-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGA.java
110 lines (91 loc) · 2.56 KB
/
GA.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import java.util.*;
/**
* Generic genetic algorithm.
*/
public class GA<T extends Gene> {
protected List<T> list;
protected int generationSize; // typically 50 - 100
protected int nbrGenerations;
protected Class<T> clazz; // to be able to crete new T instances
public GA(int generationSize, int nbrGenerations, Class<T> clazz) {
this.generationSize = generationSize;
this.nbrGenerations = nbrGenerations;
this.clazz = clazz;
/* Represent the problem as binary vector, integer vector or
real value genes. */
list = new LinkedList<T>();
run();
}
void run(){
/* Randomize the first generation of genes */
for (int k = 0; k < generationSize; k++) {
T gene = newT();
gene.setRandomValue();
list.add(gene);
}
for (int k = 0; k < nbrGenerations; k++) {
/* Calculate fitness for each gene according
to a pre-determined function */
for (int i = 0; i < generationSize; i++) {
list.get(i).setFitness();
}
/* Sort the genes in the list according to fitness,
best on top */
sort();
for(int i = 0; i < generationSize; i+= 2){
/* Mating/cross over: recombine the genes two by two */
T gene1 = list.get(i);
T gene2 = list.get(i+1);
T offspring = newT();
offspring.setValue(gene1.combineValues(gene2.getValue()));
/* Calculate fitness for the offspring and put it
on the right place in the list. */
offspring.setFitness();
place(offspring);
}
/* Throw away the worst 1/3 genes to maintain
the generation size */
LinkedList<T> tmp = new LinkedList<T>();
for (int i = 0; i < generationSize; i++) {
tmp.add(list.get(i));
}
list = tmp;
/* Mutation, often the best values (e.g. the top 20%)
is held mutation free */
for (int i = generationSize/5; i < generationSize; i++) {
T gene = list.get(i);
gene.setValue(gene.mutateValue());
}
}
/* Print the top 3 results. */
for (int i = 0; i < 3; i++) {
System.out.println(list.get(i).getValue());
}
}
/* Sort according to fitness. */
private void sort(){
List<T> tmp = list;
list = new ArrayList<T>();
for(T g : tmp){
place(g);
}
}
/* Insert a gene on the correct place in a list. */
private void place(T gene){
for (int k = 0; k < list.size(); k++) {
if (list.get(k).getFitness() > gene.getFitness()) {
list.add(k, gene);
return;
}
}
list.add(list.size(), gene);
}
/* In order to create new instances of T */
private T newT() {
try{
return clazz.newInstance();
}catch(Exception e){
return null;
}
}
}