View source on GitHub |
Export dynamic_embedding APIs.
keras
module
math
module: math operations.
shadow_ops
module: Dynamic Embedding is designed for Large-scale Sparse Weights Training.
class CuckooHashTable
: A generic mutable hash table implementation.
class CuckooHashTableCreator
: A generic KV table creator.
class FrequencyRestrictPolicy
: A derived policy to eliminate features in variable follow the
class GraphKeys
: (Deprecated) extended standard names related to
class ModelMode
: The global config of model modes.
class HkvHashTable
: A generic mutable hash table implementation.
class HkvHashTableConfig
: HkvHashTableConfig config init_capacity, max_capacity, max_hbm_for_values of HkvHashTable
class HkvHashTableCreator
: A generic KV table creator.
class RedisTable
: A generic mutable hash table implementation.
class RedisTableConfig
: RedisTableConfig config json file for connecting Redis service and
class RedisTableCreator
: RedisTableCreator will create a object to pass itself to the others classes
class RestrictPolicy
: Base class of restrict policies. Never use this class directly, but
class TimestampRestrictPolicy
: A derived policy to eliminate features in variable follow the
class TrainableWrapper
: This class is a trainable wrapper of Dynamic Embedding,
class Variable
: A Distributed version of HashTable(reference from lookup_ops.MutableHashTable)
DynamicEmbeddingOptimizer(...)
: An optimizer wrapper to make any TensorFlow optimizer capable of training
embedding_lookup(...)
: Provides a dynamic version of embedding_lookup
embedding_lookup_sparse(...)
: Provides a dynamic version of embedding_lookup_sparse
embedding_lookup_unique(...)
: Version of embedding_lookup that avoids duplicate lookups.
enable_inference_mode(...)
: set inference mode.
enable_train_mode(...)
: enable train mode.
get_model_mode(...)
: get model mode.
get_variable(...)
: Gets an Variable
object with this name if it exists,
safe_embedding_lookup_sparse(...)
: Provides a dynamic version of tf.nn.safe_embedding_lookup_sparse
.