-
Notifications
You must be signed in to change notification settings - Fork 5
/
my_Mobilenet.py
381 lines (329 loc) · 15.8 KB
/
my_Mobilenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
"""MobileNet v2 models for Keras.
MobileNetV2 is a general architecture and can be used for multiple use cases.
Depending on the use case, it can use different input layer size and
different width factors. This allows different width models to reduce
the number of multiply-adds and thereby
reduce inference cost on mobile devices.
MobileNetV2 is very similar to the original MobileNet,
except that it uses inverted residual blocks with
bottlenecking features. It has a drastically lower
parameter count than the original MobileNet.
MobileNets support any input size greater
than 32 x 32, with larger image sizes
offering better performance.
The number of parameters and number of multiply-adds
can be modified by using the `alpha` parameter,
which increases/decreases the number of filters in each layer.
By altering the image size and `alpha` parameter,
all 22 models from the paper can be built, with ImageNet weights provided.
The paper demonstrates the performance of MobileNets using `alpha` values of
1.0 (also called 100 % MobileNet), 0.35, 0.5, 0.75, 1.0, 1.3, and 1.4
For each of these `alpha` values, weights for 5 different input image sizes
are provided (224, 192, 160, 128, and 96).
The following table describes the performance of
MobileNet on various input sizes:
------------------------------------------------------------------------
MACs stands for Multiply Adds
Classification Checkpoint| MACs (M) | Parameters (M)| Top 1 Accuracy| Top 5 Accuracy
--------------------------|------------|---------------|---------|----|-------------
| [mobilenet_v2_1.4_224] | 582 | 6.06 | 75.0 | 92.5 |
| [mobilenet_v2_1.3_224] | 509 | 5.34 | 74.4 | 92.1 |
| [mobilenet_v2_1.0_224] | 300 | 3.47 | 71.8 | 91.0 |
| [mobilenet_v2_1.0_192] | 221 | 3.47 | 70.7 | 90.1 |
| [mobilenet_v2_1.0_160] | 154 | 3.47 | 68.8 | 89.0 |
| [mobilenet_v2_1.0_128] | 99 | 3.47 | 65.3 | 86.9 |
| [mobilenet_v2_1.0_96] | 56 | 3.47 | 60.3 | 83.2 |
| [mobilenet_v2_0.75_224] | 209 | 2.61 | 69.8 | 89.6 |
| [mobilenet_v2_0.75_192] | 153 | 2.61 | 68.7 | 88.9 |
| [mobilenet_v2_0.75_160] | 107 | 2.61 | 66.4 | 87.3 |
| [mobilenet_v2_0.75_128] | 69 | 2.61 | 63.2 | 85.3 |
| [mobilenet_v2_0.75_96] | 39 | 2.61 | 58.8 | 81.6 |
| [mobilenet_v2_0.5_224] | 97 | 1.95 | 65.4 | 86.4 |
| [mobilenet_v2_0.5_192] | 71 | 1.95 | 63.9 | 85.4 |
| [mobilenet_v2_0.5_160] | 50 | 1.95 | 61.0 | 83.2 |
| [mobilenet_v2_0.5_128] | 32 | 1.95 | 57.7 | 80.8 |
| [mobilenet_v2_0.5_96] | 18 | 1.95 | 51.2 | 75.8 |
| [mobilenet_v2_0.35_224] | 59 | 1.66 | 60.3 | 82.9 |
| [mobilenet_v2_0.35_192] | 43 | 1.66 | 58.2 | 81.2 |
| [mobilenet_v2_0.35_160] | 30 | 1.66 | 55.7 | 79.1 |
| [mobilenet_v2_0.35_128] | 20 | 1.66 | 50.8 | 75.0 |
| [mobilenet_v2_0.35_96] | 11 | 1.66 | 45.5 | 70.4 |
The weights for all 16 models are obtained and
translated from the Tensorflow checkpoints
from TensorFlow checkpoints found [here]
(https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/README.md).
# Reference
This file contains building code for MobileNetV2, based on
[MobileNetV2: Inverted Residuals and Linear Bottlenecks]
(https://arxiv.org/abs/1801.04381) (CVPR 2018)
Tests comparing this model to the existing Tensorflow model can be
found at [mobilenet_v2_keras]
(https://github.com/JonathanCMitchell/mobilenet_v2_keras)
"""
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import os
import warnings
import numpy as np
import tensorflow as tf
from keras_applications import correct_pad
# from keras_applications import get_submodules_from_kwargs
# from keras_applications import imagenet_utils
# from keras_applications.imagenet_utils import decode_predictions
# from keras_applications.imagenet_utils import _obtain_input_shape
backend = tf.keras.backend
layers = tf.keras.layers
models = tf.keras.models
keras_utils = tf.keras.utils
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def MobileNetV2(input_shape=None,
alpha=1.0,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000,
**kwargs):
"""Instantiates the MobileNetV2 architecture.
# Arguments
input_shape: optional shape tuple, to be specified if you would
like to use a model with an input img resolution that is not
(224, 224, 3).
It should have exactly 3 inputs channels (224, 224, 3).
You can also omit this option if you would like
to infer input_shape from an input_tensor.
If you choose to include both input_tensor and input_shape then
input_shape will be used if they match, if the shapes
do not match then we will throw an error.
E.g. `(160, 160, 3)` would be one valid value.
alpha: controls the width of the network. This is known as the
width multiplier in the MobileNetV2 paper, but the name is kept for
consistency with MobileNetV1 in Keras.
- If `alpha` < 1.0, proportionally decreases the number
of filters in each layer.
- If `alpha` > 1.0, proportionally increases the number
of filters in each layer.
- If `alpha` = 1, default number of filters from the paper
are used at each layer.
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor (i.e. output of
`layers.Input()`)
to use as image input for the model.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model
will be the 4D tensor output of the
last convolutional block.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a
2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape or invalid alpha, rows when
weights='imagenet'
"""
global backend, layers, models, keras_utils
# backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)
if not (weights in {'imagenet', None} or os.path.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded.')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top` '
'as true, `classes` should be 1000')
# Determine proper input shape and default size.
# If both input_shape and input_tensor are used, they should match
if input_shape is not None and input_tensor is not None:
try:
is_input_t_tensor = backend.is_keras_tensor(input_tensor)
except ValueError:
try:
is_input_t_tensor = backend.is_keras_tensor(
keras_utils.get_source_inputs(input_tensor))
except ValueError:
raise ValueError('input_tensor: ', input_tensor,
'is not type input_tensor')
if is_input_t_tensor:
if backend.image_data_format == 'channels_first':
if backend.int_shape(input_tensor)[1] != input_shape[1]:
raise ValueError('input_shape: ', input_shape,
'and input_tensor: ', input_tensor,
'do not meet the same shape requirements')
else:
if backend.int_shape(input_tensor)[2] != input_shape[1]:
raise ValueError('input_shape: ', input_shape,
'and input_tensor: ', input_tensor,
'do not meet the same shape requirements')
else:
raise ValueError('input_tensor specified: ', input_tensor,
'is not a keras tensor')
# If input_shape is None, infer shape from input_tensor
if input_shape is None and input_tensor is not None:
try:
backend.is_keras_tensor(input_tensor)
except ValueError:
raise ValueError('input_tensor: ', input_tensor,
'is type: ', type(input_tensor),
'which is not a valid type')
if input_shape is None and not backend.is_keras_tensor(input_tensor):
default_size = 224
elif input_shape is None and backend.is_keras_tensor(input_tensor):
if backend.image_data_format() == 'channels_first':
rows = backend.int_shape(input_tensor)[2]
cols = backend.int_shape(input_tensor)[3]
else:
rows = backend.int_shape(input_tensor)[1]
cols = backend.int_shape(input_tensor)[2]
if rows == cols and rows in [96, 128, 160, 192, 224]:
default_size = rows
else:
default_size = 224
# If input_shape is None and no input_tensor
elif input_shape is None:
default_size = 224
# If input_shape is not None, assume default size
else:
if backend.image_data_format() == 'channels_first':
rows = input_shape[1]
cols = input_shape[2]
else:
rows = input_shape[0]
cols = input_shape[1]
if rows == cols and rows in [96, 128, 160, 192, 224]:
default_size = rows
else:
default_size = 224
if backend.image_data_format() == 'channels_last':
row_axis, col_axis = (0, 1)
else:
row_axis, col_axis = (1, 2)
rows = input_shape[row_axis]
cols = input_shape[col_axis]
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1
first_block_filters = _make_divisible(32 * alpha, 8)
x = layers.ZeroPadding2D(padding=correct_pad(backend, img_input, 3),
name='Conv1_pad')(img_input)
x = layers.Conv2D(first_block_filters,
kernel_size=3,
strides=(2, 2),
padding='valid',
use_bias=False,
name='Conv1')(x)
x = layers.BatchNormalization(axis=channel_axis,
epsilon=1e-3,
momentum=0.999,
name='bn_Conv1')(x)
# x = layers.ReLU(6., name='Conv1_relu')(x)
x = layers.PReLU(name='Conv1_relu')(x)
block_id = 0
x = _inverted_res_block(x, filters=64, alpha=1, stride=2, expansion=2, block_id=block_id)
for i in range(0,4):
block_id = block_id +1
x = _inverted_res_block(x, filters=64, alpha=1, stride=1, expansion=2, block_id=block_id)
block_id = block_id +1
x = _inverted_res_block(x, filters=128, alpha=1, stride=2, expansion=4, block_id=block_id)
for i in range(0,6):
block_id = block_id +1
x = _inverted_res_block(x, filters=128, alpha=1, stride=1, expansion=2, block_id=block_id)
block_id = block_id +1
x = _inverted_res_block(x, filters=128, alpha=1, stride=2, expansion=4, block_id=block_id)
for i in range(0,2):
block_id = block_id + 1
x = _inverted_res_block(x, filters=128, alpha=1, stride=1, expansion=2, block_id=block_id)
x = layers.Conv2D(512,
kernel_size=1,
use_bias=False,
name='Conv_1')(x)
x = layers.BatchNormalization(axis=channel_axis,
epsilon=1e-3,
momentum=0.999,
name='Conv_1_bn')(x)
# x = layers.ReLU(6., name='out_relu')(x)
x = layers.PReLU(name='out_relu')(x)
inputs = img_input
# Create model.
model = models.Model(inputs, x,
name='mobilenetv2_%0.2f_%s' % (alpha, rows))
return model
def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id):
channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1
in_channels = backend.int_shape(inputs)[channel_axis]
pointwise_conv_filters = int(filters * alpha)
pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
x = inputs
prefix = 'block_{}_'.format(block_id)
if block_id:
# Expand
x = layers.Conv2D(expansion * in_channels,
kernel_size=1,
padding='same',
use_bias=False,
activation=None,
name=prefix + 'expand')(x)
x = layers.BatchNormalization(axis=channel_axis,
epsilon=1e-3,
momentum=0.999,
name=prefix + 'expand_BN')(x)
# x = layers.ReLU(6., name=prefix + 'expand_relu')(x)
x = layers.PReLU(name=prefix + 'expand_relu')(x)
else:
prefix = 'expanded_conv_'
# Depthwise
if stride == 2:
x = layers.ZeroPadding2D(padding=correct_pad(backend, x, 3),
name=prefix + 'pad')(x)
x = layers.DepthwiseConv2D(kernel_size=3,
strides=stride,
activation=None,
use_bias=False,
padding='same' if stride == 1 else 'valid',
name=prefix + 'depthwise')(x)
x = layers.BatchNormalization(axis=channel_axis,
epsilon=1e-3,
momentum=0.999,
name=prefix + 'depthwise_BN')(x)
# x = layers.ReLU(6., name=prefix + 'depthwise_relu')(x)
x = layers.PReLU(name=prefix + 'depthwise_relu')(x)
# Project
x = layers.Conv2D(pointwise_filters,
kernel_size=1,
padding='same',
use_bias=False,
activation=None,
name=prefix + 'project')(x)
x = layers.BatchNormalization(axis=channel_axis,
epsilon=1e-3,
momentum=0.999,
name=prefix + 'project_BN')(x)
if in_channels == pointwise_filters and stride == 1:
return layers.Add(name=prefix + 'add')([inputs, x])
return x