forked from luisdamiano/gsoc17-hhmm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.html
3283 lines (3200 loc) · 401 KB
/
main.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="author" content="Luis Damiano, Brian Peterson, Michael Weylandt" />
<meta name="date" content="2017-07-02" />
<title>Input-Output Hidden Markov Model applied to financial time series</title>
\(
% Math operators
\newcommand{\argmax}{\arg\!\max}
\newcommand{\argmin}{\arg\!\min}
\newcommand\ev[1]{E\left\langle#1\right\rangle}
\newcommand\vv[1]{V\left\langle#1\right\rangle}
% Math commands
\newcommand{\mat}[1]{\mathbf{#1}}
% Math symbols
\renewcommand{\NN}{\mathcal{N}}
\renewcommand{\LL}{\mathcal{L}}
\renewcommand{\RR}{\mathbb{R}}
\)
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
div.sourceCode { overflow-x: auto; }
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
margin: 0; padding: 0; vertical-align: baseline; border: none; }
table.sourceCode { width: 100%; line-height: 100%; }
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
td.sourceCode { padding-left: 5px; }
code > span.kw { color: #007020; font-weight: bold; } /* Keyword */
code > span.dt { color: #902000; } /* DataType */
code > span.dv { color: #40a070; } /* DecVal */
code > span.bn { color: #40a070; } /* BaseN */
code > span.fl { color: #40a070; } /* Float */
code > span.ch { color: #4070a0; } /* Char */
code > span.st { color: #4070a0; } /* String */
code > span.co { color: #60a0b0; font-style: italic; } /* Comment */
code > span.ot { color: #007020; } /* Other */
code > span.al { color: #ff0000; font-weight: bold; } /* Alert */
code > span.fu { color: #06287e; } /* Function */
code > span.er { color: #ff0000; font-weight: bold; } /* Error */
code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
code > span.cn { color: #880000; } /* Constant */
code > span.sc { color: #4070a0; } /* SpecialChar */
code > span.vs { color: #4070a0; } /* VerbatimString */
code > span.ss { color: #bb6688; } /* SpecialString */
code > span.im { } /* Import */
code > span.va { color: #19177c; } /* Variable */
code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code > span.op { color: #666666; } /* Operator */
code > span.bu { } /* BuiltIn */
code > span.ex { } /* Extension */
code > span.pp { color: #bc7a00; } /* Preprocessor */
code > span.at { color: #7d9029; } /* Attribute */
code > span.do { color: #ba2121; font-style: italic; } /* Documentation */
code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
</style>
<link href="data:text/css;charset=utf-8,body%20%7B%0Abackground%2Dcolor%3A%20%23fff%3B%0Amargin%3A%201em%20auto%3B%0Amax%2Dwidth%3A%20700px%3B%0Aoverflow%3A%20visible%3B%0Apadding%2Dleft%3A%202em%3B%0Apadding%2Dright%3A%202em%3B%0Afont%2Dfamily%3A%20%22Open%20Sans%22%2C%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20Arial%2C%20sans%2Dserif%3B%0Afont%2Dsize%3A%2014px%3B%0Aline%2Dheight%3A%201%2E35%3B%0A%7D%0A%23header%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0A%23TOC%20%7B%0Aclear%3A%20both%3B%0Amargin%3A%200%200%2010px%2010px%3B%0Apadding%3A%204px%3B%0Awidth%3A%20400px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Aborder%2Dradius%3A%205px%3B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Afont%2Dsize%3A%2013px%3B%0Aline%2Dheight%3A%201%2E3%3B%0A%7D%0A%23TOC%20%2Etoctitle%20%7B%0Afont%2Dweight%3A%20bold%3B%0Afont%2Dsize%3A%2015px%3B%0Amargin%2Dleft%3A%205px%3B%0A%7D%0A%23TOC%20ul%20%7B%0Apadding%2Dleft%3A%2040px%3B%0Amargin%2Dleft%3A%20%2D1%2E5em%3B%0Amargin%2Dtop%3A%205px%3B%0Amargin%2Dbottom%3A%205px%3B%0A%7D%0A%23TOC%20ul%20ul%20%7B%0Amargin%2Dleft%3A%20%2D2em%3B%0A%7D%0A%23TOC%20li%20%7B%0Aline%2Dheight%3A%2016px%3B%0A%7D%0Atable%20%7B%0Amargin%3A%201em%20auto%3B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dcolor%3A%20%23DDDDDD%3B%0Aborder%2Dstyle%3A%20outset%3B%0Aborder%2Dcollapse%3A%20collapse%3B%0A%7D%0Atable%20th%20%7B%0Aborder%2Dwidth%3A%202px%3B%0Apadding%3A%205px%3B%0Aborder%2Dstyle%3A%20inset%3B%0A%7D%0Atable%20td%20%7B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dstyle%3A%20inset%3B%0Aline%2Dheight%3A%2018px%3B%0Apadding%3A%205px%205px%3B%0A%7D%0Atable%2C%20table%20th%2C%20table%20td%20%7B%0Aborder%2Dleft%2Dstyle%3A%20none%3B%0Aborder%2Dright%2Dstyle%3A%20none%3B%0A%7D%0Atable%20thead%2C%20table%20tr%2Eeven%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Ap%20%7B%0Amargin%3A%200%2E5em%200%3B%0A%7D%0Ablockquote%20%7B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Apadding%3A%200%2E25em%200%2E75em%3B%0A%7D%0Ahr%20%7B%0Aborder%2Dstyle%3A%20solid%3B%0Aborder%3A%20none%3B%0Aborder%2Dtop%3A%201px%20solid%20%23777%3B%0Amargin%3A%2028px%200%3B%0A%7D%0Adl%20%7B%0Amargin%2Dleft%3A%200%3B%0A%7D%0Adl%20dd%20%7B%0Amargin%2Dbottom%3A%2013px%3B%0Amargin%2Dleft%3A%2013px%3B%0A%7D%0Adl%20dt%20%7B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Aul%20%7B%0Amargin%2Dtop%3A%200%3B%0A%7D%0Aul%20li%20%7B%0Alist%2Dstyle%3A%20circle%20outside%3B%0A%7D%0Aul%20ul%20%7B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Apre%2C%20code%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0Aborder%2Dradius%3A%203px%3B%0Acolor%3A%20%23333%3B%0Awhite%2Dspace%3A%20pre%2Dwrap%3B%20%0A%7D%0Apre%20%7B%0Aborder%2Dradius%3A%203px%3B%0Amargin%3A%205px%200px%2010px%200px%3B%0Apadding%3A%2010px%3B%0A%7D%0Apre%3Anot%28%5Bclass%5D%29%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Acode%20%7B%0Afont%2Dfamily%3A%20Consolas%2C%20Monaco%2C%20%27Courier%20New%27%2C%20monospace%3B%0Afont%2Dsize%3A%2085%25%3B%0A%7D%0Ap%20%3E%20code%2C%20li%20%3E%20code%20%7B%0Apadding%3A%202px%200px%3B%0A%7D%0Adiv%2Efigure%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0Aimg%20%7B%0Abackground%2Dcolor%3A%20%23FFFFFF%3B%0Apadding%3A%202px%3B%0Aborder%3A%201px%20solid%20%23DDDDDD%3B%0Aborder%2Dradius%3A%203px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Amargin%3A%200%205px%3B%0A%7D%0Ah1%20%7B%0Amargin%2Dtop%3A%200%3B%0Afont%2Dsize%3A%2035px%3B%0Aline%2Dheight%3A%2040px%3B%0A%7D%0Ah2%20%7B%0Aborder%2Dbottom%3A%204px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Apadding%2Dbottom%3A%202px%3B%0Afont%2Dsize%3A%20145%25%3B%0A%7D%0Ah3%20%7B%0Aborder%2Dbottom%3A%202px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Afont%2Dsize%3A%20120%25%3B%0A%7D%0Ah4%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23f7f7f7%3B%0Amargin%2Dleft%3A%208px%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Ah5%2C%20h6%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23ccc%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Aa%20%7B%0Acolor%3A%20%230033dd%3B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0Aa%3Ahover%20%7B%0Acolor%3A%20%236666ff%3B%20%7D%0Aa%3Avisited%20%7B%0Acolor%3A%20%23800080%3B%20%7D%0Aa%3Avisited%3Ahover%20%7B%0Acolor%3A%20%23BB00BB%3B%20%7D%0Aa%5Bhref%5E%3D%22http%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0Aa%5Bhref%5E%3D%22https%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0A%0Acode%20%3E%20span%2Ekw%20%7B%20color%3A%20%23555%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Edt%20%7B%20color%3A%20%23902000%3B%20%7D%20%0Acode%20%3E%20span%2Edv%20%7B%20color%3A%20%2340a070%3B%20%7D%20%0Acode%20%3E%20span%2Ebn%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Efl%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Ech%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Est%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Eco%20%7B%20color%3A%20%23888888%3B%20font%2Dstyle%3A%20italic%3B%20%7D%20%0Acode%20%3E%20span%2Eot%20%7B%20color%3A%20%23007020%3B%20%7D%20%0Acode%20%3E%20span%2Eal%20%7B%20color%3A%20%23ff0000%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Efu%20%7B%20color%3A%20%23900%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%20code%20%3E%20span%2Eer%20%7B%20color%3A%20%23a61717%3B%20background%2Dcolor%3A%20%23e3d2d2%3B%20%7D%20%0A" rel="stylesheet" type="text/css" />
</head>
<body>
<h1 class="title toc-ignore">Input-Output Hidden Markov Model applied to financial time series</h1>
<h4 class="author"><em>Luis Damiano, Brian Peterson, Michael Weylandt</em></h4>
<h4 class="date"><em>2017-07-02</em></h4>
<div id="TOC">
<ul>
<li><a href="#the-input-output-hidden-markov-model"><span class="toc-section-number">1</span> The Input-Output Hidden Markov Model</a><ul>
<li><a href="#definitions"><span class="toc-section-number">1.1</span> Definitions</a></li>
<li><a href="#inference"><span class="toc-section-number">1.2</span> Inference</a><ul>
<li><a href="#filtering"><span class="toc-section-number">1.2.1</span> Filtering</a></li>
<li><a href="#smoothing"><span class="toc-section-number">1.2.2</span> Smoothing</a></li>
<li><a href="#most-likely-hidden-path"><span class="toc-section-number">1.2.3</span> Most likely hidden path</a></li>
</ul></li>
<li><a href="#parameter-estimation"><span class="toc-section-number">1.3</span> Parameter estimation</a></li>
</ul></li>
<li><a href="#learning-by-simulation"><span class="toc-section-number">2</span> Learning by simulation</a><ul>
<li><a href="#auxiliary-files"><span class="toc-section-number">2.1</span> Auxiliary files</a><ul>
<li><a href="#math-functions"><span class="toc-section-number">2.1.1</span> Math functions</a></li>
<li><a href="#plot-functions"><span class="toc-section-number">2.1.2</span> Plot functions</a></li>
<li><a href="#simulation-functions"><span class="toc-section-number">2.1.3</span> Simulation functions</a></li>
</ul></li>
<li><a href="#generative-model"><span class="toc-section-number">2.2</span> Generative model</a><ul>
<li><a href="#data-simulation"><span class="toc-section-number">2.2.1</span> Data simulation</a></li>
<li><a href="#estimation"><span class="toc-section-number">2.2.2</span> Estimation</a></li>
<li><a href="#convergence"><span class="toc-section-number">2.2.3</span> Convergence</a></li>
<li><a href="#state-probability"><span class="toc-section-number">2.2.4</span> State probability</a></li>
<li><a href="#fitted-output"><span class="toc-section-number">2.2.5</span> Fitted output</a></li>
</ul></li>
</ul></li>
<li><a href="#stock-market-forecasting-using-hidden-markov-model"><span class="toc-section-number">3</span> Stock Market Forecasting Using Hidden Markov Model</a><ul>
<li><a href="#preamble"><span class="toc-section-number">3.1</span> Preamble</a></li>
<li><a href="#model"><span class="toc-section-number">3.2</span> Model</a></li>
<li><a href="#the-sampler"><span class="toc-section-number">3.3</span> The sampler</a></li>
<li><a href="#dataset-data-transformation"><span class="toc-section-number">3.4</span> Dataset & data transformation</a></li>
<li><a href="#methodology"><span class="toc-section-number">3.5</span> Methodology</a></li>
<li><a href="#southwest-airlines-luv"><span class="toc-section-number">3.6</span> Southwest Airlines (LUV)</a><ul>
<li><a href="#data-exploration"><span class="toc-section-number">3.6.1</span> Data exploration</a></li>
<li><a href="#estimation-1"><span class="toc-section-number">3.6.2</span> Estimation</a></li>
<li><a href="#convergence-1"><span class="toc-section-number">3.6.3</span> Convergence</a></li>
<li><a href="#state-probability-1"><span class="toc-section-number">3.6.4</span> State probability</a></li>
<li><a href="#fitted-output-1"><span class="toc-section-number">3.6.5</span> Fitted output</a></li>
<li><a href="#in-sample-summary"><span class="toc-section-number">3.6.6</span> In-sample summary</a></li>
<li><a href="#forecast"><span class="toc-section-number">3.6.7</span> Forecast</a></li>
</ul></li>
<li><a href="#ryanair-holdings-plc-rya.l"><span class="toc-section-number">3.7</span> Ryanair Holdings Plc (RYA.L)</a><ul>
<li><a href="#in-sample-analysis"><span class="toc-section-number">3.7.1</span> In-sample analysis</a></li>
<li><a href="#out-of-sample-analysis"><span class="toc-section-number">3.7.2</span> Out-of-sample analysis</a></li>
</ul></li>
<li><a href="#further-research"><span class="toc-section-number">3.8</span> Discussion</a><ul>
<li><a href="#the-statistical-model"><span class="toc-section-number">3.8.1</span> The statistical model</a></li>
<li><a href="#the-financial-application"><span class="toc-section-number">3.8.2</span> The financial application</a></li>
</ul></li>
</ul></li>
<li><a href="#original-computing-environment"><span class="toc-section-number">4</span> Original Computing Environment</a></li>
<li><a href="#references">References</a></li>
</ul>
</div>
<style>img{border: 0px !important;}</style>
<p>This work aims at replicating the Input-Output Hidden Markov Model (IOHMM) originally proposed by <span class="citation">Hassan and Nath (2005)</span> to forecast stock prices. The main goal is to produce public programming code in <a href="http://mc-stan.org/">Stan</a> <span class="citation">(Carpenter et al. 2016)</span> for a fully Bayesian estimation of the model parameters and inference on hidden quantities, namely filtered state belief, smoothed state belief, jointly most probable state path and fitted output. The model is introduced only briefly, a more detailed mathematical treatment can be found in our <a href="https://github.com/luisdamiano/gsoc17-hhmm/blob/master/litreview/main.pdf">literature review</a>.</p>
<p>The authors acknowledge Google for financial support via the Google Summer of Code 2017 program.</p>
<hr />
<div id="the-input-output-hidden-markov-model" class="section level1">
<h1><span class="header-section-number">1</span> The Input-Output Hidden Markov Model</h1>
<p>The IOHMM is an architecture proposed by <span class="citation">Bengio and Frasconi (1995)</span> to map input sequences, sometimes called the control signal, to output sequences. It is a probabilistic framework that can deal with general sequence processing tasks such as production, classification, or prediction. The main difference with Hidden Markov Models (HMM), which are part of the unsupervised learning paradigm, is the capability to learn the output sequence itself instead of the distribution of the output sequence.</p>
<div id="definitions" class="section level2">
<h2><span class="header-section-number">1.1</span> Definitions</h2>
<p>As with HMM, IOHMM involves two interconnected models,</p>
<span class="math display">\[\begin{align*}
z_{t} &= f(z_{t-1}, \mat{u}_{t}) \\
\mat{x}_{t} &= g(z_{t }, \mat{u}_{t}).
\end{align*}\]</span>
<p>The first line corresponds to the state model, which consists of discrete-time, discrete-state hidden states <span class="math inline">\(z_t \in \{1, \dots, K\}\)</span> whose transition depends on the previous hidden state <span class="math inline">\(z_{t-1}\)</span> and the input vector <span class="math inline">\(\mat{u}_{t} \in \RR^M\)</span>. Additionally, the observation model is governed by <span class="math inline">\(g(z_{t}, \mat{u}_{t})\)</span>, where <span class="math inline">\(\mat{x}_t \in \RR^R\)</span> is the vector of observations, emissions or output. The corresponding joint distribution is</p>
<p><span class="math display">\[
p(\mat{z}_{1:T}, \mat{x}_{1:T} | \mat{u}_{t}).
\]</span></p>
<p>In the proposed parametrization with continuous inputs and outputs, the state model involves a multinomial regression whose parameters depend on the previous state taking the value <span class="math inline">\(i\)</span>,</p>
<p><span class="math display">\[
p(z_t | \mat{x}_{t}, \mat{u}_{t}, z_{t-1} = i) = \text{softmax}^{-1}(\mat{w}_i \mat{u}_{t}),
\]</span></p>
<p>and the observation model is built upon the Gaussian density with parameters depending on the current state taking the value <span class="math inline">\(j\)</span>,</p>
<p><span class="math display">\[
p(\mat{x}_t | \mat{u}_{t}, z_{t} = j) = \mathcal{N}(\mat{x}_t | \mat{\mu}_j, \mat{\Sigma}_j).
\]</span></p>
<p>IOHMM adapts the logic of HMM to allow for input and output vectors, retaining its fully probabilistic quality. Hidden states are assumed to follow a multinomial distribution that depends on the input sequence. The transition probabilities <span class="math inline">\(\Psi_t(i, j) = p(z_t = j | z_{t-1} = i, \mat{u}_{t})\)</span>, which govern the state dynamics, are driven by the control signal as well.</p>
<p>As for the output sequence, the local evidence at time <span class="math inline">\(t\)</span> now becomes <span class="math inline">\(\psi_t(j) = p(\mat{x}_t | z_t = j, \mat{\eta}_t)\)</span>, where <span class="math inline">\(\mat{\eta}_t = \ev{\mat{x}_t | z_t, \mat{u}_t}\)</span> can be interpreted as the expected location parameter for the probability distribution of the emission <span class="math inline">\(\mat{x}_{t}\)</span> conditional on the input vector <span class="math inline">\(\mat{u}_t\)</span> and the hidden state <span class="math inline">\(z_t\)</span>.</p>
</div>
<div id="inference" class="section level2">
<h2><span class="header-section-number">1.2</span> Inference</h2>
<p>There are several quantities of interest to be estimated via different algorithms. In this section, the discussion assumes that model parameters are known.</p>
<div id="filtering" class="section level3">
<h3><span class="header-section-number">1.2.1</span> Filtering</h3>
<p>A filter infers the belief state at a given step based on all the information available up to that point,</p>
<span class="math display">\[\begin{align*}
\alpha_t(j)
& \triangleq p(z_t = j | \mat{x}_{1:t}, \mat{u}_{1:t}).
\end{align*}\]</span>
<p>It achieves better noise reduction than simply estimating the hidden state based on the current estimate <span class="math inline">\(p(z_t | \mat{x}_{t})\)</span>. The filtering process can be run online, or recursively, as new data streams in. Filtered marginals can be computed recursively by means of the forward algorithm <span class="citation">(Baum and Eagon 1967)</span>.</p>
</div>
<div id="smoothing" class="section level3">
<h3><span class="header-section-number">1.2.2</span> Smoothing</h3>
<p>A smoother infers the belief state at a given step based on all the observations or evidence,</p>
<p><span class="math display">\[
\begin{align*}
\gamma_t(j)
& \triangleq p(z_t = j | \mat{x}_{1:T}, \mat{u}_{1:T}) \\
& \propto \alpha_t(j) \beta_t(j),
\end{align*}
\]</span></p>
<p>where</p>
<span class="math display">\[\begin{align*}
\beta_{t-1}(i)
& \triangleq p(\mat{x}_{t:T} | z_{t-1} = i, \mat{u}_{t:T}).
\end{align*}\]</span>
<p>Although noise and uncertainty are reduced as a result of conditioning on past and future data, the smoothing process can only be run offline. Inference can be run by means of the forwards-backwards algorithm, also know as the Baum-Welch algorithm <span class="citation">(Baum and Eagon 1967, <span class="citation">Baum et al. (1970)</span>)</span>.</p>
</div>
<div id="most-likely-hidden-path" class="section level3">
<h3><span class="header-section-number">1.2.3</span> Most likely hidden path</h3>
<p>It is also of interest to compute the most probable state sequence or path,</p>
<p><span class="math display">\[
\mat{z}^* = \argmax_{\mat{z}_{1:T}} p(\mat{z}_{1:T} | \mat{x}_{1:T}).
\]</span></p>
<p>The jointly most probable sequence of states can be inferred by means of maximum a posterior (MAP) estimation or Viterbi decoding.</p>
</div>
</div>
<div id="parameter-estimation" class="section level2">
<h2><span class="header-section-number">1.3</span> Parameter estimation</h2>
<p>The parameters of the models are <span class="math inline">\(\mat{\theta} = (\mat{\pi}_1, \mat{\theta}_h, \mat{\theta}_o)\)</span>, where <span class="math inline">\(\mat{\pi}_1\)</span> is the initial state distribution, <span class="math inline">\(\mat{\theta}_h\)</span> are the parameters of the hidden model and <span class="math inline">\(\mat{\theta}_o\)</span> are the parameters of the state-conditional density function <span class="math inline">\(p(\mat{x}_t | z_t = j, \mat{u}_t)\)</span>. The form of <span class="math inline">\(\mat{\theta}_h\)</span> and <span class="math inline">\(\mat{\theta}_o\)</span> depends on the specification of each model. For example, state transition may be characterized by a logistic or multinomial regression with parameters <span class="math inline">\(\mat{w}_k\)</span> for <span class="math inline">\(k \in \{1, \dots, K\}\)</span>, while emissions may be modeled by a linear regression with Gaussian error with parameters <span class="math inline">\(\mat{b}_k\)</span> and <span class="math inline">\(\mat{\Sigma}_k\)</span> for <span class="math inline">\(k \in \{1, \dots, K\}\)</span>.</p>
<hr />
</div>
</div>
<div id="learning-by-simulation" class="section level1">
<h1><span class="header-section-number">2</span> Learning by simulation</h1>
<p>Model complexity and limited software availability requires that we implement our sampler from scratch. Following a very simplified version of the methodology proposed by <span class="citation">Cook, Gelman, and Rubin (2006)</span>, we first create a simulation routine that generates data complying with the model assumptions and we then write a MCMC sampler in Stan to recover the parameters and other hidden quantities. Only after the correctness of our software is tested, we feed our model with real data and analyse the results.</p>
<p>We believe that learning by simulation has many benefits, including:</p>
<ul>
<li>Confirmation whether the software developed to implement the algorithms works properly, i.e. it retrieves the parameters used to generate the data.</li>
<li>Enhanced interpretation of the results and deeper understanding of the model behaviour, especially because the generated data meets all the underlying assumptions and the estimates are free of the effects of data contamination originated by unmodeled phenomena.</li>
<li>The possibility of calibrating different combinations of values for the parameters, the inputs and the outputs help the development of intuition and insight. This may prove valuable for the data analysis stage.</li>
</ul>
<div id="auxiliary-files" class="section level2">
<h2><span class="header-section-number">2.1</span> Auxiliary files</h2>
<div id="math-functions" class="section level3">
<h3><span class="header-section-number">2.1.1</span> Math functions</h3>
<p>We write an auxiliary R function to compute the softmax transformation of a given vector. The calculations are run in log scale for greater numerical stability, i.e. to avoid any overflow.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">source</span>(<span class="st">'../common/R/math.R'</span>)</code></pre></div>
</div>
<div id="plot-functions" class="section level3">
<h3><span class="header-section-number">2.1.2</span> Plot functions</h3>
<p>As plots are extensively used, we arrange the code in an auxiliary file.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">source</span>(<span class="st">'../common/R/plots.R'</span>)</code></pre></div>
</div>
<div id="simulation-functions" class="section level3">
<h3><span class="header-section-number">2.1.3</span> Simulation functions</h3>
<p>We arrange the code to generate simulated data, as explained below, in an auxiliary file.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">source</span>(<span class="st">'../iohmm-reg/R/iohmm-sim.R'</span>)</code></pre></div>
</div>
</div>
<div id="generative-model" class="section level2">
<h2><span class="header-section-number">2.2</span> Generative model</h2>
<div id="data-simulation" class="section level3">
<h3><span class="header-section-number">2.2.1</span> Data simulation</h3>
<p>We first write an R function for our generative model. The arguments are the sequence length <span class="math inline">\(T\)</span>, the number of discrete hidden states <span class="math inline">\(K\)</span>, the input matrix <span class="math inline">\(\mat{u}\)</span>, the initial state distribution vector <span class="math inline">\(\mat{\pi}_1\)</span>, a matrix with the parameters of the multinomial regression that rules the hidden states dynamics <span class="math inline">\(\mat{w}\)</span>, the name of a function drawing samples from the observation distribution and its arguments.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">iohmm_sim <-<span class="st"> </span>function(T, K, u, w, p.init, obs.model, obs.pars) {
m <-<span class="st"> </span><span class="kw">ncol</span>(u)
if (<span class="kw">dim</span>(u)[<span class="dv">1</span>] !=<span class="st"> </span>T)
<span class="kw">stop</span>(<span class="st">"The input matrix must have T rows."</span>)
if (<span class="kw">any</span>(<span class="kw">dim</span>(w) !=<span class="st"> </span><span class="kw">c</span>(K, m)))
<span class="kw">stop</span>(<span class="st">"The transition weight matrix must be of size Kxm, where m is the size of the input vector."</span>)
if (<span class="kw">length</span>(p.init) !=<span class="st"> </span>K)
<span class="kw">stop</span>(<span class="st">"The vector p.init must have length K."</span>)
p.mat <-<span class="st"> </span><span class="kw">matrix</span>(<span class="dv">0</span>, <span class="dt">nrow =</span> T, <span class="dt">ncol =</span> K)
p.mat[<span class="dv">1</span>, ] <-<span class="st"> </span>p.init
z <-<span class="st"> </span><span class="kw">vector</span>(<span class="st">"numeric"</span>, T)
z[<span class="dv">1</span>] <-<span class="st"> </span><span class="kw">sample</span>(<span class="dt">x =</span> <span class="dv">1</span>:K, <span class="dt">size =</span> <span class="dv">1</span>, <span class="dt">replace =</span> <span class="ot">FALSE</span>, <span class="dt">prob =</span> p.init)
for (t in <span class="dv">2</span>:T) {
p.mat[t, ] <-<span class="st"> </span><span class="kw">softmax</span>(<span class="kw">sapply</span>(<span class="dv">1</span>:K, function(j) {u[t, ] %*%<span class="st"> </span>w[j, ]}))
z[t] <-<span class="st"> </span><span class="kw">sample</span>(<span class="dt">x =</span> <span class="dv">1</span>:K, <span class="dt">size =</span> <span class="dv">1</span>, <span class="dt">replace =</span> <span class="ot">FALSE</span>, <span class="dt">prob =</span> p.mat[t, ])
}
x <-<span class="st"> </span><span class="kw">do.call</span>(obs.model, <span class="kw">c</span>(<span class="kw">list</span>(<span class="dt">u =</span> u, <span class="dt">z =</span> z), obs.pars))
<span class="kw">list</span>(
<span class="dt">u =</span> u,
<span class="dt">z =</span> z,
<span class="dt">x =</span> x,
<span class="dt">p.mat =</span> p.mat
)
}</code></pre></div>
<p>The initial hidden state is drawn from a multinomial distribution with one trial and event probabilities given by the initial state probability vector <span class="math inline">\(\mat{\pi}_1\)</span>. The transition probabilities for each of the following steps <span class="math inline">\(t \in \{2, \dots, T\}\)</span> are generated from a multinomial regression with vector parameters <span class="math inline">\(\mat{w}_k\)</span>, one set per possible hidden state <span class="math inline">\(k \in \{1, \dots, K\}\)</span>, and covariates <span class="math inline">\(\mat{u}_t\)</span>. The hidden states are subsequently sampled based on these transition probabilities.</p>
<p>The observation at each step may generate from a linear regressions with parameters <span class="math inline">\(\mat{b}_k\)</span> and <span class="math inline">\(\mat{\Sigma}_k\)</span>, one set per possible hidden state.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">obsmodel_reg <-<span class="st"> </span>function(...) {
args <-<span class="st"> </span><span class="kw">list</span>(...)
u <-<span class="st"> </span>args$u
z <-<span class="st"> </span>args$z
b <-<span class="st"> </span>args$b
s <-<span class="st"> </span>args$s
K <-<span class="st"> </span><span class="kw">length</span>(<span class="kw">unique</span>(z))
m <-<span class="st"> </span><span class="kw">ncol</span>(u)
if (<span class="kw">any</span>(<span class="kw">dim</span>(b) !=<span class="st"> </span><span class="kw">c</span>(K, m)))
<span class="kw">stop</span>(<span class="st">"The regressors matrix must be of size Kxm, where m is the size of the input vector."</span>)
T.length <-<span class="st"> </span><span class="kw">nrow</span>(u)
x <-<span class="st"> </span><span class="kw">vector</span>(<span class="st">"numeric"</span>, T.length)
for (t in <span class="dv">1</span>:T.length) {
x[t] <-<span class="st"> </span><span class="kw">rnorm</span>(<span class="dv">1</span>, u[t, ] %*%<span class="st"> </span>b[z[t], ], s[z[t]])
}
<span class="kw">return</span>(x)
}</code></pre></div>
<p>Alternatively, the observation could originate in a Gaussian mixture density where <span class="math inline">\(\lambda_{kl}\)</span> is the component weight for the <span class="math inline">\(l\)</span>-th component within the <span class="math inline">\(k\)</span>-th state, <span class="math inline">\(0 \le \lambda_{kl} \le 1 \ \forall \ l \in \{1, \dots, L\}, k \in \{1, \dots, K\}\)</span> and <span class="math inline">\(\sum_{l=1}^{L}{\lambda_{kl}} = 1 \ \forall \ k\)</span>.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">obsmodel_mix <-<span class="st"> </span>function(...) {
args <-<span class="st"> </span><span class="kw">list</span>(...)
z <-<span class="st"> </span>args$z
lambda <-<span class="st"> </span>args$lambda
mu <-<span class="st"> </span>args$mu
s <-<span class="st"> </span>args$s
if (!<span class="kw">all.equal</span>(<span class="kw">length</span>(<span class="kw">unique</span>(z)), <span class="kw">length</span>(lambda), <span class="kw">length</span>(mu), <span class="kw">length</span>(s)))
<span class="kw">stop</span>(<span class="st">"The size of the vector parameters lambda, mu and s must equal to the</span>
<span class="st"> number of different states."</span>)
T.length <-<span class="st"> </span><span class="kw">length</span>(z)
L <-<span class="st"> </span><span class="kw">ncol</span>(lambda)
x <-<span class="st"> </span><span class="kw">vector</span>(<span class="st">"numeric"</span>, T.length)
for (t in <span class="dv">1</span>:T.length) {
l <-<span class="st"> </span><span class="kw">sample</span>(<span class="dv">1</span>:L, <span class="dv">1</span>, <span class="ot">FALSE</span>, <span class="dt">prob =</span> lambda[z[t], ])
x[t] <-<span class="st"> </span><span class="kw">rnorm</span>(<span class="dv">1</span>, mu[z[t], l], s[z[t], l])
}
<span class="kw">return</span>(x)
}</code></pre></div>
<p>We set up our simulated experiments for a regression observation model with arbitrary values for all the involved parameters. Additionally, we define the settings for the Markov Chain Monte Carlo sampler.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Data</span>
T.length =<span class="st"> </span><span class="dv">300</span>
K =<span class="st"> </span><span class="dv">3</span>
M =<span class="st"> </span><span class="dv">4</span>
R =<span class="st"> </span><span class="dv">1</span>
u.intercept =<span class="st"> </span><span class="ot">FALSE</span>
w =<span class="st"> </span><span class="kw">matrix</span>(
<span class="kw">c</span>(<span class="fl">1.2</span>, <span class="fl">0.5</span>, <span class="fl">0.3</span>, <span class="fl">0.1</span>, <span class="fl">0.5</span>, <span class="fl">1.2</span>, <span class="fl">0.3</span>, <span class="fl">0.1</span>, <span class="fl">0.5</span>, <span class="fl">0.1</span>, <span class="fl">1.2</span>, <span class="fl">0.1</span>),
<span class="dt">nrow =</span> K, <span class="dt">ncol =</span> M, <span class="dt">byrow =</span> <span class="ot">TRUE</span>)
b =<span class="st"> </span><span class="kw">matrix</span>(
<span class="kw">c</span>(<span class="fl">5.0</span>, <span class="fl">6.0</span>, <span class="fl">7.0</span>, <span class="fl">0.5</span>, <span class="fl">1.0</span>, <span class="fl">5.0</span>, <span class="fl">0.1</span>, -<span class="fl">0.5</span>, <span class="fl">0.1</span>, -<span class="fl">1.0</span>, -<span class="fl">5.0</span>, <span class="fl">0.2</span>),
<span class="dt">nrow =</span> K, <span class="dt">ncol =</span> M, <span class="dt">byrow =</span> <span class="ot">TRUE</span>)
s =<span class="st"> </span><span class="kw">c</span>(<span class="fl">0.2</span>, <span class="fl">1.0</span>, <span class="fl">2.5</span>)
p1 =<span class="st"> </span><span class="kw">c</span>(<span class="fl">0.4</span>, <span class="fl">0.2</span>, <span class="fl">0.4</span>)
<span class="co"># Markov Chain Monte Carlo</span>
n.iter =<span class="st"> </span><span class="dv">400</span>
n.warmup =<span class="st"> </span><span class="dv">200</span>
n.chains =<span class="st"> </span><span class="dv">1</span>
n.cores =<span class="st"> </span><span class="dv">1</span>
n.thin =<span class="st"> </span><span class="dv">1</span>
n.seed =<span class="st"> </span><span class="dv">9000</span></code></pre></div>
<p>We anticipate identification issues in our sampler given the nature of the model. As an arguable simplification with obvious drawbacks, we decide to rely only on one chain to avoid between-chain label switching of regression parameters. We refer the reader to <span class="citation">Betancourt (2017)</span> for an in-depth treatment of the diagnostics, causes and possible solutions for label switching in Bayesian Mixture Models.</p>
<p>We draw random inputs from a standard Gaussian distribution and generate the dataset accordingly.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(n.seed)
u <-<span class="st"> </span><span class="kw">matrix</span>(<span class="kw">rnorm</span>(T.length*M, <span class="dv">0</span>, <span class="dv">1</span>), <span class="dt">nrow =</span> T.length, <span class="dt">ncol =</span> M)
if (u.intercept)
u[, <span class="dv">1</span>] =<span class="st"> </span><span class="dv">1</span>
dataset <-<span class="st"> </span><span class="kw">iohmm_sim</span>(T.length, K, u, w, p1, obsmodel_reg, <span class="kw">list</span>(<span class="dt">b =</span> b, <span class="dt">s =</span> s))</code></pre></div>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">plot_inputoutput</span>(<span class="dt">x =</span> dataset$x, <span class="dt">u =</span> dataset$u, <span class="dt">z =</span> dataset$z)</code></pre></div>
<p><img src="" width="\textwidth" /></p>
<p>We observe how the chosen values for the parameters affect the generated data. For example, the relationship between the third input <span class="math inline">\(\mat{u}_3\)</span> and the output <span class="math inline">\(\mat{x}\)</span> is positive, indifferent and negative for the hidden states 1 through 3, the true slopes being 7, 0.1 and -5 respectively.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">plot_inputprob</span>(<span class="dt">u =</span> dataset$u, <span class="dt">p.mat =</span> dataset$p.mat, <span class="dt">z =</span> dataset$z)</code></pre></div>
<p><img src="" width="\textwidth" /></p>
<p>We then analyse the relationship between the input and the state probabilities, which are usually hidden in applications with real data. The pairs <span class="math inline">\(\{ \mat{u}_1, p(z_t = 1) \}\)</span>, <span class="math inline">\(\{ \mat{u}_2, p(z_t = 2) \}\)</span> and <span class="math inline">\(\{ \mat{u}_3, p(z_t = 3) \}\)</span> are most related due to the choice of values for the true regression parameters: those inputs take the largest weight in each state, namely <span class="math inline">\(w_{11} = 1.2\)</span>, <span class="math inline">\(w_{22} = 1.2\)</span> and <span class="math inline">\(w_{33} = 1.2\)</span>.</p>
</div>
<div id="estimation" class="section level3">
<h3><span class="header-section-number">2.2.2</span> Estimation</h3>
<p>Adopting a fully Bayesian approach, we run our software to draw samples from the posterior density of model parameters and other hidden quantities.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(rstan)</code></pre></div>
<pre><code>## Loading required package: ggplot2</code></pre>
<pre><code>## Loading required package: StanHeaders</code></pre>
<pre><code>## rstan (Version 2.14.2, packaged: 2017-03-19 00:42:29 UTC, GitRev: 5fa1e80eb817)</code></pre>
<pre><code>## For execution on a local, multicore CPU with excess RAM we recommend calling
## rstan_options(auto_write = TRUE)
## options(mc.cores = parallel::detectCores())</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(shinystan)</code></pre></div>
<pre><code>## Loading required package: shiny</code></pre>
<pre><code>##
## This is shinystan version 2.3.0</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">rstan_options</span>(<span class="dt">auto_write =</span> <span class="ot">TRUE</span>)
<span class="kw">options</span>(<span class="dt">mc.cores =</span> parallel::<span class="kw">detectCores</span>())
stan.model =<span class="st"> '../iohmm-reg/stan/iohmm-reg.stan'</span>
stan.data =<span class="st"> </span><span class="kw">list</span>(
<span class="dt">T =</span> T.length,
<span class="dt">K =</span> K,
<span class="dt">M =</span> M,
<span class="dt">u_tm =</span> <span class="kw">as.array</span>(u),
<span class="dt">x_t =</span> dataset$x
)
stan.fit <-<span class="st"> </span><span class="kw">stan</span>(<span class="dt">file =</span> stan.model,
<span class="dt">data =</span> stan.data, <span class="dt">verbose =</span> T,
<span class="dt">iter =</span> n.iter, <span class="dt">warmup =</span> n.warmup,
<span class="dt">thin =</span> n.thin, <span class="dt">chains =</span> n.chains,
<span class="dt">cores =</span> n.cores, <span class="dt">seed =</span> n.seed)</code></pre></div>
<pre><code>##
## TRANSLATING MODEL 'iohmm-reg' FROM Stan CODE TO C++ CODE NOW.
## successful in parsing the Stan model 'iohmm-reg'.
##
## CHECKING DATA AND PREPROCESSING FOR MODEL 'iohmm-reg' NOW.
##
## COMPILING MODEL 'iohmm-reg' NOW.
##
## STARTING SAMPLER FOR MODEL 'iohmm-reg' NOW.
##
## SAMPLING FOR MODEL 'iohmm-reg' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 400 [ 0%] (Warmup)
## Chain 1, Iteration: 40 / 400 [ 10%] (Warmup)
## Chain 1, Iteration: 80 / 400 [ 20%] (Warmup)
## Chain 1, Iteration: 120 / 400 [ 30%] (Warmup)
## Chain 1, Iteration: 160 / 400 [ 40%] (Warmup)
## Chain 1, Iteration: 200 / 400 [ 50%] (Warmup)
## Chain 1, Iteration: 201 / 400 [ 50%] (Sampling)
## Chain 1, Iteration: 240 / 400 [ 60%] (Sampling)
## Chain 1, Iteration: 280 / 400 [ 70%] (Sampling)
## Chain 1, Iteration: 320 / 400 [ 80%] (Sampling)
## Chain 1, Iteration: 360 / 400 [ 90%] (Sampling)
## Chain 1, Iteration: 400 / 400 [100%] (Sampling)
## Elapsed Time: 99.975 seconds (Warm-up)
## 47.487 seconds (Sampling)
## 147.462 seconds (Total)</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">n.samples =<span class="st"> </span>(n.iter -<span class="st"> </span>n.warmup) *<span class="st"> </span>n.chains</code></pre></div>
</div>
<div id="convergence" class="section level3">
<h3><span class="header-section-number">2.2.3</span> Convergence</h3>
<p>We rely on several diagnostic statistics and plots provided by rstan <span class="citation">(Stan Development Team 2017a)</span> and shinystan <span class="citation">(Stan Development Team 2017b)</span> to assess mixing, convergence and the inexistence of divergences. We then extract the samples for some quantities of interest, namely the filtered probabilities vector <span class="math inline">\(\mat{\alpha}_t\)</span>, the smoothed probability vector <span class="math inline">\(\mat{\gamma}_t\)</span>, the most probable hidden path <span class="math inline">\(\mat{z}^*\)</span> and the fitted output <span class="math inline">\(\hat{x}\)</span>.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># MCMC Diagnostics --------------------------------------------------------</span>
<span class="kw">summary</span>(stan.fit,
<span class="dt">pars =</span> <span class="kw">c</span>(<span class="st">'p_1k'</span>, <span class="st">'w_km'</span>, <span class="st">'b_km'</span>, <span class="st">'s_k'</span>),
<span class="dt">probs =</span> <span class="kw">c</span>(<span class="fl">0.50</span>))$summary
<span class="co"># launch_shinystan(stan.fit)</span>
<span class="co"># Extraction --------------------------------------------------------------</span>
alpha_tk <-<span class="st"> </span><span class="kw">extract</span>(stan.fit, <span class="dt">pars =</span> <span class="st">'alpha_tk'</span>)[[<span class="dv">1</span>]]
gamma_tk <-<span class="st"> </span><span class="kw">extract</span>(stan.fit, <span class="dt">pars =</span> <span class="st">'gamma_tk'</span>)[[<span class="dv">1</span>]]
zstar_t <-<span class="st"> </span><span class="kw">extract</span>(stan.fit, <span class="dt">pars =</span> <span class="st">'zstar_t'</span>)[[<span class="dv">1</span>]]
hatx_t <-<span class="st"> </span><span class="kw">extract</span>(stan.fit, <span class="dt">pars =</span> <span class="st">'hatx_t'</span>)[[<span class="dv">1</span>]]</code></pre></div>
<table>
<caption>Estimated parameters and hidden quantities. <em>MCSE = Monte Carlo Standard Error, SE = Standard Error, Med = Median, ESS = Effective Sample Size</em>.</caption>
<thead>
<tr class="header">
<th></th>
<th align="right">Mean</th>
<th align="right">MCSE</th>
<th align="right">SE</th>
<th align="right">Med</th>
<th align="right">ESS</th>
<th align="right"><span class="math inline">\(\hat{R}\)</span></th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>p_1k[1]</td>
<td align="right">0.24</td>
<td align="right">0.01</td>
<td align="right">0.20</td>
<td align="right">0.20</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
<tr class="even">
<td>p_1k[2]</td>
<td align="right">0.27</td>
<td align="right">0.02</td>
<td align="right">0.21</td>
<td align="right">0.23</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
<tr class="odd">
<td>p_1k[3]</td>
<td align="right">0.49</td>
<td align="right">0.02</td>
<td align="right">0.24</td>
<td align="right">0.47</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
<tr class="even">
<td>w_km[1,1]</td>
<td align="right">-0.23</td>
<td align="right">0.30</td>
<td align="right">2.84</td>
<td align="right">-0.33</td>
<td align="right">89.03</td>
<td align="right">1.00</td>
</tr>
<tr class="odd">
<td>w_km[1,2]</td>
<td align="right">0.10</td>
<td align="right">0.27</td>
<td align="right">2.95</td>
<td align="right">0.47</td>
<td align="right">122.00</td>
<td align="right">1.00</td>
</tr>
<tr class="even">
<td>w_km[1,3]</td>
<td align="right">0.39</td>
<td align="right">0.29</td>
<td align="right">2.66</td>
<td align="right">0.46</td>
<td align="right">84.81</td>
<td align="right">1.02</td>
</tr>
<tr class="odd">
<td>w_km[1,4]</td>
<td align="right">-0.18</td>
<td align="right">0.53</td>
<td align="right">3.30</td>
<td align="right">-0.17</td>
<td align="right">38.12</td>
<td align="right">1.01</td>
</tr>
<tr class="even">
<td>w_km[2,1]</td>
<td align="right">-0.09</td>
<td align="right">0.30</td>
<td align="right">2.85</td>
<td align="right">-0.19</td>
<td align="right">88.67</td>
<td align="right">1.00</td>
</tr>
<tr class="odd">
<td>w_km[2,2]</td>
<td align="right">0.27</td>
<td align="right">0.27</td>
<td align="right">2.95</td>
<td align="right">0.64</td>
<td align="right">122.88</td>
<td align="right">1.00</td>
</tr>
<tr class="even">
<td>w_km[2,3]</td>
<td align="right">0.32</td>
<td align="right">0.29</td>
<td align="right">2.65</td>
<td align="right">0.36</td>
<td align="right">84.84</td>
<td align="right">1.02</td>
</tr>
<tr class="odd">
<td>w_km[2,4]</td>
<td align="right">-0.53</td>
<td align="right">0.53</td>
<td align="right">3.30</td>
<td align="right">-0.54</td>
<td align="right">38.28</td>
<td align="right">1.01</td>
</tr>
<tr class="even">
<td>w_km[3,1]</td>
<td align="right">-0.28</td>
<td align="right">0.30</td>
<td align="right">2.86</td>
<td align="right">-0.38</td>
<td align="right">90.44</td>
<td align="right">1.00</td>
</tr>
<tr class="odd">
<td>w_km[3,2]</td>
<td align="right">0.14</td>
<td align="right">0.27</td>
<td align="right">2.96</td>
<td align="right">0.56</td>
<td align="right">122.08</td>
<td align="right">1.00</td>
</tr>
<tr class="even">
<td>w_km[3,3]</td>
<td align="right">0.17</td>
<td align="right">0.29</td>
<td align="right">2.65</td>
<td align="right">0.15</td>
<td align="right">86.48</td>
<td align="right">1.02</td>
</tr>
<tr class="odd">
<td>w_km[3,4]</td>
<td align="right">-0.37</td>
<td align="right">0.53</td>
<td align="right">3.30</td>
<td align="right">-0.43</td>
<td align="right">38.08</td>
<td align="right">1.01</td>
</tr>
<tr class="even">
<td>b_km[1,1]</td>
<td align="right">0.01</td>
<td align="right">0.03</td>
<td align="right">0.39</td>
<td align="right">0.00</td>
<td align="right">181.98</td>
<td align="right">1.02</td>
</tr>
<tr class="odd">
<td>b_km[1,2]</td>
<td align="right">-1.05</td>
<td align="right">0.02</td>
<td align="right">0.29</td>
<td align="right">-1.06</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
<tr class="even">
<td>b_km[1,3]</td>
<td align="right">-4.91</td>
<td align="right">0.03</td>
<td align="right">0.36</td>
<td align="right">-4.90</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
<tr class="odd">
<td>b_km[1,4]</td>
<td align="right">-0.09</td>
<td align="right">0.02</td>
<td align="right">0.33</td>
<td align="right">-0.09</td>
<td align="right">200.00</td>
<td align="right">1.01</td>
</tr>
<tr class="even">
<td>b_km[2,1]</td>
<td align="right">0.86</td>
<td align="right">0.01</td>
<td align="right">0.13</td>
<td align="right">0.86</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
<tr class="odd">
<td>b_km[2,2]</td>
<td align="right">5.00</td>
<td align="right">0.01</td>
<td align="right">0.08</td>
<td align="right">5.00</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
<tr class="even">
<td>b_km[2,3]</td>
<td align="right">0.15</td>
<td align="right">0.01</td>
<td align="right">0.10</td>
<td align="right">0.15</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
<tr class="odd">
<td>b_km[2,4]</td>
<td align="right">-0.28</td>
<td align="right">0.01</td>
<td align="right">0.13</td>
<td align="right">-0.28</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
<tr class="even">
<td>b_km[3,1]</td>
<td align="right">5.04</td>
<td align="right">0.00</td>
<td align="right">0.03</td>
<td align="right">5.04</td>
<td align="right">200.00</td>
<td align="right">1.01</td>
</tr>
<tr class="odd">
<td>b_km[3,2]</td>
<td align="right">6.01</td>
<td align="right">0.00</td>
<td align="right">0.02</td>
<td align="right">6.01</td>
<td align="right">200.00</td>
<td align="right">1.01</td>
</tr>
<tr class="even">
<td>b_km[3,3]</td>
<td align="right">6.99</td>
<td align="right">0.00</td>
<td align="right">0.02</td>
<td align="right">6.99</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
<tr class="odd">
<td>b_km[3,4]</td>
<td align="right">0.46</td>
<td align="right">0.00</td>
<td align="right">0.03</td>
<td align="right">0.47</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
<tr class="even">
<td>s_k[1]</td>
<td align="right">2.74</td>
<td align="right">0.01</td>
<td align="right">0.21</td>
<td align="right">2.74</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
<tr class="odd">
<td>s_k[2]</td>
<td align="right">1.00</td>
<td align="right">0.01</td>
<td align="right">0.09</td>
<td align="right">0.99</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
<tr class="even">
<td>s_k[3]</td>
<td align="right">0.21</td>
<td align="right">0.00</td>
<td align="right">0.02</td>
<td align="right">0.21</td>
<td align="right">200.00</td>
<td align="right">1.00</td>
</tr>
</tbody>
</table>
<p>While mixing and convergence is extremely efficient, as expected when dealing with generated data, we note that the regression parameters for the latent states are the worst performers. The small effective size translates into a high Monte Carlo standard error and broader credibility intervals. One possible reason is that softmax is invariant to change in location, thus the parameters of a multinomial regression do not have a natural center and become harder to estimate.</p>
</div>
<div id="state-probability" class="section level3">
<h3><span class="header-section-number">2.2.4</span> State probability</h3>
<p>We assess that our software recover the hidden states correctly. Due to label switching, the states generated under the labels 1 through 3 were recovered in inverse order. In consequence, we decide to relabel the observations based on the best fit. This would not prove to be a problem with real data considering that the hidden states are never observed.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Relabelling (ugly hack edition) -----------------------------------------</span>
dataset$zrelab <-<span class="st"> </span><span class="kw">rep</span>(<span class="dv">0</span>, T)
hard <-<span class="st"> </span><span class="kw">sapply</span>(<span class="dv">1</span>:T.length, function(t, med) {
<span class="kw">which.max</span>(med[t, ])
}, <span class="dt">med =</span> <span class="kw">apply</span>(alpha_tk, <span class="kw">c</span>(<span class="dv">2</span>, <span class="dv">3</span>),
function(x) {
<span class="kw">quantile</span>(x, <span class="kw">c</span>(<span class="fl">0.50</span>)) }))
tab <-<span class="st"> </span><span class="kw">table</span>(<span class="dt">hard =</span> hard, <span class="dt">original =</span> dataset$z)
for (k in <span class="dv">1</span>:K) {
dataset$zrelab[<span class="kw">which</span>(dataset$z ==<span class="st"> </span>k)] <-<span class="st"> </span><span class="kw">which.max</span>(tab[, k])
}
<span class="kw">print</span>(<span class="st">"Label re-imputation (relabeling due to switching labels)"</span>)</code></pre></div>
<pre><code>## [1] "Label re-imputation (relabeling due to switching labels)"</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">table</span>(<span class="dt">new =</span> dataset$zrelab, <span class="dt">original =</span> dataset$z)</code></pre></div>
<pre><code>## original
## new 1 2 3
## 1 0 0 102
## 2 0 108 0
## 3 90 0 0</code></pre>
<p>Point estimates and credibility intervals are provided by rstan’s <code>{r}summary</code> function.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">print</span>(<span class="st">"Estimated initial state probabilities"</span>)
<span class="kw">summary</span>(stan.fit,
<span class="dt">pars =</span> <span class="kw">c</span>(<span class="st">'p_1k'</span>),
<span class="dt">probs =</span> <span class="kw">c</span>(<span class="fl">0.10</span>, <span class="fl">0.50</span>, <span class="fl">0.90</span>))$summary[, <span class="kw">c</span>(<span class="dv">1</span>, <span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span>, <span class="dv">6</span>)]
<span class="kw">print</span>(<span class="st">"Estimated probabilities in the transition matrix"</span>)
<span class="kw">head</span>(<span class="kw">summary</span>(stan.fit,
<span class="dt">pars =</span> <span class="kw">c</span>(<span class="st">'A_ij'</span>),
<span class="dt">probs =</span> <span class="kw">c</span>(<span class="fl">0.10</span>, <span class="fl">0.50</span>, <span class="fl">0.90</span>))$summary[, <span class="kw">c</span>(<span class="dv">1</span>, <span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span>, <span class="dv">6</span>)])
<span class="kw">print</span>(<span class="st">"Estimated regressors of hidden states"</span>)
<span class="kw">summary</span>(stan.fit,
<span class="dt">pars =</span> <span class="kw">c</span>(<span class="st">'w_km'</span>),
<span class="dt">probs =</span> <span class="kw">c</span>(<span class="fl">0.10</span>, <span class="fl">0.50</span>, <span class="fl">0.90</span>))$summary[, <span class="kw">c</span>(<span class="dv">1</span>, <span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span>, <span class="dv">6</span>)]
<span class="kw">print</span>(<span class="st">"Estimated regressors and standard deviation of observations in each state"</span>)
<span class="kw">summary</span>(stan.fit,
<span class="dt">pars =</span> <span class="kw">c</span>(<span class="st">'b_km'</span>, <span class="st">'s_k'</span>),
<span class="dt">probs =</span> <span class="kw">c</span>(<span class="fl">0.10</span>, <span class="fl">0.50</span>, <span class="fl">0.90</span>))$summary[, <span class="kw">c</span>(<span class="dv">1</span>, <span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span>, <span class="dv">6</span>)]</code></pre></div>
<table>
<caption>Estimated initial state probabilities.</caption>
<thead>
<tr class="header">
<th></th>
<th align="right">Mean</th>
<th align="right">SE</th>
<th align="right">10%</th>
<th align="right">Med</th>
<th align="right">90%</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>p_1k[1]</td>
<td align="right">0.24</td>
<td align="right">0.20</td>
<td align="right">0.03</td>
<td align="right">0.20</td>
<td align="right">0.52</td>
</tr>
<tr class="even">
<td>p_1k[2]</td>
<td align="right">0.27</td>
<td align="right">0.21</td>
<td align="right">0.03</td>
<td align="right">0.23</td>
<td align="right">0.55</td>
</tr>
<tr class="odd">
<td>p_1k[3]</td>
<td align="right">0.49</td>
<td align="right">0.24</td>
<td align="right">0.16</td>
<td align="right">0.47</td>
<td align="right">0.85</td>
</tr>
</tbody>
</table>
<table>
<caption>Estimated probabilities in the transition matrix.</caption>
<thead>
<tr class="header">
<th></th>
<th align="right">Mean</th>
<th align="right">SE</th>
<th align="right">10%</th>
<th align="right">Med</th>
<th align="right">90%</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>A_ij[1,1]</td>
<td align="right">0.24</td>
<td align="right">0.20</td>
<td align="right">0.03</td>
<td align="right">0.20</td>
<td align="right">0.52</td>
</tr>
<tr class="even">
<td>A_ij[1,2]</td>
<td align="right">0.27</td>
<td align="right">0.21</td>
<td align="right">0.03</td>
<td align="right">0.23</td>
<td align="right">0.55</td>
</tr>
<tr class="odd">
<td>A_ij[1,3]</td>
<td align="right">0.49</td>
<td align="right">0.24</td>
<td align="right">0.16</td>
<td align="right">0.47</td>
<td align="right">0.85</td>
</tr>
<tr class="even">
<td>A_ij[2,1]</td>
<td align="right">0.33</td>
<td align="right">0.02</td>
<td align="right">0.31</td>
<td align="right">0.33</td>
<td align="right">0.36</td>
</tr>
<tr class="odd">
<td>A_ij[2,2]</td>
<td align="right">0.36</td>
<td align="right">0.02</td>
<td align="right">0.33</td>
<td align="right">0.36</td>
<td align="right">0.39</td>
</tr>
<tr class="even">
<td>A_ij[2,3]</td>
<td align="right">0.31</td>
<td align="right">0.02</td>
<td align="right">0.29</td>
<td align="right">0.31</td>
<td align="right">0.33</td>
</tr>
</tbody>
</table>
<table>
<caption>Estimated regressors of hidden states.</caption>
<thead>
<tr class="header">
<th></th>
<th align="right">Mean</th>
<th align="right">SE</th>
<th align="right">10%</th>
<th align="right">Med</th>
<th align="right">90%</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>w_km[1,1]</td>
<td align="right">-0.23</td>
<td align="right">2.84</td>
<td align="right">-3.50</td>
<td align="right">-0.33</td>
<td align="right">3.30</td>
</tr>
<tr class="even">
<td>w_km[1,2]</td>
<td align="right">0.10</td>
<td align="right">2.95</td>
<td align="right">-3.56</td>
<td align="right">0.47</td>
<td align="right">3.64</td>
</tr>
<tr class="odd">
<td>w_km[1,3]</td>
<td align="right">0.39</td>
<td align="right">2.66</td>
<td align="right">-3.27</td>
<td align="right">0.46</td>
<td align="right">3.51</td>
</tr>
<tr class="even">
<td>w_km[1,4]</td>
<td align="right">-0.18</td>
<td align="right">3.30</td>
<td align="right">-4.51</td>
<td align="right">-0.17</td>
<td align="right">4.22</td>
</tr>
<tr class="odd">
<td>w_km[2,1]</td>
<td align="right">-0.09</td>
<td align="right">2.85</td>
<td align="right">-3.57</td>
<td align="right">-0.19</td>
<td align="right">3.43</td>
</tr>
<tr class="even">
<td>w_km[2,2]</td>
<td align="right">0.27</td>
<td align="right">2.95</td>
<td align="right">-3.49</td>
<td align="right">0.64</td>
<td align="right">3.84</td>
</tr>
<tr class="odd">
<td>w_km[2,3]</td>
<td align="right">0.32</td>
<td align="right">2.65</td>
<td align="right">-3.23</td>
<td align="right">0.36</td>
<td align="right">3.52</td>
</tr>
<tr class="even">
<td>w_km[2,4]</td>
<td align="right">-0.53</td>
<td align="right">3.30</td>
<td align="right">-4.89</td>
<td align="right">-0.54</td>
<td align="right">3.83</td>
</tr>
<tr class="odd">
<td>w_km[3,1]</td>
<td align="right">-0.28</td>
<td align="right">2.86</td>
<td align="right">-3.69</td>
<td align="right">-0.38</td>
<td align="right">3.36</td>
</tr>
<tr class="even">
<td>w_km[3,2]</td>
<td align="right">0.14</td>
<td align="right">2.96</td>
<td align="right">-3.65</td>
<td align="right">0.56</td>
<td align="right">3.68</td>
</tr>
<tr class="odd">
<td>w_km[3,3]</td>
<td align="right">0.17</td>
<td align="right">2.65</td>
<td align="right">-3.46</td>
<td align="right">0.15</td>
<td align="right">3.37</td>
</tr>
<tr class="even">
<td>w_km[3,4]</td>
<td align="right">-0.37</td>
<td align="right">3.30</td>
<td align="right">-4.72</td>
<td align="right">-0.43</td>
<td align="right">4.01</td>
</tr>
</tbody>
</table>
<table>
<caption>Estimated regression parameters and standard deviation of observations in each state.</caption>
<thead>
<tr class="header">
<th></th>
<th align="right">Mean</th>
<th align="right">SE</th>
<th align="right">10%</th>
<th align="right">Med</th>
<th align="right">90%</th>
</tr>
</thead>
<tbody>
<tr class="odd">