forked from Tianxiaomo/pytorch-YOLOv4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
633 lines (541 loc) · 27.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
# -*- coding: utf-8 -*-
'''
@Time : 2020/05/06 15:07
@Author : Tianxiaomo
@File : train.py
@Noice :
@Modificattion :
@Author :
@Time :
@Detail :
'''
import time
import logging
import os, sys, math
import argparse
from collections import deque
import datetime
import cv2
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch import optim
from torch.nn import functional as F
from tensorboardX import SummaryWriter
from easydict import EasyDict as edict
from dataset import Yolo_dataset
from cfg import Cfg
from models import Yolov4
from tool.darknet2pytorch import Darknet
from tool.tv_reference.utils import collate_fn as val_collate
from tool.tv_reference.coco_utils import convert_to_coco_api
from tool.tv_reference.coco_eval import CocoEvaluator
def bboxes_iou(bboxes_a, bboxes_b, xyxy=True, GIoU=False, DIoU=False, CIoU=False):
"""Calculate the Intersection of Unions (IoUs) between bounding boxes.
IoU is calculated as a ratio of area of the intersection
and area of the union.
Args:
bbox_a (array): An array whose shape is :math:`(N, 4)`.
:math:`N` is the number of bounding boxes.
The dtype should be :obj:`numpy.float32`.
bbox_b (array): An array similar to :obj:`bbox_a`,
whose shape is :math:`(K, 4)`.
The dtype should be :obj:`numpy.float32`.
Returns:
array:
An array whose shape is :math:`(N, K)`. \
An element at index :math:`(n, k)` contains IoUs between \
:math:`n` th bounding box in :obj:`bbox_a` and :math:`k` th bounding \
box in :obj:`bbox_b`.
from: https://github.com/chainer/chainercv
https://github.com/ultralytics/yolov3/blob/eca5b9c1d36e4f73bf2f94e141d864f1c2739e23/utils/utils.py#L262-L282
"""
if bboxes_a.shape[1] != 4 or bboxes_b.shape[1] != 4:
raise IndexError
if xyxy:
# intersection top left
tl = torch.max(bboxes_a[:, None, :2], bboxes_b[:, :2])
# intersection bottom right
br = torch.min(bboxes_a[:, None, 2:], bboxes_b[:, 2:])
# convex (smallest enclosing box) top left and bottom right
con_tl = torch.min(bboxes_a[:, None, :2], bboxes_b[:, :2])
con_br = torch.max(bboxes_a[:, None, 2:], bboxes_b[:, 2:])
# centerpoint distance squared
rho2 = ((bboxes_a[:, None, 0] + bboxes_a[:, None, 2]) - (bboxes_b[:, 0] + bboxes_b[:, 2])) ** 2 / 4 + (
(bboxes_a[:, None, 1] + bboxes_a[:, None, 3]) - (bboxes_b[:, 1] + bboxes_b[:, 3])) ** 2 / 4
w1 = bboxes_a[:, 2] - bboxes_a[:, 0]
h1 = bboxes_a[:, 3] - bboxes_a[:, 1]
w2 = bboxes_b[:, 2] - bboxes_b[:, 0]
h2 = bboxes_b[:, 3] - bboxes_b[:, 1]
area_a = torch.prod(bboxes_a[:, 2:] - bboxes_a[:, :2], 1)
area_b = torch.prod(bboxes_b[:, 2:] - bboxes_b[:, :2], 1)
else:
# intersection top left
tl = torch.max((bboxes_a[:, None, :2] - bboxes_a[:, None, 2:] / 2),
(bboxes_b[:, :2] - bboxes_b[:, 2:] / 2))
# intersection bottom right
br = torch.min((bboxes_a[:, None, :2] + bboxes_a[:, None, 2:] / 2),
(bboxes_b[:, :2] + bboxes_b[:, 2:] / 2))
# convex (smallest enclosing box) top left and bottom right
con_tl = torch.min((bboxes_a[:, None, :2] - bboxes_a[:, None, 2:] / 2),
(bboxes_b[:, :2] - bboxes_b[:, 2:] / 2))
con_br = torch.max((bboxes_a[:, None, :2] + bboxes_a[:, None, 2:] / 2),
(bboxes_b[:, :2] + bboxes_b[:, 2:] / 2))
# centerpoint distance squared
rho2 = ((bboxes_a[:, None, :2] - bboxes_b[:, :2]) ** 2 / 4).sum(dim=-1)
w1 = bboxes_a[:, 2]
h1 = bboxes_a[:, 3]
w2 = bboxes_b[:, 2]
h2 = bboxes_b[:, 3]
area_a = torch.prod(bboxes_a[:, 2:], 1)
area_b = torch.prod(bboxes_b[:, 2:], 1)
en = (tl < br).type(tl.type()).prod(dim=2)
area_i = torch.prod(br - tl, 2) * en # * ((tl < br).all())
area_u = area_a[:, None] + area_b - area_i
iou = area_i / area_u
if GIoU or DIoU or CIoU:
if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf
area_c = torch.prod(con_br - con_tl, 2) # convex area
return iou - (area_c - area_u) / area_c # GIoU
if DIoU or CIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
# convex diagonal squared
c2 = torch.pow(con_br - con_tl, 2).sum(dim=2) + 1e-16
if DIoU:
return iou - rho2 / c2 # DIoU
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w1 / h1).unsqueeze(1) - torch.atan(w2 / h2), 2)
with torch.no_grad():
alpha = v / (1 - iou + v)
return iou - (rho2 / c2 + v * alpha) # CIoU
return iou
class Yolo_loss(nn.Module):
def __init__(self, n_classes=80, n_anchors=3, device=None, batch=2):
super(Yolo_loss, self).__init__()
self.device = device
self.strides = [8, 16, 32]
image_size = 608
self.n_classes = n_classes
self.n_anchors = n_anchors
self.anchors = [[12, 16], [19, 36], [40, 28], [36, 75], [76, 55], [72, 146], [142, 110], [192, 243], [459, 401]]
self.anch_masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
self.ignore_thre = 0.5
self.masked_anchors, self.ref_anchors, self.grid_x, self.grid_y, self.anchor_w, self.anchor_h = [], [], [], [], [], []
for i in range(3):
all_anchors_grid = [(w / self.strides[i], h / self.strides[i]) for w, h in self.anchors]
masked_anchors = np.array([all_anchors_grid[j] for j in self.anch_masks[i]], dtype=np.float32)
ref_anchors = np.zeros((len(all_anchors_grid), 4), dtype=np.float32)
ref_anchors[:, 2:] = np.array(all_anchors_grid, dtype=np.float32)
ref_anchors = torch.from_numpy(ref_anchors)
# calculate pred - xywh obj cls
fsize = image_size // self.strides[i]
grid_x = torch.arange(fsize, dtype=torch.float).repeat(batch, 3, fsize, 1).to(device)
grid_y = torch.arange(fsize, dtype=torch.float).repeat(batch, 3, fsize, 1).permute(0, 1, 3, 2).to(device)
anchor_w = torch.from_numpy(masked_anchors[:, 0]).repeat(batch, fsize, fsize, 1).permute(0, 3, 1, 2).to(
device)
anchor_h = torch.from_numpy(masked_anchors[:, 1]).repeat(batch, fsize, fsize, 1).permute(0, 3, 1, 2).to(
device)
self.masked_anchors.append(masked_anchors)
self.ref_anchors.append(ref_anchors)
self.grid_x.append(grid_x)
self.grid_y.append(grid_y)
self.anchor_w.append(anchor_w)
self.anchor_h.append(anchor_h)
def build_target(self, pred, labels, batchsize, fsize, n_ch, output_id):
# target assignment
tgt_mask = torch.zeros(batchsize, self.n_anchors, fsize, fsize, 4 + self.n_classes).to(device=self.device)
obj_mask = torch.ones(batchsize, self.n_anchors, fsize, fsize).to(device=self.device)
tgt_scale = torch.zeros(batchsize, self.n_anchors, fsize, fsize, 2).to(self.device)
target = torch.zeros(batchsize, self.n_anchors, fsize, fsize, n_ch).to(self.device)
# labels = labels.cpu().data
nlabel = (labels.sum(dim=2) > 0).sum(dim=1) # number of objects
truth_x_all = (labels[:, :, 2] + labels[:, :, 0]) / (self.strides[output_id] * 2)
truth_y_all = (labels[:, :, 3] + labels[:, :, 1]) / (self.strides[output_id] * 2)
truth_w_all = (labels[:, :, 2] - labels[:, :, 0]) / self.strides[output_id]
truth_h_all = (labels[:, :, 3] - labels[:, :, 1]) / self.strides[output_id]
truth_i_all = truth_x_all.to(torch.int16).cpu().numpy()
truth_j_all = truth_y_all.to(torch.int16).cpu().numpy()
for b in range(batchsize):
n = int(nlabel[b])
if n == 0:
continue
truth_box = torch.zeros(n, 4).to(self.device)
truth_box[:n, 2] = truth_w_all[b, :n]
truth_box[:n, 3] = truth_h_all[b, :n]
truth_i = truth_i_all[b, :n]
truth_j = truth_j_all[b, :n]
# calculate iou between truth and reference anchors
anchor_ious_all = bboxes_iou(truth_box.cpu(), self.ref_anchors[output_id], CIoU=True)
# temp = bbox_iou(truth_box.cpu(), self.ref_anchors[output_id])
best_n_all = anchor_ious_all.argmax(dim=1)
best_n = best_n_all % 3
best_n_mask = ((best_n_all == self.anch_masks[output_id][0]) |
(best_n_all == self.anch_masks[output_id][1]) |
(best_n_all == self.anch_masks[output_id][2]))
if sum(best_n_mask) == 0:
continue
truth_box[:n, 0] = truth_x_all[b, :n]
truth_box[:n, 1] = truth_y_all[b, :n]
pred_ious = bboxes_iou(pred[b].view(-1, 4), truth_box, xyxy=False)
pred_best_iou, _ = pred_ious.max(dim=1)
pred_best_iou = (pred_best_iou > self.ignore_thre)
pred_best_iou = pred_best_iou.view(pred[b].shape[:3])
# set mask to zero (ignore) if pred matches truth
obj_mask[b] = ~ pred_best_iou
for ti in range(best_n.shape[0]):
if best_n_mask[ti] == 1:
i, j = truth_i[ti], truth_j[ti]
a = best_n[ti]
obj_mask[b, a, j, i] = 1
tgt_mask[b, a, j, i, :] = 1
target[b, a, j, i, 0] = truth_x_all[b, ti] - truth_x_all[b, ti].to(torch.int16).to(torch.float)
target[b, a, j, i, 1] = truth_y_all[b, ti] - truth_y_all[b, ti].to(torch.int16).to(torch.float)
target[b, a, j, i, 2] = torch.log(
truth_w_all[b, ti] / torch.Tensor(self.masked_anchors[output_id])[best_n[ti], 0] + 1e-16)
target[b, a, j, i, 3] = torch.log(
truth_h_all[b, ti] / torch.Tensor(self.masked_anchors[output_id])[best_n[ti], 1] + 1e-16)
target[b, a, j, i, 4] = 1
target[b, a, j, i, 5 + labels[b, ti, 4].to(torch.int16).cpu().numpy()] = 1
tgt_scale[b, a, j, i, :] = torch.sqrt(2 - truth_w_all[b, ti] * truth_h_all[b, ti] / fsize / fsize)
return obj_mask, tgt_mask, tgt_scale, target
def forward(self, xin, labels=None):
loss, loss_xy, loss_wh, loss_obj, loss_cls, loss_l2 = 0, 0, 0, 0, 0, 0
for output_id, output in enumerate(xin):
batchsize = output.shape[0]
fsize = output.shape[2]
n_ch = 5 + self.n_classes
output = output.view(batchsize, self.n_anchors, n_ch, fsize, fsize)
output = output.permute(0, 1, 3, 4, 2) # .contiguous()
# logistic activation for xy, obj, cls
output[..., np.r_[:2, 4:n_ch]] = torch.sigmoid(output[..., np.r_[:2, 4:n_ch]])
pred = output[..., :4].clone()
pred[..., 0] += self.grid_x[output_id]
pred[..., 1] += self.grid_y[output_id]
pred[..., 2] = torch.exp(pred[..., 2]) * self.anchor_w[output_id]
pred[..., 3] = torch.exp(pred[..., 3]) * self.anchor_h[output_id]
obj_mask, tgt_mask, tgt_scale, target = self.build_target(pred, labels, batchsize, fsize, n_ch, output_id)
# loss calculation
output[..., 4] *= obj_mask
output[..., np.r_[0:4, 5:n_ch]] *= tgt_mask
output[..., 2:4] *= tgt_scale
target[..., 4] *= obj_mask
target[..., np.r_[0:4, 5:n_ch]] *= tgt_mask
target[..., 2:4] *= tgt_scale
loss_xy += F.binary_cross_entropy(input=output[..., :2], target=target[..., :2],
weight=tgt_scale * tgt_scale, reduction='sum')
loss_wh += F.mse_loss(input=output[..., 2:4], target=target[..., 2:4], reduction='sum') / 2
loss_obj += F.binary_cross_entropy(input=output[..., 4], target=target[..., 4], reduction='sum')
loss_cls += F.binary_cross_entropy(input=output[..., 5:], target=target[..., 5:], reduction='sum')
loss_l2 += F.mse_loss(input=output, target=target, reduction='sum')
loss = loss_xy + loss_wh + loss_obj + loss_cls
return loss, loss_xy, loss_wh, loss_obj, loss_cls, loss_l2
def collate(batch):
images = []
bboxes = []
for img, box in batch:
images.append([img])
bboxes.append([box])
images = np.concatenate(images, axis=0)
images = images.transpose(0, 3, 1, 2)
images = torch.from_numpy(images).div(255.0)
bboxes = np.concatenate(bboxes, axis=0)
bboxes = torch.from_numpy(bboxes)
return images, bboxes
def train(model, device, config, epochs=5, batch_size=1, save_cp=True, log_step=20, img_scale=0.5):
train_dataset = Yolo_dataset(config.train_label, config, train=True)
val_dataset = Yolo_dataset(config.val_label, config, train=False)
n_train = len(train_dataset)
n_val = len(val_dataset)
train_loader = DataLoader(train_dataset, batch_size=config.batch // config.subdivisions, shuffle=True,
num_workers=8, pin_memory=True, drop_last=True, collate_fn=collate)
val_loader = DataLoader(val_dataset, batch_size=config.batch // config.subdivisions, shuffle=True, num_workers=8,
pin_memory=True, drop_last=True, collate_fn=val_collate)
writer = SummaryWriter(log_dir=config.TRAIN_TENSORBOARD_DIR,
filename_suffix=f'OPT_{config.TRAIN_OPTIMIZER}_LR_{config.learning_rate}_BS_{config.batch}_Sub_{config.subdivisions}_Size_{config.width}',
comment=f'OPT_{config.TRAIN_OPTIMIZER}_LR_{config.learning_rate}_BS_{config.batch}_Sub_{config.subdivisions}_Size_{config.width}')
# writer.add_images('legend',
# torch.from_numpy(train_dataset.label2colorlegend2(cfg.DATA_CLASSES).transpose([2, 0, 1])).to(
# device).unsqueeze(0))
max_itr = config.TRAIN_EPOCHS * n_train
# global_step = cfg.TRAIN_MINEPOCH * n_train
global_step = 0
logging.info(f'''Starting training:
Epochs: {epochs}
Batch size: {config.batch}
Subdivisions: {config.subdivisions}
Learning rate: {config.learning_rate}
Training size: {n_train}
Validation size: {n_val}
Checkpoints: {save_cp}
Device: {device.type}
Images size: {config.width}
Optimizer: {config.TRAIN_OPTIMIZER}
Dataset classes: {config.classes}
Train label path:{config.train_label}
Pretrained:
''')
# learning rate setup
def burnin_schedule(i):
if i < config.burn_in:
factor = pow(i / config.burn_in, 4)
elif i < config.steps[0]:
factor = 1.0
elif i < config.steps[1]:
factor = 0.1
else:
factor = 0.01
return factor
if config.TRAIN_OPTIMIZER.lower() == 'adam':
optimizer = optim.Adam(
model.parameters(),
lr=config.learning_rate / config.batch,
betas=(0.9, 0.999),
eps=1e-08,
)
elif config.TRAIN_OPTIMIZER.lower() == 'sgd':
optimizer = optim.SGD(
params=model.parameters(),
lr=config.learning_rate / config.batch,
momentum=config.momentum,
weight_decay=config.decay,
)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, burnin_schedule)
criterion = Yolo_loss(device=device, batch=config.batch // config.subdivisions, n_classes=config.classes)
# scheduler = ReduceLROnPlateau(optimizer, mode='max', verbose=True, patience=6, min_lr=1e-7)
# scheduler = CosineAnnealingWarmRestarts(optimizer, 0.001, 1e-6, 20)
save_prefix = 'Yolov4_epoch'
saved_models = deque()
model.train()
for epoch in range(epochs):
# model.train()
epoch_loss = 0
epoch_step = 0
with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{epochs}', unit='img', ncols=50) as pbar:
for i, batch in enumerate(train_loader):
global_step += 1
epoch_step += 1
images = batch[0]
bboxes = batch[1]
images = images.to(device=device, dtype=torch.float32)
bboxes = bboxes.to(device=device)
bboxes_pred = model(images)
loss, loss_xy, loss_wh, loss_obj, loss_cls, loss_l2 = criterion(bboxes_pred, bboxes)
# loss = loss / config.subdivisions
loss.backward()
epoch_loss += loss.item()
if global_step % config.subdivisions == 0:
optimizer.step()
scheduler.step()
model.zero_grad()
if global_step % (log_step * config.subdivisions) == 0:
writer.add_scalar('train/Loss', loss.item(), global_step)
writer.add_scalar('train/loss_xy', loss_xy.item(), global_step)
writer.add_scalar('train/loss_wh', loss_wh.item(), global_step)
writer.add_scalar('train/loss_obj', loss_obj.item(), global_step)
writer.add_scalar('train/loss_cls', loss_cls.item(), global_step)
writer.add_scalar('train/loss_l2', loss_l2.item(), global_step)
writer.add_scalar('lr', scheduler.get_lr()[0] * config.batch, global_step)
pbar.set_postfix(**{'loss (batch)': loss.item(), 'loss_xy': loss_xy.item(),
'loss_wh': loss_wh.item(),
'loss_obj': loss_obj.item(),
'loss_cls': loss_cls.item(),
'loss_l2': loss_l2.item(),
'lr': scheduler.get_lr()[0] * config.batch
})
logging.debug('Train step_{}: loss : {},loss xy : {},loss wh : {},'
'loss obj : {},loss cls : {},loss l2 : {},lr : {}'
.format(global_step, loss.item(), loss_xy.item(),
loss_wh.item(), loss_obj.item(),
loss_cls.item(), loss_l2.item(),
scheduler.get_lr()[0] * config.batch))
pbar.update(images.shape[0])
if cfg.use_darknet_cfg:
eval_model = Darknet(cfg.cfgfile, inference=True)
else:
eval_model = Yolov4(cfg.pretrained, n_classes=cfg.classes, inference=True)
# eval_model = Yolov4(yolov4conv137weight=None, n_classes=config.classes, inference=True)
if torch.cuda.device_count() > 1:
eval_model.load_state_dict(model.module.state_dict())
else:
eval_model.load_state_dict(model.state_dict())
eval_model.to(device)
evaluator = evaluate(eval_model, val_loader, config, device)
del eval_model
stats = evaluator.coco_eval['bbox'].stats
writer.add_scalar('train/AP', stats[0], global_step)
writer.add_scalar('train/AP50', stats[1], global_step)
writer.add_scalar('train/AP75', stats[2], global_step)
writer.add_scalar('train/AP_small', stats[3], global_step)
writer.add_scalar('train/AP_medium', stats[4], global_step)
writer.add_scalar('train/AP_large', stats[5], global_step)
writer.add_scalar('train/AR1', stats[6], global_step)
writer.add_scalar('train/AR10', stats[7], global_step)
writer.add_scalar('train/AR100', stats[8], global_step)
writer.add_scalar('train/AR_small', stats[9], global_step)
writer.add_scalar('train/AR_medium', stats[10], global_step)
writer.add_scalar('train/AR_large', stats[11], global_step)
if save_cp:
try:
# os.mkdir(config.checkpoints)
os.makedirs(config.checkpoints, exist_ok=True)
logging.info('Created checkpoint directory')
except OSError:
pass
save_path = os.path.join(config.checkpoints, f'{save_prefix}{epoch + 1}.pth')
torch.save(model.state_dict(), save_path)
logging.info(f'Checkpoint {epoch + 1} saved !')
saved_models.append(save_path)
if len(saved_models) > config.keep_checkpoint_max > 0:
model_to_remove = saved_models.popleft()
try:
os.remove(model_to_remove)
except:
logging.info(f'failed to remove {model_to_remove}')
writer.close()
@torch.no_grad()
def evaluate(model, data_loader, cfg, device, logger=None, **kwargs):
""" finished, tested
"""
# cpu_device = torch.device("cpu")
model.eval()
# header = 'Test:'
coco = convert_to_coco_api(data_loader.dataset, bbox_fmt='coco')
coco_evaluator = CocoEvaluator(coco, iou_types = ["bbox"], bbox_fmt='coco')
for images, targets in data_loader:
model_input = [[cv2.resize(img, (cfg.w, cfg.h))] for img in images]
model_input = np.concatenate(model_input, axis=0)
model_input = model_input.transpose(0, 3, 1, 2)
model_input = torch.from_numpy(model_input).div(255.0)
model_input = model_input.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
if torch.cuda.is_available():
torch.cuda.synchronize()
model_time = time.time()
outputs = model(model_input)
# outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
model_time = time.time() - model_time
# outputs = outputs.cpu().detach().numpy()
res = {}
# for img, target, output in zip(images, targets, outputs):
for img, target, boxes, confs in zip(images, targets, outputs[0], outputs[1]):
img_height, img_width = img.shape[:2]
# boxes = output[...,:4].copy() # output boxes in yolo format
boxes = boxes.squeeze(2).cpu().detach().numpy()
boxes[...,2:] = boxes[...,2:] - boxes[...,:2] # Transform [x1, y1, x2, y2] to [x1, y1, w, h]
boxes[...,0] = boxes[...,0]*img_width
boxes[...,1] = boxes[...,1]*img_height
boxes[...,2] = boxes[...,2]*img_width
boxes[...,3] = boxes[...,3]*img_height
boxes = torch.as_tensor(boxes, dtype=torch.float32)
# confs = output[...,4:].copy()
confs = confs.cpu().detach().numpy()
labels = np.argmax(confs, axis=1).flatten()
labels = torch.as_tensor(labels, dtype=torch.int64)
scores = np.max(confs, axis=1).flatten()
scores = torch.as_tensor(scores, dtype=torch.float32)
res[target["image_id"].item()] = {
"boxes": boxes,
"scores": scores,
"labels": labels,
}
evaluator_time = time.time()
coco_evaluator.update(res)
evaluator_time = time.time() - evaluator_time
# gather the stats from all processes
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
coco_evaluator.accumulate()
coco_evaluator.summarize()
return coco_evaluator
def get_args(**kwargs):
cfg = kwargs
parser = argparse.ArgumentParser(description='Train the Model on images and target masks',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=2,
# help='Batch size', dest='batchsize')
parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.001,
help='Learning rate', dest='learning_rate')
parser.add_argument('-f', '--load', dest='load', type=str, default=None,
help='Load model from a .pth file')
parser.add_argument('-g', '--gpu', metavar='G', type=str, default='-1',
help='GPU', dest='gpu')
parser.add_argument('-dir', '--data-dir', type=str, default=None,
help='dataset dir', dest='dataset_dir')
parser.add_argument('-pretrained', type=str, default=None, help='pretrained yolov4.conv.137')
parser.add_argument('-classes', type=int, default=80, help='dataset classes')
parser.add_argument('-train_label_path', dest='train_label', type=str, default='train.txt', help="train label path")
parser.add_argument(
'-optimizer', type=str, default='adam',
help='training optimizer',
dest='TRAIN_OPTIMIZER')
parser.add_argument(
'-iou-type', type=str, default='iou',
help='iou type (iou, giou, diou, ciou)',
dest='iou_type')
parser.add_argument(
'-keep-checkpoint-max', type=int, default=10,
help='maximum number of checkpoints to keep. If set 0, all checkpoints will be kept',
dest='keep_checkpoint_max')
args = vars(parser.parse_args())
# for k in args.keys():
# cfg[k] = args.get(k)
cfg.update(args)
return edict(cfg)
def init_logger(log_file=None, log_dir=None, log_level=logging.INFO, mode='w', stdout=True):
"""
log_dir: 日志文件的文件夹路径
mode: 'a', append; 'w', 覆盖原文件写入.
"""
def get_date_str():
now = datetime.datetime.now()
return now.strftime('%Y-%m-%d_%H-%M-%S')
fmt = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s: %(message)s'
if log_dir is None:
log_dir = '~/temp/log/'
if log_file is None:
log_file = 'log_' + get_date_str() + '.txt'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
log_file = os.path.join(log_dir, log_file)
# 此处不能使用logging输出
print('log file path:' + log_file)
logging.basicConfig(level=logging.DEBUG,
format=fmt,
filename=log_file,
filemode=mode)
if stdout:
console = logging.StreamHandler(stream=sys.stdout)
console.setLevel(log_level)
formatter = logging.Formatter(fmt)
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
return logging
def _get_date_str():
now = datetime.datetime.now()
return now.strftime('%Y-%m-%d_%H-%M')
if __name__ == "__main__":
logging = init_logger(log_dir='log')
cfg = get_args(**Cfg)
os.environ["CUDA_VISIBLE_DEVICES"] = cfg.gpu
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f'Using device {device}')
if cfg.use_darknet_cfg:
model = Darknet(cfg.cfgfile)
else:
model = Yolov4(cfg.pretrained, n_classes=cfg.classes)
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
model.to(device=device)
try:
train(model=model,
config=cfg,
epochs=cfg.TRAIN_EPOCHS,
device=device, )
except KeyboardInterrupt:
torch.save(model.state_dict(), 'INTERRUPTED.pth')
logging.info('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)