp1a7nvk69evA4BWfTFu3DjUrVsXkyZNQk5ODmrUqKH3dUxdj+hj6HYxtqYq6urVqwgLC0PdunUxevRoODs7Iy0tDb///jsuXryI9u3bl/i3t27dwrlz5+Dl5WXwFDRluT6V9zoMFDawjxo1SnPs3rhxA5GRkThz5gxiYmI0I3CMyW/VqlVYvnw5goKCMGzYMMjlcty+fRuHDh1Cfn4+qlSpgi+++AILFy6Eo6MjwsPDNfmoRzgbeg4zdjsZXW8Izwlvb2+hY8eOBq+fmZkptG/fXujevbvw+PFjzfLHjx8L3bp1E9q3by9kZWVplgcFBQkKhULYv3+/6HUGDBgguLm5CeHh4YJKpdIs37Rpk6BQKIQjR45olu3evVtQKBRC165dhUePHmmWP3r0SOjatavQqVMn4enTp+XKb+fOnVqfVf2+x44d0/q3vLw8IT8/X2v50qVLBYVCIZw5c0az7NixY4JCoRACAgJE+V+4cEFQKBSCm5ubcODAAa3vx9/fX7QsNDRUCAkJEX0uQRCEn3/+WVAoFMLu3bs1yz788ENBoVAIn376qWjd/fv3CwqFQti2bZtWfkX/Xm3Hjh2CQqEQFi9eLFp++PBhQaFQCDNmzND6m+KmT58uKBQKITk5WbNMpVIJkyZNEhQKhfDhhx9qlicmJgoKhUKYMmWKaL+4cOGC0KpVK2H48OGlvl9pLl++LCgUCiEsLExQKpWa5RcvXhRatmwpKBQK4datW6W+zrx58wSFQiFcuXJF698iIiIEhUIh/Prrr+XOtyzbfc6cOaJ1FyxYICgUCiEwMFD0Oup9cMmSJaXmoT4eevbsKeTk5OjMZfv27aLlz549EwYMGCAEBQWJtmfx7S4IgvDkyROt97xy5YrQpk0b0X6ck5Mj+Pj4CJ07dxbu3bun9TdFt6mhr2nseaMkut7v6NGjgkKhEL799lvNspSUFMHNzU0YNmyYkJeXp1l+7949wdPTUwgKChIKCgr0vpe+49aY7XHr1i1BoVAIHh4ewu3btzXrpqWlCe7u7oKbm5uwfv160etMnjxZaNOmjZCdna1Zpt73Jk+eLNrWf/75p+Dm5iaEhYVplpniOI+KihIUCoVw8ODBEr8bXf+9+uqrOo9ZQ7edIAia8/bp06dFy998802hdevWou9lwoQJWtc0NfW+WlBQIHTt2lXw9PQU7dN5eXnC0KFDhZYtWwrXrl3T+32o96nRo0eL9p2//vpLcHNz0zqvhYeHC507dxb++ecf0eucPXtWaNWqlbB8+XK97ycI/7/N09LSSlxn/vz5gkKhEOLj4zXLdH3Xqampgre3tzBhwgTNsoKCAiEwMFDw9vYWvYf62l98///vf/8rKBQKISIiQvTa6vPx0qVLNcs6deokei9jDBgwQFAoFEJmZqbWv6WlpYn+K/pZN2zYoHNfePz4sRAYGCiMHDlSs0y9D3fq1El4+PCh1vvo+g5zcnKEnj17Cr179xYtX758eYnXtZUrVwoKhUL4888/S//gRCVgLcFagrVEIdYS+rGWYC2hVtlrCUEQhEGDBgnr1q0T4uLihJiYGGHq1KmCQqEQ+vTpI8pbH/V5Qn1feO3aNWHDhg1CmzZtBE9PT809nvqzv//++yW+TvH93dT1SNE8ijJmuwiCcTVVUFCQ6P5Xff0uev0zVHx8vKBQKIT58+cb/DfGXJ9MdR0eOXKkoFAohM8++0y0XH3Mffzxx2XKr3///lo1gC7Fv3M1Y85hxm4nY+uN52aamuzsbKN6QyUlJWl+ySk6F6K9vT1GjRqFnJwcHD16VPQ39erV05oLq2PHjhAEAaNGjYJMJtMsV/eIu3HjhtZ7Dx8+XPQrZK1atTBs2DBkZWVperOVJT8HBwejH2BgZ2en6UFQUFCArKwspKenw8/PDwBEwzfVBg4cKMq/ZcuWsLe3h6urq1YvzY4dOyI1NVUzxOjSpUu4dOkS+vTpg/z8fKSnp2v+8/T0RI0aNbSmPACgNSdy586dAej+fnWJi4uDjY0N3nrrLdHyrl27olWrVoiPj4dKpSrx71UqFQ4dOgR3d3fNewOATCbT2ZtFPcQ+PDxctF+0bNkSQUFB+P333zU9XctKPYxo9OjRoh5Tbm5umiFjhlAPIdY115l6Xrfc3NzypFrm7T5mzBhRrD6u+vXrJzou1PugofsDUHgcFp/XMTY2FjVr1kT37t1FOT569AjBwcG4c+eOpgdASdS//AuCgOzsbKSnp8PR0RHNmjUTPfU8MTERGRkZGDdunM7hZ0W3qaGvWZbzhr7PoFKp8PjxY6Snp8PNzQ21atUSvV98fDwEQcCECRNE+0+9evUwcOBA3LlzR2vaCmOUZXt069ZN1JvLyckJzZo1g42NjdbUAl5eXnj27JnO4eUTJkwQHbvq4XTJycma85kpjnP1v9epU6fEdYYOHYoNGzZgw4YNWL16NWbMmIGMjAxMnDhRK3dDt51a+/bt4eHhIVrWuXNnFBQUaF47MzMTv/76K7p06YIuXbpovYZ6Xz137hzu3r2L119/XbRP29nZYcKECVCpVIiPj9f7faj3qXHjxkEul2uWt2nTRqu3y+PHj/HLL78gODgYdnZ2on2kYcOGaNKkic7zSlmo7y+KDkUu2svnyZMnyMjIgI2NDTw8PETf9blz5/DPP/9g4MCBojnp1df+4uLi4uDk5KTV82zo0KFwcnISDbG0t7fHlStXcPnyZaM/k/qzFJ8P+smTJ/D19RX9t2TJEs2/x8bG4qWXXkKbNm1E33l+fj78/Pzw+++/a10z+vXrB2dnZ60cin6HT58+RUZGBp4+fYrOnTsjJSVFa+h3SRwcHADAJFMT0fOLtQRrCX1YS5SMtcT/Yy0hfj/WEtLXErt27cL48ePRvXt39O/fH0uXLsW0adNw+fJlbN68We9rF5WYmKi5LwwJCcHChQvRvHlzrF+/Xuseb/z48Qa/LmDaeqQ0hmwXwPiaqij19S0+Ph55eXkG5aWmvvc15n6kLNen8lyHi5o4caIo7tGjB5o1ayaq+YzJz97eHvfv3zdomipdjDmHGbudjK03nptpauzt7Y2aA0s9n5Cu4XLqZcXnOir60BM19Umv+L/Vrl0bQOFJozj18M6imjdvLsqrLPk1btxY1HhhqK1bt2L79u24cuWK1kGalZWltX5J34OuoZnq7yczMxM1a9bUzH25YsUKrFixQmc+Dx8+1FpWfLigeliQru9Xl9u3b8PV1VXnRerll1/GhQsXkJGRobOxACg84HJycnRuO13Dh27fvg0bGxvNdi2+/sGDB3H79m2thwUaQ72P6MqpWbNmOHLkiCbOzc3F48ePRevUqlUL1apV09xE5ufna72O+qRUrVq1MucJwGTbXX1clbQPFp9PWR/1UNLieT558kRTQOqSlpam82/Vzp8/j6+++gonTpzQmr+yaN7qGz9Dhhgb+pplOW/okpycjG+++QZnzpzRujAVPScY+n7Fp6wwVFm2h66hxXXq1IGLi4tWkajvPK3r2G3evDkSExNx9+5dtGjRwiTHedGbwZI0bdpU9B0EBQXB29sbQ4YMwZIlS0RzmRu67dR0fV/qGw3193Lz5k0IglDqvqreH3SdEw3d/9T/XtJ1MjExURNfu3YNKpUKUVFRiIqK0vl6hg41L436/qLoTd3NmzexdOlSJCYm4tGjR6L1i27X0j5Tcbdv34a7uztsbcW3cLa2tnjxxRdFRelHH32EmTNnIjQ0FI0bN4aPjw+CgoIQHBxcalGi/izZ2dmia2O1atWwYcMGAIXn5Q8++ED0dykpKcjNzYWvr2+Jr52RkYEGDRpo4qLD34tKS0vDsmXLEB8fr/PG9tGjRwY9PFIQBACGHU9EJWEtwVpCH9YSrCWKYy1RMtYSlauWKG78+PH4+uuvkZCQgLffftugv/Hw8MDUqVMBFP7w9sILL+CFF17QuW5J930lMWU9UhpDtgtgfE1V1GuvvYbY2FisXr0aGzduhIeHBwICAvDaa6+VOgWY+r7X2PsRY69P5bkOq9WuXVvnw6CbN2+OgwcPaqYoMia/6dOnY/LkyRgxYgRcXV3h7e2Nrl27IiQkxKAH5RpzDjN2Oxlbbzw3jfEtWrTAyZMncevWLZMV38XpuzktqehVb7CKUJant2/YsAGLFi1CQEAARo8eDVdXV1SpUgX379/HrFmzdOZf0veg7/sp/jrqh2Hoor6oGfLaFfn9WrL9+/drHr6ltnDhQgwcOFDzIMj79+9rXZwePHgAADp7W5SFqbZ7WQrF4nQVBYIgwMnJCV9++WWJf6dvvsu7d+9ixIgRsLe3x9tvv42XXnoJ1atXh0wmw4IFC7Rufg1hjtfU5+zZsxg/fjyaNGmC999/H40aNUK1atUgk8kwbdq0Cj3myrI9THF+qkjqm2tDGwPUPDw8UKtWLdHDp8qy7Srr92IIdX59+/bFgAEDdK6j7pFXXuqHaKmLtSdPnmDEiBF4+vQpxowZA4VCgZo1a8LGxgZr1qwx+CFt5dW9e3ccOnQICQkJOHnyJI4ePYqoqCh4eXlhw4YNem9aW7RogXPnzuHChQuiXppyuVxTtOp6SJUgCFAoFFrXlKKKF4267k8EQUBYWBhSUlIwevRouLu7o1atWpDL5di9ezf27dunt5dpUeqiqDyNUkSsJVhLUMlYS2hjLaEba4mKVZZaokqVKnB1dTXqxydHR0e9P2oUZey1pLJ9t+Xdh+3s7LBhwwacPXsWv/76K3777TcsX74cX3/9Nb788kv06NGjxL9V748XLlww6WcqrrLu5x06dEBcXBwSExNx/PhxHD9+HPv27cOqVasQGRmp+ZHGFIzdTsbWG89NY3zPnj1x8uRJ7Nq1C9OnTy91ffVN9t9//63Vu+vKlSuidUzt6tWrWsvUv/arf6EyZX76frnZs2cPGjZsiLVr14qKgKI9IUypadOmAAoLDkNP5obS9zkbN26MX3/9FY8ePdK6UUtJSYG9vb3eh3A4OTmhRo0aOredensUfz+VSoWUlBS0bNlS6/0A3b9GGkP991evXtXaF65duyaKAwICND0d1dS9cNQ9Df744w+tbXL69GnY29sb/et2cebc7qbUtGlTXL9+HR4eHmV6CGBcXBxycnKwatUqUeMWUHiDVLRhTN2od+HCBb1DgY15TVOcN/bt2welUom1a9eK1s3JydHq/Vv0/dQPiDL2/fQdt+XdHuWRkpKi9dCWlJQUyOVyTS8QUxzn6hsuY4ZFqymVSlEvNGO2nTGaNGkCmUxW6k2h+rPqOicauj+o//3q1ata+5T6Oy2e17Nnz8x6Xrl27Rp+++03vPjii5rjNjk5GQ8ePMCCBQvw+uuvi9ZftmyZKC76mYor/pnU61+7dg0FBQWi3vEFBQW4fv261nfo4OCAfv36oV+/fhAEAUuWLMG6desQH8InJiYAACAASURBVB+vNR1GUSEhIfj++++xa9curXOLPk2bNkVGRgY6d+5s8JBgXS5duoSLFy9i8uTJeO+990T/tmvXLqNe6+bNm7C1tdXb05CoNKwlSsZagrUEawnDsJZgLaFWmWuJvLw83L9/X2tqmMrM0HqkNIZsF1PVVO3atdM8WPeff/5B//79sWzZMr2N8Y0bN0br1q1x6tQppKSk6OzJr+tvynN9KqtHjx4hNTVVq3d8SkoKnJ2dNVP9GJtfzZo1ERISgpCQEAD//0DWqKioEh94rlaWc5ih28nYeuO5mTN+8ODBaNasGdavXy+aT7Wov/76C1u3bgUA+Pv7o0aNGoiIiBDNSZqdnY2IiAjUqFHDoKcxl8W2bdtEw/weP36M7du3o3bt2vD29jZ5fuqDQNdwGhsbG8hkMtGvXAUFBVi7dm2ZPltpWrduDYVCge3bt+sc4lZQUGB0D1E1fZ+ze/fuUKlU+Pbbb0XLExIScP78+VKH9MvlcgQFBeGvv/4S9XgUBAHr1q3T+X4A8O2334q+28uXL+PQoUPw9PQsdw++oKAgAMDmzZtFvQcvXbokmsoBAFxdXeHn5yf6T92LpVOnTnBxcUFUVJRoONTFixdx4sQJ9OrVSzMXaFmZc7ubUv/+/aFSqfDf//5X57/rGv5alPqX5OK/Gu/cuROpqamiZf7+/nB0dMSGDRs0vYaKUr+Gsa9Z3vNGSb+Gr1mzRquXanBwMGQyGb777js8e/ZMs/zBgweIjo5Gw4YNSx1KqO+4Le/2KI9169aJvvNz587h6NGj8PX11dzMm+I4b926Nezt7XXOqauPej68Nm3aaJYZs+2M4eDggFdeeQVHjhzROU+o+rO3adMGL7zwAqKjo0X75rNnz/Ddd99BJpOhW7duet9LvU9t2LABSqVSs1z9/Rfl6OiIwMBAxMXF4fTp0zrzKu98unfv3sWUKVOgUqk0Q3OBko/LxMRErW3Zpk0b1K9fH9HR0aJ8srOzsX37dq33VM9rWrxBeufOnUhPT9fsd0qlUuf0OOpjrrQhtOrpjvbt24eIiAid6+jqAdO/f3+kpqZqNcqoGXpcqq+5xd/j8uXLmjlUDXX69Gm0adOmwgttsi6sJUrGWoK1BGsJw7CWYC2hVhlqiZJ6vi9btgwFBQWac4AlMLQeKY0h26W8NZWu+qN+/fpwcnIq9f4cAGbMmAEAmD59utYxChTWABs3btQ0Lpf3+lQexd8zLi4O165d0+zbxuan67tT17tFv7uaNWvqPOcbcw4zdjsZW288Nz3jq1evjjVr1mDixImYPHkyAgIC4OfnBwcHB6Snp+P48eNITEzU/JJSu3ZtzJgxA/PmzcOQIUM0Q9xjYmJw48YNzJs3T/RAA1NydHTE4MGDNQ9Iio6Oxt27d/HZZ59phvSYMr+2bdvCxsYGq1evRlZWFmrUqIFGjRrBw8MDvXr1wpdffok333wTPXr0QHZ2Nvbt26c1V62pyGQyfPHFFxgzZgz69u2L119/HS+//DJyc3Nx48YNxMXFYfr06UY/PAoo7J1Rs2ZNREZGolq1aqhduzacnJzg6+uLAQMGICYmBmvXrsWdO3fg5eWFmzdvIjIyEnXr1jWoB9TUqVNx5MgRhIeHY+TIkahfvz4OHz6s8yD29/dH79698cMPPyArKwtBQUFITU1FZGQkqlatin//+99Gf77iWrRogaFDh2LHjh0YO3YsevTogfT0dERGRqJVq1Y4d+6cQfNZValSBf/6178wbdo0jBgxAoMHD8aTJ0+wceNGODk5afVYLAtzbndT6tWrFwYOHIiIiAicO3cOQUFBcHR0xL1793D69GncuHFD7wMoX3nlFVSvXh0zZ87EyJEjUbt2bZw6dQpHjhxBkyZNRI2L1atXx+eff44pU6YgNDQUgwYNQtOmTZGeno7ExESMHTsW3bt3N+o1TXHe6N69OzZu3Ig333wTQ4cORZUqVZCUlIRLly5p/aL+0ksvYfz48Vi3bh1GjhyJ3r1748mTJ9i5cydycnKwZMmSUocB6ztuy7s9yuPu3bsYP348goODkZqaioiICFSrVk00f7YpjnO5XI6ePXvi4MGDyM/P1zmtyPnz57Fnzx4AhfOxXrlyBTt37kSVKlVEDcTGbDtjffzxxzh//jzefPNN9O/fH23atEFeXh7OnDmDhg0b4oMPPoBcLsfHH3+Md955B4MGDcKQIUNQs2ZN/Pjjjzh9+jTCw8NL7RnXvHlzjBgxAhERERgzZgx69uyJtLQ0bN26FS1bttR6iNecOXPwxhtvYOTIkejXrx9at24NlUqFW7duIT4+Hv3798e7775r0Gc8cOAAatSoAaVSiczMTJw9exaHDh2CSqXCRx99JOpl7unpCRcXFyxevBh37txB/fr1ceHCBezZswcKhUL0QFW5XI7Zs2dj6tSpGDx4MIYMGaKZisXBwQF3794V5TFhwgT89NNPmDdvHs6fP49WrVrhwoULiIqKQrNmzTT3MU+ePEFAQACCg4PRunVrODk54fbt29i2bRvq1KlTaoElk8nw1VdfYfLkyZg/fz6io6MRHByM+vXrIzc3Fzdv3sSPP/4IAKJ5E0ePHo2jR4/iiy++wLFjx9C5c2fY29vj7t27OHbsGOzs7LBly5ZSv+/mzZujRYsWWLduHXJzc9GsWTNcu3YNO3bsgEKhwLlz50rfaCjspXLt2jV8+OGHBq1PVBLWEiVjLcFaQh/WEv+PtQRrCbXKUEusWrUKZ86cgY+PDxo0aICcnBwkJCTg+PHj8PDwwKhRo8zy2c3FkHqkNIZsl/LWVKtWrUJSUhK6du2KRo0aQRAEHD58GFevXi21ZzdQuF/MmzcPc+fORa9evfDaa6+hVatWsLW1xY0bN/Dzzz/j5s2b2LdvHwCY5PpUFo6OjoiLi8ODBw/g7e2NGzduaN7znXfe0axnTH6vvvoq2rdvj3bt2sHV1RWpqamauve1117TrOfh4YGoqCgsW7YMzZs3h42NDYKCgow6hxmzncpSbzw3jfFA4TCk77//Hjt27MCBAwewevVq5OTkoE6dOnB3d8eiRYsQGhqqWV/9UIDvvvsOK1euBFD4FOGVK1eKfskxtRkzZuC3335DZGQkHj58iGbNmmHJkiWi3EyZ3wsvvIAFCxZg7dq1mDt3Lp49e4YBAwbAw8MD48ePhyAIiIqKwueffw4XFxf07t0br7/+Ol599VWTfm61Vq1aISYmBmvWrMGhQ4ewfft21KxZEw0bNsSAAQP0PhROn2rVqmHp0qVYtmwZFixYgPz8fHh7e8PX1xdVqlTBd999h1WrVmH//v2Ii4tDrVq10KtXL0ydOlX0oLmSNGnSBFu3bsXixYsREREBOzs7dOnSBV988YXO4ZJLlixB69atERMTg0WLFqFGjRro1KkTpkyZAjc3tzJ9xuI+/fRTuLq6IioqCosXL0azZs3w6aef4s8//8S5c+cMflhS7969Ua1aNaxatQpffPEF7Ozs4OvrixkzZphsjkdzbXdTW7hwIXx8fLBz506sWbMGz549g4uLC1q3bo33339f7982adIEa9euxX//+1+sXr0acrkcHTt2xJYtWzB//nzN0+DVunXrhsjISKxevRpRUVHIzMyEs7MzfH19NfuIsa9Z3vOGp6cnVqxYgW+++QZfffUVqlatCj8/P0RERGDkyJFa63/wwQdo2rQpIiMj8eWXX6JKlSrw8PDAl19+CS8vr1LfT99xC5Rve5THunXrsHDhQqxYsQK5ubnw8PDAzJkztYaQmuI4Hz58OKKjo3H48GHNcLyi9u3bp7nZsrGxgYODA/z9/TFx4kTNkDrA+G1njMaNG2P37t1YuXIljhw5gj179qB27dpo2bIlhg4dqlkvODgYGzduxKpVqzS9nJo3b47PPvsMgwcPNui9/vWvf6Fu3brYuXMnvvjiC7z44ov45JNPcOPGDa3G+AYNGmD37t1Yu3YtDh06hNjYWFStWhUNGjRAUFCQ3mlaipszZw6AwkaFWrVqoVmzZhg3bhwGDRqk8wFw69atw3/+8x9ERESgoKAA7u7uWLt2LaKiokSN8UBhcb58+XKsXLkSK1asgLOzMwYMGIBOnTohLCxMtG6tWrWwbds2LF++HIcOHUJ0dDScnZ0xbNgwvPvuu5oHO1WrVg1jxoxBcnIykpOT8eTJE7i6uiI4OBhvvfWWQeduJycnbNmyRbOPRUZGIisrC3Z2dmjUqBG6d++OgQMHih6cVqVKFaxZswaRkZHYs2eP5kF6rq6uaNu2bYnz9xcnl8uxZs0aLF68GDExMXj69ClatGiBxYsX4+LFiwY3xsfGxsLOzs7g9yXSh7WEbqwlWEuUhrXE/2MtwVoCqBy1hLe3N1JSUhATE4PMzEzI5XI0bdoU06ZNw7hx40z2bKWKYmg9oo8h26W8NVX37t2RmpqKn376CQ8fPkS1atXQtGlTfPbZZxg0aJBBeQ4ePBienp7YtGkTjh07hj179kClUuGFF15A586dsWzZMs1UYaa4PpVFjRo1sGnTJixYsABffvklBEFAly5dMGvWLM3IKWPzCwsLQ0JCArZs2YLHjx/D2dkZHh4eeOutt0TbaNq0acjKykJkZCQePXoEQRAQHx+PGjVqGHwOM2Y7laXekAl8Kk2lER0djdmzZ2Pz5s3w8fGROh2yYuHh4Th27Bh+//13kzygiCrGzJkz0aRJE9EvyVSxZs2ahZiYGM0DOyvK+PHj8fTpU0RGRlbo+xJZsry8PHTr1g2vvfaa3gfKElkL1hJUUVhLWCbWEtJjLVE5SbVdrNWoUaNw584dHDp0SOpUzK6s9cZzM2c80fMoNzdXa9nFixdx5MgRdO7cmTfPFqZnz54655Am6zdr1iycPn1aa45WIirZtm3bkJ+fj0mTJkmdChGRRWItYV1YSzy/WEsQmUdZ643napoaoudNTEwM9uzZg8DAQDg5OeHq1auaObVMMT8jVYzo6GgolUrEx8eLHl5Ez48WLVpoTcFCRPqNHTsWY8eOlToNIiKLxVrCOrCWINYSROZR1nqDjfFEVqxNmzY4ePAgtmzZgqysLNSsWRM+Pj545513Sn3yPFUely9fRmRkJOzt7TVPTyciIiIiMifWEtaBtQQRUeXCOeOJiIiIiIiIiIiIiMyMc8YTEREREREREREREZkZG+OJiIiIiIiIiIiIiMzMquaMz8h4ApWKs+4QERERkeFsbGRwdKwpdRpUybC2ICIiIqKy0FdfWFVjvEol8IaZiIiIiIjKjbUFEREREZkap6khIiIiIiIiIiIiIjIzNsYTEREREREREREREZkZG+OJiIiIiIiIiIiIiMyMjfFERERERERERERERGbGxngiIiIiIiIiIiIiIjNjYzwRERERERERERERkZmxMZ6IiIiIiIiIiIiIyMzYGE9EREREREREREREZGZsjCciIiIiIiIiIiIiMjM2xhMRERERERERERERmVmFN8YvXrwYwcHBcHNzw+XLlzXLr127hqFDhyIkJARDhw7F9evXKzo1IiKrtWvXdoSFvYGYmJ1Sp0Jk1XisEVUs1hZERBVv3749CAt7Az/9tFfqVIis3qFDcQgLewMJCfFSp0ImUuGN8d26dcPWrVvRsGFD0fJPP/0Ub7zxBg4cOIA33ngDn3zySUWnRkRktX78MRYAsHfv9xJnQmTdeKwRVSzWFkREFS86egcAYOfObRJnQmT9IiI2AAA2bfpO4kzIVCq8Md7LywsNGjQQLUtLS8P58+fRp08fAECfPn1w/vx5pKenV3R6VIEyMzOwaNE8ZGVlSp0KkVXbtWu7KGaPXSLz4LFGVPFYWxARVax9+/aIYvaOJzKfQ4fiRDF7x1uHSjFn/D///IN69epBLpcDAORyOVxdXfHPP/9InBmZ0969Mfj770uIjY2WOhUiq6buqavGHrtE5sFjjahyYG1BRGQ+6l7xauwdT2Q+6l7xauwdbx1spU7AlJyd7aVOgQyUnp6OpKQjEAQBSUlHMG7caDg6OkqdFtFzw8WlltQpED0XeKwRWS7WFkREhuH9DlHF4fFm+SpFY3yDBg1w//59KJVKyOVyKJVKPHjwQGvIaWnS0rKhUglmypJMacuWLVAqVQAApVKFDRs2Y9SoMImzInp+pKY+ljoFoucCjzXLYGMjY8OrFWFtQURUsXi/Q1RxeLxZBn31RaWYpsbZ2RmtWrXCvn37AAD79u1Dq1at4OTkJHFmZC7JyUlQKgsAAEplAZKTkyTOiMh69e7dVxSHhvaXKBMi69aoUVNR3KTJi9IkQvScY21BRGQ+AwcOFcVDhgyXKBMi6/fyy26iWKFoKVEmZEoV3hj/2Wef4ZVXXsG9e/cwbtw4vPbaawCAOXPmICIiAiEhIYiIiMDcuXMrOjWqQL6+/pDLCwdmyOW28PX1lzgjIuvVo0eIKA4O7ilRJkTWbfr0maJ42rSZJaxJRKbC2oKIqGIFBLwiin19u0iUCZH1mzTpPVH89tvvlbAmWRKZIAhWM/aSQ0ktR2ZmBj78cCqePXuGKlXs8MUXy1CnjoPUaRFZpS1b1uOXX+IhCAJkMhm6du3GaaGIzGTy5Al4+jQH1avXwMqV66ROhwzEaWpIF9YWRETatmxZj4SEQ1CpVLCxsUFgYDBrCyIz+uST2bh9+waaNHkRc+YskDodMlCln6aGnj8ODo4ICAiETCZDQMArbIgnMqPk5CSof3cVBIHTQhGZSWZmBnJznwIAcnOfIisrU+KMiIiIiEwrOTkJKlXh899UKhVrCyIze/YsHwCQn58ncSZkKmyMJ8mEhg5AixZu6Nt3oNSpEFm1wmmgZP+LZJwWishMoqK2i3742rVrm8QZEREREZkWawuiinPz5nXcv/8PAODevX9w69YNiTMiU2BjPEnGwcERs2Z9wl7xRGYWGBgMQD3MXkDXrt2kTIfIah0/flRvTERERGTpWFsQVZxvv10pites+VqiTMiU2BhPRGTlEhIOQSYr7L0ik8nwyy/xEmdERERERESWiLUFUcW5e/eO3pgsExvjiYisHOeMJ6oYPj5+orhzZw7bJiIiIuvC2oKo4rzwQkO9MVkmNsYTEVk5X19/Ue8VzutIZB49e/bWGxMRERFZOl9ff8jlcgCAXC5nbUFkRsOHjxLFb7wxRqJMyJTYGE9EZOUCA4NFvVc4ryOReSQkHBLFHLZNRERE1iY0dICotujbd6DEGRFZr1OnfhPFv/9+QqJMyJTYGE+SyczMwKJF85CVlSl1KkRWrbCBUPa/iPM6EpnL0aOJemMiIiIia/D/jfESJ0Jk5YpPA8VpoawDG+NJMnv3xuDvvy8hNjZa6lSIrFrhBVt9p8x5HYnMxdnZWW9MREREZOn27o2BTFbYlCSTyVjPE5lRx45eotjTs5NEmZApsTGeJJGZmYFff/0FgiDg118T2DueyIyKz+PIeR2JzCMtLU1vTERERGTpkpOToFIpAQAqlZIdfYgqkMDhKFaBjfEkib17Y1BQUHgBLygo4K/pRGak/Wu6t0SZEFk3P78AFJ0SqjAmIiIish6+vv6QyQrvd2QyGTv6EJlR8Tnji8dkmdgYT5IonEf3/6fN4Ly6ROazbdsWURwZuUmiTIisW2joANjaygEAtra2fKAZERERWZ3AwGDRA1y7du0mcUZE1svX1x82NoX1hY2NnD9+WQk2xpMkOK8uUcW5e/eO3piITMPBwRHe3r4AAB8fX9Sp4yBxRkRERESmlZBwSBT/8ku8RJkQWb/Q0AGQywubbuVyOTv7WAk2xpMkOK8uUcWpWrWa3piITCc/Px8AkJeXJ3EmRERERKZXfI54zhlPZD4ODo7o1KkzAMDbuzM7+1gJNsaTJIrPo8t5dYnMJy8vV29MRKaRmZmB338/AQD4/feTfDg5ERERWR2FoqUodnNrWcKaRGRKfHir9WBjPEkiMDBYFHOeOSIisnRRUduLzKGqwq5d2yTOiIiIiMi0/v77kii+fPlSCWsSUXllZmbg5MljAICTJ4+zs4+VYGM8SaJwnjnZ/yIZ55kjIiKLd/z4Ub0xERERkaV7+jRHb0xEprN3bwxUqsLOPiqVCrGx0RJnRKbAxniSROG8cuohNgLnmSMyIxsbG70xERERERGRIeRyW70xEZlOcnISlMoCAIBSWcC2MyvBFhmShK+vv+aiLZfbwtfXX+KMiKyXi0s9vTERmYa7e7tisYdEmRARERGZh42NrFjMZiUicyneVsa2M+vAsyZJIjR0gOb/ZTKgb9+BEmZDZN0yMtL1xkRkGtevX9UbExEREVk6FxfXYrGLRJkQWb+OHb1Esaent0SZkCmxMZ4k4eDgiKpVqwIA7Oyqok4dB4kzIrJetWvX0RsTkWlkZWUVi/mAJSKiipKZmYFFi+bx3EtkZg8fPtQbE5HpbNiwtli8RqJMyJTYGE+SuHnzOnJyngAAcnKe4NatGxJnRGS9Hj58oDcmIiIisnR798bg778v8eF2RGbGjj5EFSc9PU0Up6WllbAmWRI2xpMkvv12pShes+ZriTIhIiIiIiJLlpmZgcTEBAiCgMTEI+wdT2RG7OhDRFQ+bIwnSdy9e0dvTEREZGnUDyYvKSYiIvPYuzcGKpUAAFCpVOwdT0REVkE9vXNJMVkmNsaTJGrUqKk3JiLTsbGx0RsTkWnUrVtXb0xEROaRnJwEpbIAAKBUFiA5OUnijIiIiMrvpZdaiOLmzVuUsCZZErbIkCSePXumNyYi01GpVHpjIjKN1NRUvTEREZmHr6+/ZjSSXG4LX19/iTMisl7VqlXTGxOR6Vy6dF4UX7x4voQ1yZKwMZ4k4eLiojcmIiKyNDKZ/piIiMwjNHQAbGwKT7o2Njbo23egxBkRWS+lUqU3JiLTYcc668TGeJJE8SdA84nQROZjb19LFNeqVVuiTIism5OTc7GY09QQEVUEBwdHBAQEQiaTISDgFdSp4yB1SkRWS/t+x7mENYmovGxs5HpjskxsjCdJ+PkFQPa/LoMymQx+fgESZ0RkvbKzH4vix48fSZQJkXV7+DC1WPxAokyIiJ4/oaED0KKFG3vFE5lZ8fsb3u8QmY+zs3OxmJ19rAEb40kShUNJC3/Rk8vlvGkmIiKLJwiC3piIiMzHwcERs2Z9wl7xRGamUgl6YyIyHXb2sU5sjCdJODg4ol69egAAV9d6vGkmIiKLJ5fL9cZERERElq5qVTu9MRGZDjv7WCc2xpMkMjMz8OBB4S96qakPkJWVKXFGRNaLDYREFaNDBy9R3LGjVwlrEhEREVmm3NxcvTERmQ5reevExniSxN69MZpf9FQqAbGx0RJnRGS9lEql3piITMPOTtwzrEoV9hQjIiIiIqKy8fHxE8WdO/tLlAmZEhvjSRLJyUlQKgsAAEplAZKTkyTOiIiIqHx+++2E3piIiIiIiMhQgwYNg0wmAwDIZDIMGjRM4ozIFNgYT5Lw9fWHXG4LAJDLbeHry1/3iIjIstna2uqNiYiIiIiIDOXg4Ihq1aoDAKpVq87nLVoJNsaTJEJDB2h+3bOxkaFv34ESZ0RERFQ+OTlP9MZERERERESGunnzOp4+zQEAPH2ag1u3bkicEZlCpWqMP3z4MPr3749+/fqhb9+++Pnnn6VOiczEwcERrq6uAAAXF1f+ukdERBavbl0XvTEREREREZGhvv12pShes+ZriTIhU6o046cFQcDMmTOxdetWKBQKXLx4EcOHD0f37t1hY1OpfjMgE8jMzMCDB/cBAA8ePEBWViYb5ImIyKLxYclERERERGQqd+/e0RuTZapUrdw2NjZ4/PgxAODx48dwdXVlQ7yV2rs3BoJQ+P+CICA2NlrahIiIiMopIyNdb0xEFY8jb4mIiMhSceStdao0PeNlMhmWLVuGSZMmoUaNGnjy5Am+/fZbqdMiM0lOToJSWQAAUCoLkJychFGjwiTOioiIiIisBUfeEhGZnpOTM9LT00QxEZkHR95ap0rTGF9QUIA1a9bgm2++gaenJ37//XdMnToVP/zwA2rWrGnQazg725s5SzKVoKCuiIuLQ0FBAWxtbREcHAQXl1pSp0X03ODxRlQxeKwRSYsjb4mITEsul+uNich0OPLWOlWaxvgLFy7gwYMH8PT0BAB4enqievXqSElJQbt27Qx6jbS0bKhUgjnTJBPp0aMPDh48CACQyWzQo0cfpKY+ljgroucHjzci05PJZBAEQRTzWLMMNjYyduqwQhx5S0RkeqmpD/TGRESkX6VpjK9fvz7u3buHq1ev4qWXXkJKSgrS0tLQpEkTqVMjM3BwcESnTp1x9Oiv6NTJhw9vJSIii9euXXucOfNHkbiDhNkQUXlH3vIHGiIibbo6H3AkIFHF4fFm+SpNY7yLiwvmzJmDKVOmQCaTAQAWLFgABwc20lqr7OxsAEBOTrbEmRAREZVfzZr2xWLDptkjIvMo78hbjrolItJWtCFeHXMkIJF5eHn54LffjmviTp18eLxZCH0jbyvVhIl9+/bF3r17ERsbi9jYWHTv3l3qlMhMMjMzcPZsYe/B06f/QFZWpsQZERERlU/RG2VdMRFVrKIjbwFw5K2Vy8zMwKJF81hXEBGR1ejTp1+xuL9EmZApVarGeHp+REZu1hsTERFZGqVSqTcmoopVdORt3759MW3aNI68tWJRUdtx+fJFREVtlzoVIiIik0hIOCSKf/klXqJMyJTYGE+SKN5b8OTJYxJlQkREZBpsjCeqfDjy9vmQmZmB5OREAMDRo7+ydzwREVmFo0cT9cZkmdgYT0RERERERBYrKmq7Zh5rQRDYO56IiKxC8WdQ2dvzmVTWgI3xJAkXF1e9MRGZjvqh2CXFRERERJbs2LEkUazuJU9ERGTJ0tPTRHFaWloJa5IlYWM8SaJp02ai+MUXX5IoEyLrV7VqVb0xERERkSVTqVR6YyIyf2ZU9gAAIABJREFUHblcrjcmIiL92BhPkvjrr7Oi+M8/z0iUCZH1y83N1RsTERERWTI2DhJVHB8fP1HcubO/RJkQWT9e36wTG+NJEr6+/npjIiIiIiIiQ7BxkKjiDBo0TDPtpUwmw6BBwyTOiMh6qZ+HUlJMlomN8SSJwMBgUdy1azeJMiEiIiIiIktW2DhYWNra2NiwcZDIjBwcHGFnVzjtpZ1dVdSp4yBxRkTWi9OwWSc2xpMkEhIOiX5N/+WXeIkzIiIiIiIiS+Tg4KgZaevrG8DGQSIzunnzOvLyCqe9zMvLxa1bNyTOiIjIsrAxniSRnJykGV4jCAKSk5MkzoiIiIiIiCzVoEHDoFC0ZK94IjNbtWq5KP7mm68kyoSIyDKxMZ4k4evrL+oZzznjiYiIiIiorBwcHDFr1ifsFU9kZvfv39MbExGRfmyMJ0kEBgaLesZzzngiIiIiIiIiIiKyZmyMJ0kkJBwSxZwznoiIiIiIiIiIiKwZG+NJEklJR/TGREREREREhsrMzMCiRfOQlZUpdSpEVk0ul+uNich0nJycRbGzs3MJa5IlYWM8SUKpVOqNiYiILM3LL7uJYoWipUSZEBE9f/bujcHff19CbGy01KkQWTUfHz9R3Lkzn/9GZC6ZmRmiOCMjo4Q1yZLYSp0APZ/YGE9ERNYmPf2hKE5Le1jCmkREZEqZmRlITEyAIAhITDyCvn0H8kGuZFGSko4gMTFB6jQMUlDwTBTfu/cPFi+eL1E2hgsICIS//ytSp0FkFJlMpjcmy8Se8UREREQmkJ6eJorZGE9EVDH27o2BSiUAAFQqFXvHE5mRrW0VzdQ0tWvXga0t+3gSmUvxkSjFY7JMPGsSERERERGRxUpOToJSWQAAUCoLkJychFGjwiTOishw/v6vWFSv7c8//wR3797B3LkLOQqFyIzatvXA0aO/amIPjw4SZkOmwp7xREREREREZLF8ff0BqIfuy/4XE5G52NpWQZMmL7IhnsjMNm9eL4o3blwnUSZkSmyMJyIiIiIiIosVGBgMQPhfJKBr125SpkNERGQST5/m6I3JMrExniShnmOupJiIiIiIiMgQCQmHNA+1k8lk+OWXeIkzIiIiItKNjfEkCaVSqTcmIiIiIiIyRHJyEgShsGe8IAhITk6SOCMiIiIi3dgYT0RERERERBarY0cvUezp2UmiTIiIiIj0Y2M8ScLLy0cUd+rUWaJMiIiIiIjImqh7yRMRERFVNmyMJ0n06dNPb0xERERERGSIU6d+0xsTERERVRZsjCdJ/Pzzj6L4wIH9EmVCRERERESWzNfXHzY2cgCAjY0cvr7+EmdERERUfg4OjqLY0dGxhDXJkrAxniRx9Gii3piIiIiIiMgQoaEDYGMjAwDY2Nigb9+BEmdERERUfo6OTqLYyclZokzIlNgYTxIpPo8j53UkIiIiIiLjOTg4wsHBSfP/deo4SJwRERFR+V27liKKU1KuSJQJmRIb44mIiIiIiMhiZWZm4OHDBwCAhw8fICsrU+KMiIiIiHRjYzwRERERERFZrMjIzXpjIiIiosqCjfFERERERERksX777bgoPnnymESZEBEREenHxngiIiIiIiIiIiIiIjNjYzwRERERERERERERkZmxMZ6IiIiIiIgsVrVq1fXGRERERJUFG+OJiIiIiIjIYqlUKr0xERERUWXBxngiIiIiIiKyWF5e3qK4UycfiTIhIiIi0s9W6gSKysvLw4IFC5CcnIyqVauiffv2mD9/vtRpkRlUrVoVeXl5opiIzEUGQCgWExEREVmH7OzsYvFjiTIhIiIi0q9SNcb/5z//QdWqVXHgwAHIZDI8fPhQ6pTITPLzn+mNiciUhFJiIiIiIst19uwfovjMmT9KWJOIiIhIWpWmMf7Jkyf4/vvvkZCQAJmssNdm3bp1Jc6KzEUQVHpjIiIiIiIiIiIiImtSaRrjb926BQcHB3z99dc4fvw4atasiSlTpsDLy8vg13B2tjdjhmRuLi61pE6B6LnB442oYvBYIyIyPxcXV6SmPhDFRERERJVRpWmMVyqVuHXrFlq3bo0PP/wQZ86cQXh4OOLi4mBvb1gje1paNlQqTr9gqVJTObcjUUXh8UZUMXisWQYbGxk7dVgpPpPq+dC0aTNRY3zTps0kzIaIiMg0+GOzdao0jfENGjTA/7V390F2loX98L97djfyEpLNGyGQEFoGKBUt1WAMSQMkY6WYjQTCEDPoYwvV+qsvLW010l8Rgg8Sy4u0qGDHYrWII0gGlvKIaELiJgGhoohYiBSSaBIIYTclIITsOc8fka0rEDbJ3nvvnv18ZhhynT179pudvXP2+p7rXFdTU1PmzJmTJPmDP/iDjBo1Ko8//nje9KY3lZyOvtbY2Jiurq4eYwAA6EvOpBoafvKTH+92DAAvW7VqZdrbV5Qdo1cOOOCA3xofmCVLBv6ighkzTsr06TPLjjFgVcoO8LLRo0dn6tSpWbVqVZLk8ccfz9atWzN58uSSk1GEqVNn9Bi7SAEA6Esvn0n1sY99zJlUde6gg0bsdgwAg9F+++3f/eempqbst99+JaahrwyYlfFJcvHFF+eCCy7IkiVL0tTUlM9+9rMZMcIvUvVo9eqVPcYrV96d97//z0tKAwBAvdnXM6lsXTR4PP30U68YO7MDitPcvOud7a4zBqPTT39XTj/9XWXH6LW/+qu/yuOPP54rr7wyv/M7tmGrBwOqjJ80aVK+9rWvlR2DfvHbe/vb6x8AgL6zr2dSOY9qcHNmBxTnpZd2bTnrOoPiNTUNy1FHHZPhw8e65gaR3Z1JNWC2qQEAAOgruzuTivoyfvyE3Y4BAAYKZTwAAFB3nEk1dLzjHaf2GJ966mklJQEA2D1lPAAAUJcuvvjiXHfddWltbc3555/vTKo6dcst3+wxvummb5SUBABg9wbUnvEAAAB9xZlUQ8Pzzz+32zEAwEBhZTwAAACD1hvesN9uxwAAA4UyHgAAgEGs9jpjAICBwTY1AAAA9LBq1cq0t68oO0avvPjii68YL1lySUlpem/GjJMyffrMsmMAAP3IyngAAAAGrUqlstsxAMBAYWU8AAAAPUyfPnPQrNr+6U8fzBVXXNY9Pv/8Rfn93z+uxEQAAK/OkgEAAAAGrTe+8c3dq+EPOOBARTwAMGAp4wEAABjUJkw4NEnyf/7Px0pOAgDw2pTxAAAADGrDhx+UY4451qp4AGBAU8YDAAAAAEDBlPEAAAAAAFAwZTwAAAAAABRMGQ8AAAAAAAVTxgMAAAAAQMGU8QAAAAAAUDBlPAAAAAAAFEwZDwAAAAAABVPGAwAAAABAwZTxAAAAAABQMGU8AAAAAAAUTBkPAAAAAAAFU8YDAAAAAEDBlPEAAAAAAFAwZTwAAAAAABRMGQ8AAAAAAAVTxgMAAAAAQMGU8QAAAAAAUDBlPAAAAAAAFEwZDwAAAAAABVPGAwAAAABAwZTxAAAAAABQMGU8AAAAAAAUbECW8ddcc02OOeaYPProo2VHAQAAAACAfTbgyvif/vSn+dGPfpTDDjus7CgAAAAAANAnBlQZv2PHjixevDgXXXRR2VEAAAAAAKDPDKgy/uqrr87cuXMzceLEsqMAAAAAAECfaSo7wMseeOCBPPTQQ/nbv/3bvX6MMWOG92Ei+tu4cQeVHQGGDNcb9A/XGgAAAC8bMGX8fffdl8ceeyyzZ89OkmzevDnnnntuPvOZz2TGjBm9eoytW7enWq0VGZMCbdnybNkRYMhwvUH/cK0NDpVKg0UdAABA4QbMNjUf+MAH0t7enmXLlmXZsmU55JBD8uUvf7nXRTwAAMBvu+aaa3LMMcfk0UcfLTsKAABD3IAp4wEAAPrST3/60/zoRz/KYYcdVnYUAAAYuGX8smXLcvTRR5cdAwAAGIR27NiRxYsX56KLLio7CgAAJBnAZTwAAMDeuvrqqzN37txMnDix7CgAAJBkAB3gCgAA0BceeOCBPPTQQ/nbv/3bvX4Mh/oOLs3NjUmSceMOKjkJ1D/XG/Qf11v9UcYDAAB15b777stjjz2W2bNnJ0k2b96cc889N5/5zGcyY8aMXj3G1q3bU63WioxJH3rppa4kyZYtz5acBOqf6w36j+ttcKpUGl5zYYcyHgAAqCsf+MAH8oEPfKB7PGvWrFx77bXOpAIAoFT2jAcAAAAAgIJZGQ8AANS1ZcuWlR0BAACsjAcAAAAAgKIp4wEAAAAAoGDKeAAAAAAAKJgyHgAAAAAACqaMBwAAAACAginjAQAAAACgYMp4AAAAAAAomDIeAAAAAAAKpowHAAAAAICCKeMBAAAAAKBgyngAAAAAACiYMh4AAAAAAAqmjAcAAAAAgIIp4wEAAAAAoGDKeAAAAAAAKJgyHgAAAAAACqaMBwAAAACAginjAQAAAACgYMp4AAAAAAAomDIeAAAAAAAKpowHAAAAAICCNfXmTo899lhuvfXWrF27Ns8991wOPPDAHHXUUXn3u9+dI488suiMAABAnTC3AABgqHrdlfG33357zj777GzevDknnHBCWltb87a3vS1PPvlkFixYkDvuuKM/cgIAAIOcuQUAAEPZ666Mv/LKK3PdddflrW996ys+9p//+Z/5u7/7u5x22mmFhAMAAOqHuQUAAEPZ65bxHR0deeMb3/iqH/v93//9dHR09HkoAACg/phbAP3h61//ajZsWFd2jLq1fv2u7+2SJZeUnKR+TZo0OQsXvq/sGEABXreMP/HEE3PBBRfkr/7qr3L44Yd3375+/fpcffXVOfHEEwsNCAAA1AdzC6A/bNiwLk/8/L9yyPBeHZPHHjog1STJC5t/XnKS+rR5+86yIwAFet1npksvvTQXX3xxTjvttDQ3N+fAAw/Mc889l507d+aP//iPc+mll/ZHTgAAYJAztwD6yyHDm/Knbx5ddgzYY9c/+EzZEYACvW4ZP3LkyFx55ZX51a9+lSeeeCLPPfdcDjzwwBxxxBHZf//9+yMjAABQB8wtAAAYyiq9veP++++fY489NlOmTMljjz3ml2UAAGCvmFsAADAU9bqM/00XXnhhX+cAAACGIHMLAACGir06zaRWq/V1jnR0dOTjH/941q9fn2HDhmXy5MlZvHhxRo+2xxsAANSrIuYWAAAwEO1VGT9lypS+zpGGhoacd955mTp1apJkyZIlufzyyx3itAdWrVqZ9vYVZcfYa0uWXFJ2hNc1Y8ZJmT59ZtkxAADqRhFzCwAAGIh6XcZfffXV3X8+7rjjusfDhg3LIYcckj/6oz/K2LFj9zpIS0tLdxGfJMcff3xuvPHGvX48gCJ58at4XvziZYP5enOtwasrem4BAAADUa/L+CeeeCJ33XVX3vzmN2fChAnZtGlTHnzwwcyaNSvLly/PxRdfnH/6p3/KzJn7PpmrVqu58cYbM2vWrD36vDFjhu/z1x7MTj/9XTn99HeVHaNXWltbX3Hb5Zd/toQksHdGjNg/zc2NZcfYa4Mh+4gR+2fcuIPKjsEAMJivt8GQ27VGGfpzbgEAAANFr8v4arWaq666Ku94xzu6b/vud7+b22+/Pd/85jezdOnSXHHFFX3yC/Mll1ySAw44IOecc84efd7WrdtTrdpzcjA48cSTsnr1/65ynDnzlGzZ8myJiWDPvOlNJ+RNbzqh7Bi98md/tvAVt51//gUlJNlz/l0gGTzX2wc/+P689NKO7nFz8zDX2iBRqTQM+UUd/a0/5xYAADBQVHp7x/b29lesVD/llFOycuXKJMncuXOzYcOGfQ60ZMmSrFu3Lp/73OdSqfQ6HoPMeed9sMf4/e//85KSQP075ZQ/7jF+xztOLSkJ1Le///uLeoz/7/+9uJwgMAj019wCAAAGkl6vjD/88MNz44039lit/o1vfCOHH354kqSjoyP777//PoW58sor89BDD+VLX/pShg0btk+PxcA3fPhB2b792cyceUrZUaCuvfe978/y5d/pHr/nPe8rMQ3Ur8MPP6L7z83NwzJp0uTywsAA1x9zCwCgeF//+lezYcO6smPUrfXrd31vB8NZVIPVpEmTs3Bh//UkvS7jP/3pT+cjH/lI/uVf/iXjx4/Pk08+mcbGxvzzP/9zkuTxxx/Pxz72sb0Osnbt2lx33XU54ogjsmDBgiTJxIkT8/nPf36vH5OB7bDDJiaxKh76w4gRI/M//7PNqngo2OTJR2T9+nVWxcPrKHpuAQD0jw0b1uXR/34kjSMtqi1CtbErSfLY1sdLTlKfurbteP079bFel/FvfOMbc+edd+bHP/5xnnrqqYwbNy7HH398mpubkyQnnHBCTjhh7/dzPeqoo/LII4/s9ecD8NomTDg0EyYcalU8FGy//fbP0Uf/nlXx8DqKnlsku1bXf/zjH8/69eszbNiwTJ48OYsXL87o0aP74q8AAPxa48hhGTnz0LJjwB7btnJjv3/NXpfxSdLc3JwpU6YUlQUAABgiip5bNDQ05LzzzsvUqVOT7Dqb6vLLL8+ll15a2NfcHW/jL5a38Revv9/GDwD1aI/KeAAAgMGgpaWlu4hPkuOPPz433nhjaXk2bFiXR9b+PI37tZSWoZ5VuxqTJD/f8HTJSepT1wudZUcAgLqgjAcAAOpatVrNjTfemFmzZvX6c8aMGd6nGZqbG9O4X0sOmDy7Tx8X+sPz676X5ubGjBt3UNlReqW5uTEvlB0C9sFgu95gMOvv600ZDwAA1LVLLrkkBxxwQM4555xef87WrdtTrdb6LMNLL3X12WNBGV56qStbtjxbdoxecb0x2LneoP8Ucb1VKg2vubBDGQ8AANStJUuWZN26dbn22mtTqVTKjgMAwBCmjAcAAOrSlVdemYceeihf+tKXMmzYsLLjAAAwxCnjAQCAurN27dpcd911OeKII7JgwYIkycSJE/P5z3++5GQAAAxVyngAAKDuHHXUUXnkkUfKjgEAAN1smggAAAAAAAVTxgMAAAAAQMGU8QAAAAAAUDBlPAAAAAAAFEwZDwAAAAAABVPGAwAAAABAwZTxAAAAAABQMGU8AAAAAAAUTBkPAAAAAAAFU8YDAAAAAEDBlPEAAAAAAFAwZTwAAAAAABRMGQ8AAAAAAAVTxgMAAAAAQMGU8QAAAAAAUDBlPAAAAAAAFEwZDwAAAAAABVPGAwAAAABAwZrKDjCQff3rX82GDevKjlG31q/f9b1dsuSSkpPUr0mTJmfhwveVHaNXXG/Fcr0Vz/VG4lrrD4PpWgMAAPhNyvjd2LBhXR5Z+/M07tdSdpS6VO1qTJL8fMPTJSepT10vdJYdYY9s2LAuT/z8v3LIcP8sFeGAVJMkL2z+eclJ6tPm7TvLjrBHNmxYl0f/+5E0jhxWdpS6U23sSpI8tvXxkpPUp65tO8qOAAAAsNe0Xq+jcb+WHDB5dtkxYI89v+57ZUfYY4cMb8qfvnl02TFgj13/4DNlR9hjjSOHZeTMQ8uOAXtk28qNZUcAAADYa/aMBwAAAACAginjAQAAAACgYMp4AAAAAAAomDIeAAAAAAAKpowHAAAAAICCKeMBAAAAAKBgA6qMf/zxx3P22Wfnne98Z84+++w88cQTZUcCAAAAAIB9NqDK+E996lNZuHBh7rzzzixcuDAXXnhh2ZEAAAAAAGCfDZgyfuvWrXn44YczZ86cJMmcOXPy8MMP55lnnik5GQAAAAAA7JumsgO8bNOmTRk/fnwaGxuTJI2NjTn44IOzadOmjB49upRM27Z1puuFzjy/7nulfH3YF10vdGbbtgFziQMDyLZtndnZ+WK2rdxYdhTYIzs7X8y2ps6yYwAAAOyVumrqxowZ3qeP19g4YN44AHulsbGSceMOKjtGr2zf/j95evvOXP+gd8Mw+GzevjNjt//PoLnePL8xmA2m5zb4TRb6MJhZ6AMAfWPAPJtOmDAhTz75ZLq6utLY2Jiurq489dRTmTBhQq8fY+vW7alWa32WafjwEWncb0cOmDy7zx4T+svz676X4cNHZMuWZ8uO0itdXdWyI8A+6eqqDprrbfjwEWl6cWtGzjy07CiwR7at3FjIc1ul0tDnizoAKM+2bZ3psNCHQWrz9p0ZtW3wvBPQu24ZzMp45+2AKePHjBmTY489Nrfffnve/e535/bbb8+xxx5b2hY1QP8aObIlb/jV0/nTN7vmGXyuf/CZ7DeypewYAAxgI0e2ZMv/7LTQh0Hp+XXfy0i/6wDAPhswZXySXHTRRVm0aFG+8IUvZMSIEVmyZEnZkQAAAIBBxEIfBrPBttBn5MiWPL2zw7tuGZS2rdzY7y82D6gy/sgjj8xNN91UdgwAAAAAAOhTTnADAAAAAICCKeMBAIC69Pjjj+fss8/OO9/5zpx99tl54oknyo4EAMAQpowHAADq0qc+9aksXLgwd955ZxYuXJgLL7yw7EgAAAxhyngAAKDubN26NQ8//HDmzJmTJJkzZ04efvjhPPPMMyUnAwBgqBpQB7gCQ9vm7Ttz/YMmyEXYvqOaJBk+zGuwRdi8fWeOKDsEAD1s2rQp48ePT2NjY5KksbExBx98cDZt2pTRo0eXnA4AgKFIGf86ul7ozPPrvld2jLpU3flCkqTStF/JSepT1wudScaWHaPXJk2aXHaEuvbU+nVJkrGH+D4X4YgMvp/hrm07sm3lxrJj1J3qC11Jksp+jSUnqU9d23YkY8pOwVAxZszwPn285mb/LjC4NTc3Zty4g8qO0SvNzY15oewQsA8G2/UGg1l/X2/K+N0YbMXKYLP+1+Xg4ZMGT2E8uIwdVD/DCxe+r+wIdW3JkkuSJJ/4xD+UnISBYDD92zDYdD+3jfE9LsQYP7/03oQJE/Lkk0+mq6srjY2N6erqylNPPZUJEyb06vO3bt2earXWZ3leeqmrzx4LyvDSS13ZsuXZsmP0iuuNwc71Bv2niOutUml4zYUdyvjdUA4WSzkIUA7Pb8Xx3AYDx5gxY3Lsscfm9ttvz7vf/e7cfvvtOfbYY21RAwBAaZTxAABAXbrooouyaNGifOELX8iIESOyZMmSsiMBADCEKeMBAIC6dOSRR+amm24qOwYAACRJKmUHAAAAAACAeqeMBwAAAACAgtmmBgAAoB90vdCZ59d9r+wYdam684UkSaVpv5KT1KeuFzqTjC07xh7ZvH1nrn/wmbJj1KXtO6pJkuHDrO8swubtO3NE2SGAwijjAQAACjZp0uSyI9S19evXJUkOnzS4CuPBY+yg+hkeTFkHo6d+fb2NPcT3uQhHxM8w1DNlPAAAQMEWLnxf2RHq2pIllyRJPvGJfyg5CQOB661Yrjd+W9e2Hdm2cmPZMepS9YWuJEllv8aSk9Snrm07kjH9+zWV8QAAAADAHrOKv1jd7/wa4/tciDH9/zOsjAcAAAAA9ph3ohTLO1Hqj9M2AAAAAACgYMp4AAAAAAAomDIeAAAAAAAKpowHAAAAAICCKeMBAAAAAKBgyngAAAAAACiYMh4AAAAAAAqmjAcAAAAAgIIp4wEAAAAAoGDKeAAAAAAAKJgyHgAAAAAACqaMBwAAAACAginjAQAAAACgYMp4AAAAAAAomDIeAAAAAAAKpowHAAAAAICCKeMBAAAAAKBgyniAIWDbts488sjPct9995QdBQAAAGBIUsYDDAGbN29Kklx33TUlJ4H69sILv8qjj/5XNmxYV3YUAAAABpgBUcZffPHFOfXUUzN37twsWLAgP/nJT8qORD9QWED/uPfe1d1/rlarVsdDgdavX59arZZ//Mf/t+woAAAADDBNZQdIkpkzZ+aCCy5Ic3Nzli9fnr/+67/Od7/73bJjUbCNG3+ZWq2WL37xn3LppVeUHQf2yKpVK9PevqLsGL3yyCM/6zH+4hf/KcuW3VVSmt6bMeOkTJ8+s+wY0Gvr1z+RWq2aJNm+fXs2bFiXSZMml5wKAACAgWJAlPGnnHJK95+PP/74bN68OdVqNZXKgFi4TwHWr38iL730UpJd22coLAB4LYPlxa9HH32kx/iii/4+Rx99TElpes8LXwAAAP1jQJTxv+mGG27IySefrIjfC4OlrEiS//7vn/cYf/rTn8rv/u6RJaXpPYUFL5s+feag+Vn4sz9b+IrbPvGJfyghCdS3l1fFv9YYAACAoa1fyvh58+Zl48aNr/qx1atXp7GxMUnyH//xH2lra8sNN9ywV19nzJjhe52xHowYsX+amxvLjtErL6+K/9/xjkGRfcSI/TNu3EFlx4B95ueYweT009+V009/V9kxXldra+srbrv88s+WkAQAAICBqF/K+KVLl77ufe66665cddVV+cpXvpKxY8fu1dfZunV7qtXaXn1uPXjTm07Im950QtkxeuXVVuqef/4FJSTZc1u2PFt2BNhnfo6hf7jWBodKpWHIL+oAAACKNyC2qVm+fHk+85nP5Prrr8/EiRPLjkM/aGhoSK1W6zEGAAAAAKhXA6KM/+QnP5nm5uZ89KMf7b7tK1/5SkaNGlViKorU0FBJrdbVYwwUo7m5ucfWUM3NzSWmAQAAABiaBkQZf88995QdgX72lrdMyf3339s9futbB8f2OjAY/faB2A7IBgAAAOh/GhlKMWzYsB5jK3WhOG9969t6jKdMmVpSEgAAAIChSxlPKe6//we7HQPF+c3zGgAAAADoH8p4StHU1LTbMdB3fvjD+3c7BgAAAKB4ynhK8fzzz+12DPSdt7xlSo+xMxoAqHcXX3xxTj311MydOzcLFizIT37yk7IjAQCAMp5yjB8/ocf4kEMmvMY9gX21Y8eOHuMXX3yxpCQA0D9mzpyZtra23HbbbfngBz+Yv/7rvy47EgAAKOMpx+jRY3Y7BvrOAw/cv9sxANSbU045Jc3NzUmS448/Pps3b061Wi05FQAAQ52NuinFz372UI/xww8/9Br3BIDBoampOTt3vtRjDJTvhhtuyMknn5xKZc/WIY1ILg2JAAAXWklEQVQZM7ygRBShubkxSTJu3EElJ4H653qD/uN6qz/KeIA6N3XqiVm9+vvd47e/fXqJaaB+/WYR/2pjoO/MmzcvGzdufNWPrV69Oo2Nuyau//Ef/5G2trbccMMNe/w1tm7dnmq1tk856T8vvdSVJNmy5dmSk0D9c71B/3G9DU6VSsNrLuxQxlOK8eMn5MknN3WP7RkPxZk/f0HuuWdVqtVqKpVK5s9fUHYkANgnS5cufd373HXXXbnqqqvyla98JWPHju2HVAAAsHv2jKcUH/rQR35r/NGSkkD9a2kZ1b0aftq0GRk5sqXkRABQrOXLl+czn/lMvvzlL2fixIllxwEAgCRWxlOSESNG7nYM9K358xfk6ae3WBUPBfrtd32NH+9dX1CWT37yk2lubs5HP/q/Cz6+8pWvZNSoUSWmAgBgqFPGU4q2tqVpaKikVqumoaGS2267Je9975+VHQvqVkvLqCxadGHZMaCunXPO/5Mrrrise/ze9/5piWlgaLvnnnvKjgAAAK9gmxpKsWbNqtRq1SRJrVbNmjWrSk4EAPtmxYrlPcZ33/29kpIAAAAwECnjKcW0adPT2LjrjRmNjU2ZNm16yYkAYN/cf/+9ux0DAAAwtNmmhlK0ts5Le/uKdHUllUolc+eeUXYkAADg11atWpn29hVlx+i19evXJUmWLLmk5CS9N2PGSZk+fWbZMQCAfmRlPKVoaRmVGTNOSkNDQ2bMmJmRI1vKjgR1rbOzI5ddtjjbtnWWHQXq1n777bfbMQDFGTlyZEaOHFl2DACA3bIyntK0ts7LL3/5C6vioR+0tS3N2rWPOCwZCvTiiy/udgwwmEyfPtOqbQCAPmZlPECd6+zsSHv7itRqtbS3r7Q6HgrS0FDZ7RgAAIChzSyR0vzmSl2gOG1tS1Ot1pIk1WrVNQcFecMb3rDbMQAAAEObMp5SWKkL/WfNmlXp6tqZJOnq2pk1a1aVnAjq069+9fxuxwAAAAxtynhKYaUu9J9p06anoaEhSdLQ0JBp06aXnAjq0wEHHLjbMQAAAEObA1wpxaut1HWoJBTjpJNmZfny7yZJarVaTj55dsmJoD7t3Llzt2MAAKBcq1atTHv7irJj9Nr69euSJEuWXFJykt6bMeMkh8DvhpXxlGLatOlpbNz1WlBjY5OVulCg73zn/+sxvvPOO0pKAvVt+vQ/2u0YAABgT4wcOTIjR44sOwZ9yMp4StHaOi/t7SvS1ZVUKpXMnXtG2ZGgbt177+pXjM8770MlpYH61do6LytXLk9XV1caG5s8twEAwAAzffpMq7YplZXxlKKlZVRmzDgpDQ0NmTFjZkaObCk7EtStWq222zHQN1paRmXmzFPS0NCQmTNP9twGAABAD8p4StPaOi9HHXWMlYNQsHHjxvcYH3zw+Ne4J7CvPLcBAADwWmxTQ2laWkZl0aILy44Bda+zs6PHuKOj4zXuCewrz20AAAC8FivjKU1nZ0cuu2xxtm3rLDsK1LUTT5yRhoaGJElDQ0NOPHFGyYkAAAAAhh5lPKVpa1uatWsfyW233VJ2FKhrra3z0ti4641QTU0OlQQAAAAogzKeUnR2dqS9fUVqtVra21daHQ8FamkZlT/6o5cPTD7JoZIAAAAAJVDGU4q2tqWpVmtJkmq1anU8FMyhkgAAAADlUsZTijVrVqWra2eSpKtrZ9asWVVyIqhvLx8qaVU8AAAAQDmU8ZRi2rTp3XtYNzY2Zdq06SUnAgAAAAAojjKeUrS2zkul0pAkqVQqts4AAAAAAOqaMp5StLSMyowZLx8oOdPWGQAAAABAXVPGUxoHSkL/6ezsyGWXLc62bZ1lRwEAAAAYkgZUGX/vvffm2GOPzb//+7+XHQWgrrS1Lc3atY/ktttuKTsKAAAAwJA0YMr47du35/LLL8/MmTPLjkI/UQ5C/+js7Mj3v78itVot7e0rrI4HAAAAKMGAKeMvu+yynHvuuRk1alTZUegHnZ0daW9/uRxcqRyEArW1LU1X184kyc6dO70ABgAAAFCCprIDJMmKFSvy7LPP5tRTT83dd9+9148zZszwvgtFoW666Wup1WpJklqtmrvuuj0f+tCHSk4F9WnNmvbfuN5queeeVTn//I+VnAoAAABgaOmXMn7evHnZuHHjq37s29/+dq644opcf/31+/x1tm7dnmq1ts+PQ/GWL787O3f+70rdZcuWZ/78c0pOBfVp9Ogx2bjxl93jUaNGZ8uWZ0tMBDCwVCoNFnUAAACF65cyfunSpa/5sfvvvz9btmzJWWedlSTp6OjI8uXL09nZmQ9/+MP9EY8STJs2PStX3p2urp1pbGzKtGnTy44EdWvr1q27HQMAAABQvNL3jJ8yZUrWrFmTZcuWZdmyZXnnO9+Zj3zkI4r4OtfaOi+VSkOSpFKpZO7cM0pOBPXrxBNnJGn49ajh12OgCJ2dHbnsssXOQgEAAOAVSi/jGZpaWkZlxoyT0tDQkBkzZmbkyJayI0Hdam2dl6amxiRJU1OTF7+gQG1tS7N27SMOSgYAAOAVBlwZf9lll+Wcc+wdPhS0ts7LUUcdoxiEgrW0jMrb3jYtSfK2t73di19QkM7OjrS3r0itVkt7+0qr4wEAAOhhwJXxDB0tLaOyaNGFikHoRw0NDa9/J2CvtLUt7T5IvlqtWh0PAABAD8p4gDrX2dmR++67J0nygx/cY7UuFGTNmlXp6tqZJOnq2pk1a1aVnAgAAICBRBlPaRxyB/1j12rdapKkWu2yWhcKMm3a9DQ2NiVJGhubMm3a9JITAQAAMJAo4ynNzTd/I48++l+56aYby44CdW3Xat2uJElXV5fVulCQ1tZ5qVR2bQVVqVSciQIAAEAPynhK0dnZkTVr2pPsKgqtjofivOUtU3qM3/rWE0pKAvWtpWVUZsw4KQ0NDZkxY6YzUWAAuPfee3Psscfm3//938uOAgAAynjKcfPN30ittuuQu1qtanU8FGjHjh27HQN9p7V1Xo466hir4mEA2L59ey6//PLMnDmz7CgAAJBEGU9J7r139W7HQN954IH7e4x/+MP7SkoC9a+lZVQWLbrQqngYAC677LKce+65GTVqVNlRAAAgiTIeAACoMytWrMizzz6bU089tewoAADQransAAxNU6eemNWrv989fvvbp5eYBurbb19vU6eeWGIaANh38+bNy8aNG1/1Y9/+9rdzxRVX5Prrr9+nrzFmzPB9+nyAetXc3JgkGTfuoJKTAAw+ynhKMX/+gtxzz6pUq9VUKpXMn7+g7EhQt+bPX5A1a9pTq9XS0NCQs856T9mRAGCfLF269DU/dv/992fLli0566yzkiQdHR1Zvnx5Ojs78+EPf7jXX2Pr1u2pVmv7nBWg3rz0UleSZMuWZ0tOAjAwVSoNr7mwQxlPKVpaRuXtb5+e1au/n2nTZthbFwrU0jIqY8aMzdNPb8mYMWNdbwDUtSlTpmTNmjXd40WLFuW4447LOeecU2IqAABQxlOi+fMX5Omnt1gVDwXr7OzI1q1PJ0m2bn0627Z1KuQBAAAA+pkyntK0tIzKokUXlh0D6t7NN38jtdqut9nXarXcdNONOe+8D5WcCgD6x2WXXVZ2BAAASJJUyg4AQLHuvXf1bsdA3+ns7Mhlly3Otm2dZUcBAABggFHGAwD0kba2pVm79pHcdtstZUcBAABggFHGA9S5qVNP7DF++9unl5QE6ltnZ0fa21ekVqulvX2l1fEAAAD0oIwHqHPz5y9IpbLrn/tKpeLQZChIW9vSVKu7zmeoVqtWxwMAANCDMp7S2FcX+kdLy6ju1fDTps3IyJEtJSeC+rRmzap0de1MknR17cyaNatKTgQAAMBAooynNDff/I08+uh/5eabv1F2FKh78+cvyNFH/55V8VCgadOmp1JpTJJUKo2ZNs2WUAAAAPwvZTyl6OzsyD337FoxuGZNu9XxULCWllFZtOhCq+KhQK2t81KrVZMktVotc+eeUXIiAAAABhJlPKW4+eZvpFrdVVhUq1Wr4wGoCw0NDb/+f8lBAAAAGHCU8ZTi3ntX9xi/vEoeAAartralv1HGNzjAFQAAgB6U8QBDgAOToXi7DnDtSpJ0dXU5wBUAAIAelPGUYurUE3c7BvpWW9vSrF37iJW6UKBp06ansbEpSdLY2OQAVwAAAHpQxlOK+fMX/MZb+Ss566z3lJwI6ldnZ0fa21ekVqulvX2l1fFQkNbWed3PbZVKgwNcAQAA6EEZTylaWkZl2rQZSXatJBw5sqXkRFC/2tqWplqtJdl1YLLV8VCMlpZROfjgg5Mk48Yd7LkNAACAHpTxlGb+/AU5+ujfsyoeCrZrH+udSZKurp32sYaCdHZ25KmnnkySPPXUU96FAgAAQA9NZQdg6GppGZVFiy4sOwbUvWnTpmflyrvT1bXTPtZQoLa2pantehNKarVabrvtlrz3vX9WbigAYMBbtWpl2ttXlB2j19avX5ckWbLkkpKT9N6MGSdl+vSZZccAsDIeoN61ts5LpfLyPtYV+1hDQbwLBQAYCkaOHJmRI0eWHQNgULIyHqDOtbSMyowZJ+Xuu7+XGTNm2scaCuJdKADA3pg+faZV2wBDhJXxAENAa+u8HHXUMVbFQ4G8CwUAAIDdUcYDDAEvn9FgVTwU5+V3oTQ0NHgXCgAAAK9gmxoAgD7S2jovv/zlL6yKBwAA4BUaarVarewQfWXr1u2pVuvmrwMAQD+oVBoyZszwsmMwwJhbAACwN3Y3v7BNDQAAAAAAFGzAbFPzta99LTfccEOam5tTqVRy6623lh0JAAAAAAD6xIAo47/zne/k29/+dm6++eYMHz48Tz/9dNmRAAAAAACgzwyIbWr+9V//NR/+8IczfPiuvXTGjh1bciIAAAAAAOg7A6KMf+yxx/LjH/84CxYsyBlnnJFvfvObZUcCAAAAAIA+0y/b1MybNy8bN2581Y+tXr06XV1d2bRpU77+9a+no6Mj73nPe/I7v/M7OeGEE/bo67zWKbUAAAAAAFCmfinjly5dutuPH3rooZkzZ04qlUrGjBmTE088MQ8++OAel/Fbt25PtVrbl6gAAAwxlUqDRR0AAEDhBsQ2NXPmzMn3v//9JMnzzz+f//zP/8zv/d7vlZwKAAAAAAD6xoAo49///vdn06ZNede73pWzzjorra2tmT59etmxAAAAAACgTzTUarW62dfFNjUAAOwp29TwaswtAADYG7ubX/TLnvH9pVJpKDsCAACDjN8heTV+LgAA2Bu7+z2yrlbGAwAAAADAQDQg9owHAAAAAIB6powHAAAAAICCKeMBAAAAAKBgyngAAAAAACiYMh4AAAAAAAqmjAcAAAAAgIIp4wEAAAAAoGDKeAAAAAAAKJgyHgAAAAAACtZUdgCGho6Ojnz84x/P+vXrM2zYsEyePDmLFy/O6NGju+/zyU9+Mrfcckt++MMf5sADDywxLdSHa665Jv/8z/+ctra2HH300bn55pvzb//2b6lUKmlsbMwFF1yQKVOmlB0TBq1f/OIX+cu//Mvu8bPPPpvt27fnzjvvfN3nPAD2nrkFlMP8AoplfjE0WBlPv2hoaMh5552XO++8M21tbZk0aVIuv/zy7o8vW7YsDQ0NJSaE+vLTn/40P/rRj3LYYYcl2TVpvfTSS3P99dfn1ltvzV/+5V/mwgsvLDklDG4TJ07Mrbfe2v3f7NmzM2fOnNd9zgNg35hbQP8zv4DimV8MDcp4+kVLS0umTp3aPT7++OOzcePGJLuexK+55pp88pOfLCse1JUdO3Zk8eLFueiii7pvq9VqqdVqee6555LseoX9kEMOKSkh1J8dO3akra0tZ5555m6f8wDYd+YW0L/ML6D/mV/UL9vU0O+q1WpuvPHGzJo1K0myePHifPSjH81BBx1UcjKoD1dffXXmzp2biRMndt82evToLF68OPPmzcuIESNSrVbzta99rcSUUF+WLVuW8ePH541vfGOP23/7OQ+AvmVuAcUzv4D+Z35Rv6yMp99dcsklOeCAA3LOOefkjjvuSHNzc04++eSyY0FdeOCBB/LQQw9l4cKFPW7fvn17brjhhtx88825++67s2jRonz4wx9OrVYrKSnUl29961s588wzX3H7bz7nAdD3zC2gWOYXUA7zi/qljKdfLVmyJOvWrcvnPve5VCqV/OAHP8g999yTWbNmdb+qN2fOnPz85z8vOSkMTvfdd18ee+yxzJ49O7NmzcrmzZtz7rnnZuXKlTnooIPyu7/7u0mS0047LevXr09HR0fJiWHwe/LJJ3PfffeltbW1x+2//ZwHQN8yt4DimV9A/zO/qG8NNS9b0k+uvPLKPPDAA/nSl76U/fff/1Xvc8wxx+SHP/xhDjzwwH5OB/Vp1qxZufbaa7Njx4588IMfzG233ZYxY8bknnvuyd/8zd+kvb3dAWewj6699tr87Gc/y9VXX919W2+e8wDYe+YWUA7zCyie+UV9s2c8/WLt2rW57rrrcsQRR2TBggVJdp0S/fnPf77kZDA0HHfccTnvvPNyzjnnpLm5OcOGDcvVV1/tF2XoA0uXLs3f//3fd4895wEUy7+zUD7zCyiO+UV9szIeAAAAAAAKZoMhAAAAAAAomDIeAAAAAAAKpowHAAAAAICCKeMBAAAAAKBgyngAAAAAACiYMh4AAAAAAAqmjAcY4GbNmpXVq1eXHQMAABjkzC0AyqWMBwAAAACAginjAQawv/u7v8vGjRvzF3/xF/nDP/zD/Mu//Et+9KMfZcGCBZkyZUrmzp2be++9t/v+733ve3PVVVdlwYIF+cM//MP8xV/8RTo6OvI3f/M3ectb3pIzzzwzv/jFL7rvf8wxx+SrX/1qZs+enalTp2bJkiWpVqtJkmq1mi984Qs55ZRTMm3atHz84x/Ps88+2+/fAwAAYN+ZWwCUTxkPMID94z/+Yw499NBce+21eeCBBzJ37tx88IMfzIc+9KH84Ac/yCc+8Yl89KMfzTPPPNP9OXfccUc++9nPZuXKlVm/fn0WLFiQM888Mz/4wQ9y5JFH5vOf/3yPr3HXXXflW9/6VpYuXZply5blW9/6VpLklltuydKlS/PVr3413/3ud/P8889n8eLF/fr3BwAA+oa5BUD5lPEAg8itt96amTNn5qSTTkqlUsn06dNz3HHHZcWKFd33OeOMM3L44YfnoIMOysyZMzNp0qSceOKJaWpqyqmnnpqHH364x2P++Z//eVpaWnLooYfmfe97X26//fYkSVtbW97//vdn0qRJOfDAA3P++efnjjvuyM6dO/v17wwAAPQ9cwuA/tdUdgAAem/jxo359re/neXLl3fftnPnzkydOrV7PHbs2O4/v+ENb+gx3m+//fL888/3eMwJEyZ0//mwww7LU089lSR56qmncthhh/X42M6dO7N169aMHz++7/5SAABAvzO3AOh/yniAQWTChAl597vfnU9/+tN99pibNm3KUUcdlWTXL+QHH3xwkuTggw/OL3/5y+77bdy4MU1NTRkzZkyffW0AAKAc5hYA/c82NQAD3NixY7Nhw4Ykydy5c7N8+fJ8//vfT1dXV1588cXce++92bx5814//pe//OVs27YtmzZtyle/+tWcdtppSZI5c+bk3/7t37Jhw4Y899xzueqqq/Inf/InaWryOi4AAAxG5hYA5VLGAwxwH/jAB/LFL34xU6ZMyR133JEvfOELue666zJt2rScdNJJ+fKXv5xqtbrXjz979uycccYZOf3003PyySdn/vz5SZIzzzwzc+fOzTnnnJPZs2dn2LBh+Yd/+Ie++msBAAD9zNwCoFwNtVqtVnYIAMpxzDHH5Dvf+U4mT55cdhQAAGAQM7cAeH1WxgMAAAAAQMGU8QAAAAAAUDDb1AAAAAAAQMGsjAcAAAAAgIIp4wEAAAAAoGDKeAAAAAAAKJgyHgAAAAAACqaMBwAAAACAginjAQAAAACgYP8/vd7Ay2SI9L4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WqOCaTaL6cKk" + }, + "source": [ + "## **Desafio 07: Resumo do que você aprendeu com os dados**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fIKDHa0g7rJR" + }, + "source": [ + "Nessa análise dos dados foi possível desenvolver sobre:\n", + "\n", + "* As impotancias de ter uma boa visualização, e como isso vai além dos efeitos cosméticos.\n", + "* Refletir sobre outros conceitos de visualização como distorção de dados e melhora de representatividade.\n", + "* Análisar dentro do banco de dados as medidas de tendência central, medidas separatrizes e medidas de dispersão, fornecidas pelo ```.describe()```\n", + "* Compreensão maior do que se tratam os 'g's e os 'c's e seu comportamento ao longo da distribuição das amostras." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mWTGrmZ2xKW2" + }, + "source": [ + "# **Referências**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ia-3cdc3xPDe" + }, + "source": [ + "* https://cursos.alura.com.br/course/introducao-python-pandas\n", + "* https://cursos.alura.com.br/course/estatistica-distribuicoes-e-medidas\n", + "* https://pt.wikipedia.org/wiki/M%C3%A9dia\n", + "* https://pt.wikipedia.org/wiki/Mediana_(estat%C3%ADstica)\n", + "* https://pt.wikipedia.org/wiki/Quartil\n", + "* https://pt.wikipedia.org/wiki/Desvio_padr%C3%A3o" + ] + } + ] +} \ No newline at end of file