-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnlp.py
230 lines (168 loc) · 7.44 KB
/
nlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright (c) 2018,
#
# authors Luca Celotti
# while students at Université de Sherbrooke
# under the supervision of professor Jean Rouat
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# - Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
import zipfile
import json
import numpy as np
from nltk.grammar import Nonterminal, CFG, Production
from keras.preprocessing.sequence import pad_sequences
class Vocabulary(object):
endToken = '<END>'
def __init__(self, tokens):
if Vocabulary.endToken in tokens:
tokens.remove(Vocabulary.endToken)
indicesByTokens = dict()
tokens = [Vocabulary.endToken] + list(tokens)
for i, token in enumerate(tokens):
indicesByTokens[token] = i
self.__dict__.update(tokens=tokens,
indicesByTokens=indicesByTokens)
def __eq__(self, other):
return self.tokens == other.tokens
def __ne__(self, other):
return self.tokens != other.tokens
def __add__(self, other):
# NOTE: ignore the end token
tokens = set(self.tokens[1:])
tokens.update(other.tokens[1:])
return Vocabulary(list(sorted(tokens)))
def sort(self):
# NOTE: ignore the end token
tokens = sorted(self.tokens[1:])
self.indicesByTokens = dict()
self.tokens = [Vocabulary.endToken] + tokens
for i, token in enumerate(self.tokens):
self.indicesByTokens[token] = i
def indexToToken(self, idx):
return self.tokens[idx]
def indicesToTokens(self, indices, offset=0):
#print(indices)
#for i in indices:
# print(i)
# print(i, self.tokens[i-offset])
return [self.tokens[i-offset] for i in indices]
def tokenToIndex(self, token, offset=0):
return self.indicesByTokens[token] + offset
def tokensToIndices(self, tokens, offset=0):
indices = []
for token in tokens:
indices.append(self.indicesByTokens[token] + offset)
return indices
def sentenceToIndices(self, sentence, offset=0):
return self.tokensToIndices(sentenceSplit(sentence), offset)
def sentencesToIndices(self, sentences, offset=0):
indices = [self.sentenceToIndices(sentence, offset) for sentence in sentences]
return indices
def indicesToSentence(self, indices, offset=0):
return ' '.join(self.indicesToTokens(indices, offset))
def indicesToSentences(self, indices_list, offset=0):
if type(indices_list).__module__ == 'numpy':
indices_list = indices_list.tolist()
# unpad:
indices_list = [list(filter((0).__ne__, indices)) for indices in indices_list]
sentences = [self.indicesToSentence(indices, offset) for indices in indices_list]
return sentences
@staticmethod
def fromNltkGrammar(grammar):
tokens = []
for production in grammar.productions():
for p in production.rhs():
if not isinstance(p, Nonterminal):
tokens.append(p)
# Remove redundant tokens and sort
tokens = list(set(tokens))
tokens.sort()
return Vocabulary(tokens)
@staticmethod
def fromNpy(npy_filename = 'data/vocabularyComplete.npy'):
tokens = np.load(npy_filename)
return Vocabulary(tokens)
def getMaxVocabularySize(self):
return len(self.tokens)
def sentenceSplit(sentence):
split_sentence = sentence.split()
punctuation = ['.', ';', '?']
for p in punctuation:
is_p_contained = [p in token for token in split_sentence]
for i, item in enumerate(is_p_contained):
if item:
word = split_sentence[i][:-1]
punctuation_simbol = split_sentence[i][-1]
split_sentence[i] = word
split_sentence += [punctuation_simbol]
return split_sentence
def generateBatchRandomQuestions(batchSize, maxLen, vocabSize = 7):
questions = []
for _ in range(batchSize):
sentence_length = np.random.choice(9)
randomQ = np.random.choice(vocabSize, sentence_length)
questions.append(randomQ)
padded_questions = pad_sequences(questions, maxlen = maxLen)
print('Padded question')
print('')
print(padded_questions)
print('')
return padded_questions
def build_CLEVR_Vocabulary():
# TODO: get vocabulary from all datasets
CLEVR_zip = zipfile.ZipFile("data/CLEVR_v1.0.zip", "r")
sets_names = ['train', 'val', 'test']
#logger.info('\n\nLoading .json ')
vocabularyQuestions = []
vocabularyAnswers = []
for set_name in sets_names:
print('\nLoading .json %s'%(set_name))
json_filename = 'CLEVR_v1.0/questions/CLEVR_%s_questions.json'%(set_name)
with CLEVR_zip.open(json_filename) as f:
data = f.read()
d = json.loads(data.decode("utf-8"))
print('Building Vocabulary')
i = 0
for example in d['questions']:
i += 1
question = example['question']
vocabularyQuestions += sentenceSplit(question)
try:
answer = example['answer']
vocabularyAnswers += sentenceSplit(answer)
except KeyError:
pass
#if i>=3: break
vocabularyQuestions = sorted(list(set(vocabularyQuestions)))
vocabularyAnswers = sorted(list(set(vocabularyAnswers)))
vocabularyComplete = sorted(list(set(vocabularyQuestions + vocabularyAnswers)))
np.save('data/vocabularyQuestions.npy', vocabularyQuestions)
np.save('data/vocabularyAnswers.npy', vocabularyAnswers)
np.save('data/vocabularyComplete.npy', vocabularyComplete)
print('Finished!')
if __name__ == '__main__':
#build_CLEVR_Vocabulary()
vocabulary = np.load('data/vocabularyComplete.npy')
print(len(vocabulary))