-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCLEVR_generator.py
270 lines (191 loc) · 9.52 KB
/
CLEVR_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright (c) 2018,
#
# authors Luca Celotti
# while students at Université de Sherbrooke
# under the supervision of professor Jean Rouat
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# - Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
import time
import zipfile
import imageio
import json
from nlp import Vocabulary
from skimage import transform,io
import numpy as np
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical, Sequence
class CLEVR_sequence(Sequence):
def __init__(self, dataset_split = 'val', batch_size = 3, maxLen = None):
self.dataset_split, self.batch_size, self.maxLen = dataset_split, batch_size, maxLen
self.CLEVR_zip = zipfile.ZipFile("data/CLEVR_v1.0.zip", "r")
if not dataset_split in ['train', 'test', 'val']:
Exception("dataset_split parameter should be either 'train', 'test' or 'val'")
json_filename = 'CLEVR_v1.0/questions/CLEVR_%s_questions.json'%(dataset_split)
#logger.info('\n\nLoading .json ')
#print('\n\nLoading .json ')
with self.CLEVR_zip.open(json_filename) as f:
data = f.read()
self.d = json.loads(data.decode("utf-8"))
self.vocabularyQuestions = Vocabulary.fromNpy('data/vocabularyQuestions.npy')
self.vocabularyAnswers = Vocabulary.fromNpy('data/vocabularyAnswers.npy')
self.outputVocabSize = len(self.vocabularyAnswers.tokens)
def __len__(self):
if self.dataset_split == 'train':
length = 699989
elif self.dataset_split == 'test':
length = 149988
elif self.dataset_split == 'val':
length = 149991
return int(np.ceil(length / float(self.batch_size)))
def __getitem__(self, idx):
#print('Generating Samples')
batches = {}
for key in ['images', 'questions', 'answers']:
batches[key] = []
for example in self.d['questions']:
image_filename = example['image_filename']
image_filename = 'CLEVR_v1.0/images/' + self.dataset_split + '/' + image_filename
imgfile = self.CLEVR_zip.read(image_filename)
image = imageio.imread(imgfile)
# read in grey-scale
#grey = io.imread(imgfile)
# resize to 28x28
image = transform.resize(image, (228,228), mode='symmetric', preserve_range=True)
batches['images'].append(image[:,:,:3])
question = example['question']
question = self.vocabularyQuestions.sentenceToIndices(question)
batches['questions'].append(question)
answer = example['answer']
answer = self.vocabularyAnswers.sentenceToIndices(answer)
batches['answers'].append(answer)
if len(batches['questions']) >= self.batch_size:
images = np.array(batches['images'])
padded_questions = np.array( pad_sequences(batches['questions'], maxlen = self.maxLen) )
categorical_answer = to_categorical(batches['answers'], num_classes=self.outputVocabSize)
#padded_answers = np.array( pad_sequences(batches['answers'], maxlen = maxLen) )
for key in ['images', 'questions', 'answers']:
batches[key] = []
return [images, padded_questions], categorical_answer
def CLEVR_generator(dataset_split = 'val', batch_size = 3, maxLen = None):
CLEVR_zip = zipfile.ZipFile("data/CLEVR_v1.0.zip", "r")
if not dataset_split in ['train', 'test', 'val']:
Exception("dataset_split parameter should be either 'train', 'test' or 'val'")
json_filename = 'CLEVR_v1.0/questions/CLEVR_%s_questions.json'%(dataset_split)
#logger.info('\n\nLoading .json ')
#print('\n\nLoading .json ')
with CLEVR_zip.open(json_filename) as f:
data = f.read()
d = json.loads(data.decode("utf-8"))
vocabularyQuestions = Vocabulary.fromNpy('data/vocabularyQuestions.npy')
vocabularyAnswers = Vocabulary.fromNpy('data/vocabularyAnswers.npy')
outputVocabSize = len(vocabularyAnswers.tokens)
#print('Generating Samples')
batches = {}
for key in ['images', 'questions', 'answers']:
batches[key] = []
for example in d['questions']:
image_filename = example['image_filename']
image_filename = 'CLEVR_v1.0/images/' + dataset_split + '/' + image_filename
imgfile = CLEVR_zip.read(image_filename)
image = imageio.imread(imgfile)
# read in grey-scale
#grey = io.imread(imgfile)
# resize to 28x28
image = transform.resize(image, (228,228), mode='symmetric', preserve_range=True)
batches['images'].append(image[:,:,:3])
question = example['question']
question = vocabularyQuestions.sentenceToIndices(question)
batches['questions'].append(question)
answer = example['answer']
answer = vocabularyAnswers.sentenceToIndices(answer)
batches['answers'].append(answer)
if len(batches['questions']) >= batch_size:
images = np.array(batches['images'])
padded_questions = np.array( pad_sequences(batches['questions'], maxlen = maxLen) )
categorical_answer = to_categorical(batches['answers'], num_classes=outputVocabSize)
#padded_answers = np.array( pad_sequences(batches['answers'], maxlen = maxLen) )
for key in ['images', 'questions', 'answers']:
batches[key] = []
yield [images, padded_questions], categorical_answer
def test_content_jsons():
CLEVR_zip = zipfile.ZipFile("data/CLEVR_v1.0.zip", "r")
for dataset_split in ['train', 'test', 'val']:
json_filename = 'CLEVR_v1.0/questions/CLEVR_%s_questions.json'%(dataset_split)
with CLEVR_zip.open(json_filename) as f:
data = f.read()
d = json.loads(data.decode("utf-8"))
print(' ', dataset_split)
print(d['info'])
print(d['questions'][0].keys())
print(len(d['questions']))
print('')
def test():
CLEVR_zip = zipfile.ZipFile("data/CLEVR_v1.0.zip", "r")
zip_subfolders = [x for x in CLEVR_zip.namelist() if x.endswith('/')]
print(zip_subfolders)
print('')
questions = [x for x in CLEVR_zip.namelist() if 'questions' in x]
print(questions)
print('')
imgfile = CLEVR_zip.read('CLEVR_v1.0/images/train/CLEVR_train_035898.png')
im = imageio.imread(imgfile)
print(type(im))
print('')
# FIXME: this following lines work, but too slow to load all the train data.
# Find a way to load the json line by line, or dictionary key by key
with CLEVR_zip.open('CLEVR_v1.0/questions/CLEVR_test_questions.json') as f:
data = f.read()
d = json.loads(data.decode("utf-8"))
print(d['questions'][0])
print('')
print(d['info'])
def test_generator():
batch_size = 11
begin = time.time()
generator = CLEVR_generator(batch_size = batch_size)
end = time.time()
LoadingTime = end - begin
print('it took %ds to load'%(LoadingTime))
nSamples = 3
TotSamplingTime = 0
for _ in range(nSamples):
begin = time.time()
batch = generator.__next__()
end = time.time()
SamplingTime = end - begin
TotSamplingTime += SamplingTime
for element in batch:
if type(element) == list:
for sub_element in element:
print(sub_element.shape)
else:
print(element.shape)
print('in %ds'%(SamplingTime))
print('')
print('it took %ds/sample to sample'%(TotSamplingTime/nSamples))
if __name__ == '__main__':
#test_generator()
test_content_jsons()