diff --git a/tests/legacy/simple_classif_training.py b/tests/legacy/simple_classif_training.py index ab7b1fab9f7c7..960eea34eedf0 100644 --- a/tests/legacy/simple_classif_training.py +++ b/tests/legacy/simple_classif_training.py @@ -42,8 +42,8 @@ def main_train(dir_path, max_epochs: int = 20): model = ClassificationModel() trainer.fit(model, datamodule=dm) res = trainer.test(model, datamodule=dm) - assert res[0]["test_loss"] <= 0.7 - assert res[0]["test_acc"] >= 0.85 + assert res[0]["test_loss"] <= 0.85, str(res[0]["test_loss"]) + assert res[0]["test_acc"] >= 0.7, str(res[0]["test_acc"]) assert trainer.current_epoch < (max_epochs - 1) diff --git a/tests/tests_pytorch/checkpointing/test_legacy_checkpoints.py b/tests/tests_pytorch/checkpointing/test_legacy_checkpoints.py index 4a99accb06997..1100ac8fcde1b 100644 --- a/tests/tests_pytorch/checkpointing/test_legacy_checkpoints.py +++ b/tests/tests_pytorch/checkpointing/test_legacy_checkpoints.py @@ -47,8 +47,8 @@ def test_load_legacy_checkpoints(tmpdir, pl_version: str): trainer = Trainer(default_root_dir=str(tmpdir)) dm = ClassifDataModule(num_features=24, length=6000, batch_size=128, n_clusters_per_class=2, n_informative=8) res = trainer.test(model, datamodule=dm) - assert res[0]["test_loss"] <= 0.7 - assert res[0]["test_acc"] >= 0.85 + assert res[0]["test_loss"] <= 0.85, str(res[0]["test_loss"]) + assert res[0]["test_acc"] >= 0.7, str(res[0]["test_acc"]) print(res) @@ -111,5 +111,5 @@ def test_resume_legacy_checkpoints(tmpdir, pl_version: str): torch.backends.cudnn.deterministic = True trainer.fit(model, datamodule=dm, ckpt_path=path_ckpt) res = trainer.test(model, datamodule=dm) - assert res[0]["test_loss"] <= 0.7 - assert res[0]["test_acc"] >= 0.85 + assert res[0]["test_loss"] <= 0.85, str(res[0]["test_loss"]) + assert res[0]["test_acc"] >= 0.7, str(res[0]["test_acc"])