forked from peiyunh/tiny
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tiny_face_detector.m
205 lines (171 loc) · 5.63 KB
/
tiny_face_detector.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
% FILE: tiny_face_detector.m
%
% This script serves as a minimal demo for our face detector. Note that
% running this file does not reproduce the same numbers as reported in our
% paper, due to different parameter setting.
%
% In this demo, we set the parameters in a way that the visualization looks
% clean, but this results in a relatively poor recall. However, to achieve a
% nice recall, we have to lower the threshold of detection confidence and
% increase the overlap threshold of NMS.
%
% In our WIDER FACE experiments, we set confidence threshold to 0.03 and NMS
% threshold to 0.3. Additionally, we test with a fixed set of scales. For
% more details, please refer to our experiment script (scripts/hr_res101.m)
% and the main test function (cnn_widerface_test_AB.m).
%
% Feel free to modify the code to suit your needs (such as batch processing).
function bboxes = tiny_face_detector(image_path, output_path, prob_thresh, nms_thresh, gpu_id)
if nargin < 1 || isempty(image_path)
image_path = 'data/demo/selfie.jpg';
end
% if nargin < 2 || isempty(output_path)
if nargin < 2
output_path = './selfie.png';
end
if nargin < 3
prob_thresh = 0.5;
end
if nargin < 4
nms_thresh = 0.1;
end
if nargin < 5
gpu_id = 0; % 0 means no use of GPU (matconvnet starts with 1)
end
addpath matconvnet;
addpath matconvnet/matlab;
vl_setupnn;
addpath utils;
addpath toolbox/nms;
addpath toolbox/export_fig;
%
MAX_INPUT_DIM = 5000;
MAX_DISP_DIM = 3000;
% specify pretrained model (download if needed)
model_dir = './trained_models';
if ~exist(model_dir)
mkdir(model_dir);
end
model_path = fullfile(model_dir, 'hr_res101.mat');
if ~exist(model_path)
url = 'https://www.cs.cmu.edu/~peiyunh/tiny/hr_res101.mat';
cmd = ['wget -O ' model_path ' ' url];
system(cmd);
end
% loadng pretrained model (and some final touches)
fprintf('Loading pretrained detector model...\n');
net = load(model_path);
net = dagnn.DagNN.loadobj(net.net);
net.mode = 'test';
if gpu_id > 0 % for matconvnet it starts with 1
gpuDevice(gpu_id);
net.move('gpu');
end
net.layers(net.getLayerIndex('score4')).block.crop = [1,2,1,2];
net.addLayer('cropx',dagnn.Crop('crop',[0 0]),...
{'score_res3', 'score4'}, 'score_res3c');
net.setLayerInputs('fusex', {'score_res3c', 'score4'});
net.addLayer('prob_cls', dagnn.Sigmoid(), 'score_cls', 'prob_cls');
averageImage = reshape(net.meta.normalization.averageImage,1,1,3);
% reference boxes of templates
clusters = net.meta.clusters;
clusters_h = clusters(:,4) - clusters(:,2) + 1;
clusters_w = clusters(:,3) - clusters(:,1) + 1;
normal_idx = find(clusters(:,5) == 1);
% by default, we look at three resolutions (.5X, 1X, 2X)
%scales = [-1 0 1]; % update: adapt to image resolution (see below)
% initialize output
bboxes = [];
% load input
t1 = tic;
[~,name,ext] = fileparts(image_path);
try
raw_img = imread(image_path);
catch
error(sprintf('Invalid input image path: %s', image_path));
return;
end
% process input at different scales
raw_img = single(raw_img);
[raw_h, raw_w, ~] = size(raw_img) ;
min_scale = min(floor(log2(max(clusters_w(normal_idx)/raw_w))),...
floor(log2(max(clusters_h(normal_idx)/raw_h))));
max_scale = min(1, -log2(max(raw_h, raw_w)/MAX_INPUT_DIM));
scales = [min_scale:0, 0.5:0.5:max_scale];
for s = 2.^scales
img = imresize(raw_img, s, 'bilinear');
img = bsxfun(@minus, img, averageImage);
fprintf('Processing %s at scale %f.\n', image_path, s);
if strcmp(net.device, 'gpu')
img = gpuArray(img);
end
% we don't run every template on every scale
% ids of templates to ignore
tids = [];
if s <= 1, tids = 5:12;
else, tids = [5:12 19:25];
end
ignoredTids = setdiff(1:size(clusters,1), tids);
% run through the net
[img_h, img_w, ~] = size(img);
inputs = {'data', img};
net.eval(inputs);
% collect scores
score_cls = gather(net.vars(net.getVarIndex('score_cls')).value);
score_reg = gather(net.vars(net.getVarIndex('score_reg')).value);
prob_cls = gather(net.vars(net.getVarIndex('prob_cls')).value);
prob_cls(:,:,ignoredTids) = 0;
% threshold for detection
idx = find(prob_cls > prob_thresh);
[fy,fx,fc] = ind2sub(size(prob_cls), idx);
% interpret heatmap into bounding boxes
cy = (fy-1)*8 - 1; cx = (fx-1)*8 - 1;
ch = clusters(fc,4) - clusters(fc,2) + 1;
cw = clusters(fc,3) - clusters(fc,1) + 1;
% extract bounding box refinement
Nt = size(clusters, 1);
tx = score_reg(:,:,1:Nt);
ty = score_reg(:,:,Nt+1:2*Nt);
tw = score_reg(:,:,2*Nt+1:3*Nt);
th = score_reg(:,:,3*Nt+1:4*Nt);
% refine bounding boxes
dcx = cw .* tx(idx);
dcy = ch .* ty(idx);
rcx = cx + dcx;
rcy = cy + dcy;
rcw = cw .* exp(tw(idx));
rch = ch .* exp(th(idx));
%
scores = score_cls(idx);
tmp_bboxes = [rcx-rcw/2, rcy-rch/2, rcx+rcw/2, rcy+rch/2];
tmp_bboxes = horzcat(tmp_bboxes ./ s, scores);
bboxes = vertcat(bboxes, tmp_bboxes);
end
% nms
ridx = nms(bboxes(:,[1:4 end]), nms_thresh);
bboxes = bboxes(ridx,:);
%
bboxes(:,[2 4]) = max(1, min(raw_h, bboxes(:,[2 4])));
bboxes(:,[1 3]) = max(1, min(raw_w, bboxes(:,[1 3])));
%
t2 = toc(t1);
% visualize detection on a reasonable resolution
vis_img = raw_img;
vis_bbox = bboxes;
if max(raw_h, raw_w) > MAX_DISP_DIM
vis_scale = MAX_DISP_DIM/max(raw_h, raw_w);
vis_img = imresize(raw_img, vis_scale);
vis_bbox(:,1:4) = vis_bbox(:,1:4) * vis_scale;
end
visualize_detection(uint8(vis_img), vis_bbox, prob_thresh);
%
drawnow;
% (optional) export figure
if ~isempty(output_path)
export_fig('-dpng', '-native', '-opengl', '-transparent', output_path, '-r300');
end
fprintf('Detection was finished in %f seconds\n', t2);
% free gpu device
if gpu_id > 0
gpuDevice([]);
end